I am trying to solve the set of coupled boundary value problems such that;
U'' +aB'+ b*(cosh(lambda z))^{-2}tanh(lambda*z) = 0,
B'' + c*U' = 0,
T'' = (gamma^{-1} - 1)*(d*(U')^2 + e*(B')^2)
subject to the boundary conditions U(+/- 1/2) = +/-U_0*tanh(lambda/2), B(+/- 1/2) = 0 and T(-1/2) = 1, T(1/2) = 4. I have decomposed this set of equations into a set of first order differential equations, and used the derivative array such that [U, U', B, B', T, T']. But bvp solve is returning the error that I have a single Jacobian. When I remove the last two equations, I get a solution for U and B and that works fine. However, I am unsure why adding the other two equations results in this issue.
import numpy as np
from scipy.integrate import solve_bvp
import matplotlib.pyplot as plt
%matplotlib inline
alpha = 1E-7
zeta = 8E-3
C_k = 0.01
sigma = 0.005
Q = 30
U_0 = 0.1
gamma = 5/3
theta = 3
def fun(x, y):
return y[1], -2*U_0*Q**2*(1/np.cosh(Q*x))**2*np.tanh(Q*x)-((alpha)/(C_k*sigma))*y[3], y[3],\
-(1/(C_k*zeta))*y[1], y[4], (1/gamma - 1)*(sigma*(y[1])**2 + zeta*alpha*(y[3])**2)
def bc(ya, yb):
return ya[0]+U_0*np.tanh(Q*0.5), yb[0]-U_0*np.tanh(Q*0.5), ya[2]-0, yb[2]-0, ya[4] - 1, yb[4] - 4
x = np.linspace(-0.5, 0.5, 500)
y = np.zeros((6, x.size))
sol = solve_bvp(fun, bc, x, y)
print(sol)
However, the error that I am getting is that 'setting an array with sequence'. The first function and boundary conditions solves two coupled equations, then I use these results to evaluate the equation I have given. I have tried writing all of my equations in one function, however this seems to be returning trivial solutions i.e an array full of zeros.
Any help would be appreciated.
When the expressions become larger it is often more helpful to keep the computations human readable instead of compact.
def fun(x, y):
U, dU, B, dB, T, dT = y;
d2U = -2*U_0*Q**2*(1/np.cosh(Q*x))**2*np.tanh(Q*x)-((alpha)/(C_k*sigma))*dB;
d2B = -(1/(C_k*zeta))*dU;
d2T = (1/gamma - 1)*(sigma*dU**2 + zeta*alpha*dB**2);
return dU, d2U, dB, d2B, dT, d2T
This avoids missing an index error as there are no indices in this computation, all has names close to the original formulas.
Then the solution components (using initialization with only 5 points, resulting in a refinement with 65 points) plots as
Related
I would like to numerically compute this ODE from time 0 -> T :
ODE equation where all of the sub-matrix are numerically given in a paper. Here are all of the variables :
import numpy as np
T = 1
eta = np.diag([2e-7, 2e-7])
R = [[0.33, 3.95],
[-2.52, 10.23]]
R = np.array(R)
gamma = 2e-5
GAMMA = 100
S_bar = [54.23, 27.45]
cov = [[0.47, 0.2],
[0.2, 0.14]]
cov = np.array(cov)
shape = cov.shape
Q = 0.5*np.block([[gamma*cov, R],
[np.transpose(R), np.zeros(shape)]])
Y = np.block([[np.zeros(shape), np.zeros(shape)],
[gamma*cov, R]])
U = np.block([[-linalg.inv(eta), np.zeros(shape)],
[np.zeros(shape), 2*gamma*cov]])
P_T = np.block([[-GAMMA*np.ones(shape), np.zeros(shape)],
[np.zeros(shape), np.zeros(shape)]])
Now I define de function f so that P' = f(t, P) :
n = len(P_T)
def f(t, X):
X = X.reshape([n, n])
return (Q + np.transpose(Y)#X + X#Y + X#U#X).reshape(-1)
Now my goal is to numerically solve this ODE, im trying to figure out the right function solve so that if I integrate the ODE from T to 0, then using the final value I get, I integrate back from 0 to T, the two matrices I get are actually (nearly) the same. Here is my solve function :
from scipy import integrate
def solve(interval, initial_value):
return integrate.solve_ivp(f, interval, initial_value, method="LSODA", max_step=1e-4)
Now I can test wether the computation is right :
solv = solve([T, 0], P_T.reshape(-1))
y = np.array(solv.y)
solv2 = solve([0, T], y[:, -1])
y2 = np.array(solv2.y)
# print(solv.status)
# print(solv2.status)
# this lines shows the diffenrence between the initial matrix at T and the final matrix computed at T
# the smallest is the value, the better is the computation
print(sum(sum(abs((P_T - y2[:, -1].reshape([n, n]))))))
My issue is : No matter what "solve" function im using (using different methods, different step sizes, testing all the parameters...) I always get either errors or a very bad convergence (the difference between the two matrices is too high).
Knowing that according to the paper where this ODE comes from ( (23) in https://arxiv.org/pdf/2103.13773v4.pdf) there exists a solution, how can I numerically compute it?
I am trying to use scipy to numerically solve the following differential equation
x''+x=\sum_{k=1}^{20}\delta(t-k\pi), y(0)=y'(0)=0.
Here is the code
from scipy.integrate import odeint
import numpy as np
import matplotlib.pyplot as plt
from sympy import DiracDelta
def f(t):
sum = 0
for i in range(20):
sum = sum + 1.0*DiracDelta(t-(i+1)*np.pi)
return sum
def ode(X, t):
x = X[0]
y = X[1]
dxdt = y
dydt = -x + f(t)
return [dxdt, dydt]
X0 = [0, 0]
t = np.linspace(0, 80, 500)
sol = odeint(ode, X0, t)
x = sol[:, 0]
y = sol[:, 1]
plt.plot(t,x, t, y)
plt.xlabel('t')
plt.legend(('x', 'y'))
# phase portrait
plt.figure()
plt.plot(x,y)
plt.plot(x[0], y[0], 'ro')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
However what I got from python is zero solution, which is different from what I got from Mathematica. Here are the mathematica code and the graph
so=NDSolve[{x''(t)+x(t)=\sum _{i=1}^{20} DiraDelta (t-i \pi ),x(0)=0,x'(0)=0},x(t),{t,0,80}]
It seems to me that scipy ignores the Dirac delta function. Where am I wrong? Any help is appreciated.
Dirac delta is not a function. Writing it as density in an integral is still only a symbolic representation. It is, as mathematical object, a functional on the space of continuous functions. delta(t0,f)=f(t0), not more, not less.
One can approximate the evaluation, or "sifting" effect of the delta operator by continuous functions. The usual good approximations have the form N*phi(N*t) where N is a large number and phi a non-negative function, usually with a somewhat compact shape, that has integral one. Popular examples are box functions, tent functions, the Gauß bell curve, ... So you could take
def tentfunc(t): return max(0,1-abs(t))
N = 10.0
def rhs(t): return sum( N*tentfunc(N*(t-(i+1)*np.pi)) for i in range(20))
X0 = [0, 0]
t = np.linspace(0, 80, 1000)
sol = odeint(lambda x,t: [ x[1], rhs(t)-x[0]], X0, t, tcrit=np.pi*np.arange(21), atol=1e-8, rtol=1e-10)
x,v = sol.T
plt.plot(t,x, t, v)
which gives
Note that the density of the t array also influences the accuracy, while the tcrit critical points did not do much.
Another way is to remember that delta is the second derivative of max(0,x), so one can construct a function that is the twice primitive of the right side,
def u(t): return sum(np.maximum(0,t-(i+1)*np.pi) for i in range(20))
so that now the equation is equivalent to
(x(t)-u(t))'' + x(t) = 0
set y = x-u then
y''(t) + y(t) = -u(t)
which now has a continuous right side.
X0 = [0, 0]
t = np.linspace(0, 80, 1000)
sol = odeint(lambda y,t: [ y[1], -u(t)-y[0]], X0, t, atol=1e-8, rtol=1e-10)
y,v = sol.T
x=y+u(t)
plt.plot(t,x)
odeint :
does not handle sympy symbolic objects
it's unlikely it can ever handle Dirac Delta terms.
The best bet is probably to turn dirac deltas into boundary conditions: assume that the function is continuous at the location of the Dirac delta, but the first derivative jumps. Integrating over infinitesimal interval around the location of the delta function gives you the boundary condition for the derivative just left and just right from the delta.
I am trying to solve a set of boundary value problems given by 4 differential equations. I am using bvp_solver in python, and I am getting errors which state 'invalid value encountered in division'. I am assuming this means I am dividing by NaN or 0 at some point, but I am unsure where.
import numpy as np
from scipy.integrate import solve_bvp
import matplotlib.pyplot as plt
%matplotlib inline
alpha = 1
zeta = 1
C_k = 1
sigma = 1
Q = 30
U_0 = 0.1
gamma = 5/3
theta = 3
m = 1.5
def fun(x, y):
U, dU, B, dB, T, dT, M, dM = y;
d2U = -2*U_0*Q**2*(1/np.cosh(Q*x))**2*np.tanh(Q*x)-((alpha)/(C_k*sigma))*dB;
d2B = -(1/(C_k*zeta))*dU;
d2T = (1/gamma - 1)*(sigma*dU**2 + zeta*alpha*dB**2);
d2M = -(dM/T)*dT + (dM/T)*theta*(m+1) - (alpha/T)*B*dB
return dU, d2U, dB, d2B, dT, d2T, dM, d2M
def bc(ya, yb):
return ya[0]+U_0*np.tanh(Q*0.5), yb[0]-U_0*np.tanh(Q*0.5), ya[2]-0, yb[2]-0, ya[4] - 1, yb[4] - 4, ya[6], yb[6] - 1
x = np.linspace(-0.5, 0.5, 500)
y = np.zeros((8, x.size))
sol = solve_bvp(fun, bc, x, y)
If I remove the last two equations for M and dM, then the solution works fine. I have had trouble in the past understanding the return arrays of bvp_solver, but I am confident I understand that now. But I continue to get errors each time I add more equations. Any help is greatly appreciated.
Of course this will fail in the first step. You initialize everything to zero, and then in the derivatives function, you divide by T, which is zero from the initialization.
Find a more realistic initialization of T, for instance
x = np.linspace(-0.5, 0.5, 15)
y = np.zeros((8, x.size))
y[4] = 2.5+3*x
y[5] = 3+0*x
or
desingularize the division, which usually is done similar to
d2M = (-dM*dT + dM*theta*(m+1) - alpha*B*dB) * T/(1e-12+T*T)
It makes always sense to print after sol = solve_bvp(...) the error message print(sol.message). Now that there are more than a few components, I changed the construction of the output tableau to the systematic
%matplotlib inline
plt.figure(figsize=(10,2.5*4))
for k in range(4):
v,c = ['U','B','T','M'][k],['-+b','-*r','-xg','-om'][k];
plt.subplot(4,2,2*k+1); plt.plot(sol.x,sol.y[2*k ],c, ms=2); plt.grid(); plt.legend(["$%c$"%v]);
plt.subplot(4,2,2*k+2); plt.plot(sol.x,sol.y[2*k+1],c, ms=2); plt.grid(); plt.legend(["$%c'$"%v]);
plt.tight_layout(); plt.savefig("/tmp/bvp3.png"); plt.show(); plt.close()
The problem is that I would like to be able to integrate the differential equations starting for each point of the grid at once instead of having to loop over the scipy integrator for each coordinate. (I'm sure there's an easy way)
As background for the code I'm trying to solve the trajectories of a Couette flux alternating the direction of the velocity each certain period, that is a well known dynamical system that produces chaos. I don't think the rest of the code really matters as the part of the integration with scipy and my usage of the meshgrid function of numpy.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, writers
from scipy.integrate import solve_ivp
start_T = 100
L = 1
V = 1
total_run_time = 10*3
grid_points = 10
T_list = np.arange(start_T, 1, -1)
x = np.linspace(0, L, grid_points)
y = np.linspace(0, L, grid_points)
X, Y = np.meshgrid(x, y)
condition = True
totals = np.zeros((start_T, total_run_time, 2))
alphas = np.zeros(start_T)
i = 0
for T in T_list:
alphas[i] = L / (V * T)
solution = np.array([X, Y])
for steps in range(int(total_run_time/T)):
t = steps*T
if condition:
def eq(t, x):
return V * np.sin(2 * np.pi * x[1] / L), 0.0
condition = False
else:
def eq(t, x):
return 0.0, V * np.sin(2 * np.pi * x[1] / L)
condition = True
time_steps = np.arange(t, t + T)
xt = solve_ivp(eq, time_steps, solution)
solution = np.array([xt.y[0], xt.y[1]])
totals[i][t: t + T][0] = solution[0]
totals[i][t: t + T][1] = solution[1]
i += 1
np.save('alphas.npy', alphas)
np.save('totals.npy', totals)
The error given is :
ValueError: y0 must be 1-dimensional.
And it comes from the 'solve_ivp' function of scipy because it doesn't accept the format of the numpy function meshgrid. I know I could run some loops and get over it but I'm assuming there must be a 'good' way to do it using numpy and scipy. I accept advice for the rest of the code too.
Yes, you can do that, in several variants. The question remains if it is advisable.
To implement a generally usable ODE integrator, it needs to be abstracted from the models. Most implementations do that by having the state space a flat-array vector space, some allow a vector space engine to be passed as parameter, so that structured vector spaces can be used. The scipy integrators are not of this type.
So you need to translate the states to flat vectors for the integrator, and back to the structured state for the model.
def encode(X,Y): return np.concatenate([X.flatten(),Y.flatten()])
def decode(U): return U.reshape([2,grid_points,grid_points])
Then you can implement the ODE function as
def eq(t,U):
X,Y = decode(U)
Vec = V * np.sin(2 * np.pi * x[1] / L)
if int(t/T)%2==0:
return encode(Vec, np.zeros(Vec.shape))
else:
return encode(np.zeros(Vec.shape), Vec)
with initial value
U0 = encode(X,Y)
Then this can be directly integrated over the whole time span.
Why this might be not such a good idea: Thinking of each grid point and its trajectory separately, each trajectory has its own sequence of adapted time steps for the given error level. In integrating all simultaneously, the adapted step size is the minimum over all trajectories at the given time. Thus while the individual trajectories might have only short intervals with very small step sizes amid long intervals with sparse time steps, these can overlap in the ensemble to result in very small step sizes everywhere.
If you go beyond the testing stage, switch to a more compiled solver implementation, odeint is a Fortran code with wrappers, so half a solution. JITcode translates to C code and links with the compiled solver behind odeint. Leaving python you get sundials, the diffeq module of julia-lang, or boost::odeint.
TL;DR
I don't think you can "integrate the differential equations starting for each point of the grid at once".
MWE
Please try to provide a MWE to reproduce your problem, like you said : "I don't think the rest of the code really matters", and it makes it harder for people to understand your problem.
Understanding how to talk to the solver
Before answering your question, there are several things that seem to be misunderstood :
by defining time_steps = np.arange(t, t + T) and then calling solve_ivp(eq, time_steps, solution) : the second argument of solve_ivp is the time span you want the solution for, ie, the "start" and "stop" time as a 2-uple. Here your time_steps is 30-long (for the first loop), so I would probably replace it by (t, t+T). Look for t_span in the doc.
from what I understand, it seems like you want to control each iteration of the numerical resolution : that's not how solve_ivp works. More over, I think you want to switch the function "eq" at each iteration. Since you have to pass the "the right hand side" of the equation, you need to wrap this behavior inside a function. It would not work (see right after) but in terms of concept something like this:
def RHS(t, x):
# unwrap your variables, condition is like an additional variable of your problem,
# with a very simple differential equation
x0, x1, condition = x
# compute new results for x0 and x1
if condition:
x0_out, x1_out = V * np.sin(2 * np.pi * x[1] / L), 0.0
else:
x0_out, x1_out = 0.0, V * np.sin(2 * np.pi * x[1] / L)
# compute new result for condition
condition_out = not(condition)
return [x0_out, x1_out, condition_out]
This would not work because the evolution of condition doesn't satisfy some mathematical properties of derivation/continuity. So condition is like a boolean switch that parametrizes the model, we can use global to control the state of this boolean :
condition = True
def RHS_eq(t, y):
global condition
x0, x1 = y
# compute new results for x0 and x1
if condition:
x0_out, x1_out = V * np.sin(2 * np.pi * x1 / L), 0.0
else:
x0_out, x1_out = 0.0, V * np.sin(2 * np.pi * x1 / L)
# update condition
condition = 0 if condition==1 else 1
return [x0_out, x1_out]
finaly, and this is the ValueError you mentionned in your post : you define solution = np.array([X, Y]) which actually is initial condition and supposed to be "y0: array_like, shape (n,)" where n is the number of variable of the problem (in the case of [x0_out, x1_out] that would be 2)
A MWE for a single initial condition
All that being said, lets start with a simple MWE for a single starting point (0.5,0.5), so we have a clear view of how to use the solver :
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
# initial conditions for x0, x1, and condition
initial = [0.5, 0.5]
condition = True
# time span
t_span = (0, 100)
# constants
V = 1
L = 1
# define the "model", ie the set of equations of t
def RHS_eq(t, y):
global condition
x0, x1 = y
# compute new results for x0 and x1
if condition:
x0_out, x1_out = V * np.sin(2 * np.pi * x1 / L), 0.0
else:
x0_out, x1_out = 0.0, V * np.sin(2 * np.pi * x1 / L)
# update condition
condition = 0 if condition==1 else 1
return [x0_out, x1_out]
solution = solve_ivp(RHS_eq, # Right Hand Side of the equation(s)
t_span, # time span, a 2-uple
initial, # initial conditions
)
fig, ax = plt.subplots()
ax.plot(solution.t,
solution.y[0],
label="x0")
ax.plot(solution.t,
solution.y[1],
label="x1")
ax.legend()
Final answer
Now, what we want is to do the exact same thing but for various initial conditions, and from what I understand, we can't : again, quoting the doc
y0 : array_like, shape (n,) : Initial state. . The solver's initial condition only allows one starting point vector.
So to answer the initial question : I don't think you can "integrate the differential equations starting for each point of the grid at once".
I have a differential equation of the form
dy(x)/dx = f(y,x)
that I would like to solve for y.
I have an array xs containing all of the values of x for which I need ys.
For only those values of x, I can evaluate f(y,x) for any y.
How can I solve for ys, preferably in python?
MWE
import numpy as np
# these are the only x values that are legal
xs = np.array([0.15, 0.383, 0.99, 1.0001])
# some made up function --- I don't actually have an analytic form like this
def f(y, x):
if not np.any(np.isclose(x, xs)):
return np.nan
return np.sin(y + x**2)
# now I want to know which array of ys satisfies dy(x)/dx = f(y,x)
Assuming you can use something simple like Forward Euler...
Numerical solutions will rely on approximate solutions at previous times. So if you want a solution at t = 1 it is likely you will need the approximate solution at t<1.
My advice is to figure out what step size will allow you to hit the times you need, and then find the approximate solution on an interval containing those times.
import numpy as np
#from your example, smallest step size required to hit all would be 0.0001.
a = 0 #start point
b = 1.5 #possible end point
h = 0.0001
N = float(b-a)/h
y = np.zeros(n)
t = np.linspace(a,b,n)
y[0] = 0.1 #initial condition here
for i in range(1,n):
y[i] = y[i-1] + h*f(t[i-1],y[i-1])
Alternatively, you could use an adaptive step method (which I am not prepared to explain right now) to take larger steps between the times you need.
Or, you could find an approximate solution over an interval using a coarser mesh and interpolate the solution.
Any of these should work.
I think you should first solve ODE on a regular grid, and then interpolate solution on your fixed grid. The approximate code for your problem
import numpy as np
from scipy.integrate import odeint
from scipy import interpolate
xs = np.array([0.15, 0.383, 0.99, 1.0001])
# dy/dx = f(x,y)
def dy_dx(y, x):
return np.sin(y + x ** 2)
y0 = 0.0 # init condition
x = np.linspace(0, 10, 200)# here you can control an accuracy
sol = odeint(dy_dx, y0, x)
f = interpolate.interp1d(x, np.ravel(sol))
ys = f(xs)
But dy_dx(y, x) should always return something reasonable (not np.none).
Here is the drawing for this case