As I'm new to sqlite databases, I highly appreciate every useful comment, answer or reference to interesting threads and websites. Here's my situation:
I have a directory with 400 txt files each with the size of ~7GB. The relevant information in these files are written into a sqlite database resulting in a 17.000.000x4 table, which takes approximately 1 day. Later on the database will be queried only by me to further analyze the data.
The whole process of creating the database could be significantly accelerated, if it is possible to write to a database in parallel. For instance, I could run several processes in parallel, each process taking only one of the 400 txt files as input and writing the results to the database. So is it possible to let several processes write to a database in parallel?
EDIT1: Answer w.r.t. W4t3randWinds comment: It is possible (and faster) to process 1 file per core, write the results into a database and merge all databases after that. However, write into 1 database using multi threading is not possible.
Furthermore, I was wondering whether it would be more efficient to create several databases instead of one big database? For instance, does it make sense to create a database per txt file resulting in 400 databases consisting of a 17.000.000/400 x 4 table?
At last, I'm storing the database as a file on my machine. However, I also read about the possibility to set up a server. So when does it make sense to use a server and more specifically, would it make sense to use a server in my case?
Please see below my code for the creation of the database.
### SET UP
# set up database
db = sqlite3.connect("mydatabase.db")
cur = db.cursor()
cur.execute("CREATE TABLE t (sentence, ngram, word, probability);")
# set up variable to store db rows
to_db = []
# set input directory
indir = '~/data/'
### PARSE FILES
# loop through filenames in indir
for filename in os.listdir(indir):
if filename.endswith(".txt"):
filename = os.path.join(indir, filename)
# open txt files in dir
with io.open(filename, mode = 'r', encoding = 'utf-8') as mytxt:
### EXTRACT RELEVANT INFORMATION
# for every line in txt file
for i, line in enumerate(mytxt):
# strip linebreak
line = line.strip()
# read line where the sentence is stated
if i == 0 or i % 9 == 0:
sentence = line
ngram = " ".join(line.split(" ")[:-1])
word = line.split(" ")[-1]
# read line where the result is stated
if (i-4) == 0 or (i-4) % 9 == 0:
result = line.split(r'= ')[1].split(r' [')[0]
# make a tuple representing a new row of db
db_row = (sentence, ngram, word, result)
to_db.append(db_row)
### WRITE TO DATABASE
# add new row to db
cur.executemany("INSERT INTO t (sentence, ngram, word, results) VALUES (?, ?, ?, ?);", to_db)
db.commit()
db.close()
The whole process of creating the database could be significantly accelerated, if it is possible to write to a database in parallel
I am not sure of that. You only have little processing, so the whole process is likely to be io bound. SQLite is a very nice tool, but it only support one single thread to write into it.
Possible improvements:
use x threads to read and process the text file, a single one to write to the database in large chunks and a queue. As the process is IO bound, the Python Global Interprocess Lock should not be a problem
use a full featured database like PostgreSQL or MariaDB on a separate machine and multiple processes on the client machine each processing its own set of input files
In either case, I am unsure of the benefit...
I do daily updates to an SQLite database using python mutlithreading. It works beautifully. Two different tables have nearly 20,000,000 records one with 8 fields the other with 10. This is on my laptop which is 4 years old.
If you are having performance issues I recommend looking into how your tables are constructed (a proper primary key and indexes) and your equipment. If you are still using an HDD you will gain amazing performance by upgrading to an SSD.
Related
I'm looking for an efficient way to import data from a CSV file to a Postgresql table using python in batches as I have quite large files and the server I'm importing the data to is far away. I need an efficient solution as everything I tried was either slow or just didn't work. I'm using SQLlahcemy.
I wanted to use raw SQL but it's so hard to parameterize and I need multiple loops to execute the query for multiple rows
I was given the task of manipulating & migrating some data from CSV files into a remote Postgres Instance.
I decided to use the Python script below:
import csv
import uuid
import psycopg2
import psycopg2.extras
import time
#Instant Time at the start of the Script
start = time.time()
psycopg2.extras.register_uuid()
#List of CSV Files that I want to manipulate & migrate.
file_list=["Address.csv"]
conn = psycopg2.connect("host=localhost dbname=address user=postgres password=docker")
cur = conn.cursor()
i = 1
for f in file_list:
f = open(f)
csv_f = csv.reader(f)
next(csv_f)
for row in csv_f:
# Some simple manipulations on each row
#Inserting a uuid4 into the first column
row.pop(0)
row.insert(0,uuid.uuid4())
row.pop(10)
row.insert(10,False)
row.pop(13)
#Tracking the number of rows inserted
print(i)
i = i + 1
#INSERT QUERY
postgres_insert_query = """ INSERT INTO "public"."address"("address_id","address_line_1","locality_area_street","address_name","app_version","channel_type","city","country","created_at","first_name","is_default","landmark","last_name","mobile","pincode","territory","updated_at","user_id") VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)"""
record_to_insert = row
cur.execute(postgres_insert_query,record_to_insert)
f.close()
conn.commit()
conn.close()
print(time.time()-start)
The script worked quite well and promptly when testing it locally. But connecting to a remote Database Server added a lot more latency.
As a workaround, I migrated the manipulated data into my local postgres instance.
I then generated a .sql file of the migrated data & manually imported the .sql file on the remote server.
Alternatively, you can also use Python's Multithreading features, to launch multiple concurrent connections to the remote server and dedicate an isolated batch process to each connection, and flush the data.
This should make your migration considerably faster.
I have personally not tried the multi threading approach as it wasn't required in my case. But it seems darn efficient.
Hope this helped ! :)
Resources:
CSV Manipulation using Python for Beginners.
use copy_from command, it copies all the rows to table.
path=open('file.csv','r')
next(path)
cur.copy_from(path,'table_name',columns=('id','name','email'))
I have (what I would consider) a massive set of plain text files, around 400GB, that are being imported into a MySQL database (InnoDB engine). The .txt files range from 2GB to 26GB in size, and each file represents a table in the database. I was given a Python script which parses the .txt files and builds SQL statements. I have a machine specifically dedicated to this task with the following specs:
OS - Windows 10
32GB RAM
4TB hard drive
i7 3.40 GHz processor
I want to optimize this import to be as quick and dirty as possible. I've changed the following config settings in the MySQL my.ini file based on stack O questions, the MySQL docs, and other sources:
max_allowed_packet=1073741824;
autocommit=0;
net_buffer_length=0;
foreign_key_check=0;
unique_checks=0;
innodb_buffer_pool_size=8G; (this made a big difference in speed when I increased from the default of 128M)
Are there other settings in the config file that I missed (maybe around logging or caching) that would direct MySQL to use a significant portion of the machine's resources? Could there be another bottleneck I'm missing?
(Side note: not sure if this is related - when I start the import, the mysqld process spins up to use about 13-15% of the system's memory, but then never seems to purge it when I stop the Python script from continuing the import. I'm wondering if this is a result of messing with the logging and flush settings. Thanks in advance for any help.)
(EDIT)
Here is the relevant part of the Python script that populates the tables. It appears the script is connecting, committing and closing the connection for every 50,000 records. Could I remove the conn.commit() at the end of the function and let MySQL handle the committing? The comments below the while (true) are from the authors of the script, and I've adjusted that number so that it won't exceed max_allowed_packet size.
conn = self.connect()
while (True):
#By default, we concatenate 200 inserts into a single INSERT statement.
#a large batch size per insert improves performance, until you start hitting max_packet_size issues.
#If you increase MySQL server's max_packet_size, you may get increased performance by increasing maxNum
records = self.parser.nextRecords(maxNum=50000)
if (not records):
break
escapedRecords = self._escapeRecords(records) #This will sanitize the records
stringList = ["(%s)" % (", ".join(aRecord)) for aRecord in escapedRecords]
cur = conn.cursor()
colVals = unicode(", ".join(stringList), 'utf-8')
exStr = exStrTemplate % (commandString, ignoreString, tableName, colNamesStr, colVals)
#unquote NULLs
exStr = exStr.replace("'NULL'", "NULL")
exStr = exStr.replace("'null'", "NULL")
try:
cur.execute(exStr)
except MySQLdb.Warning, e:
LOGGER.warning(str(e))
except MySQLdb.IntegrityError, e:
#This is likely a primary key constraint violation; should only be hit if skipKeyViolators is False
LOGGER.error("Error %d: %s", e.args[0], e.args[1])
self.lastRecordIngested = self.parser.latestRecordNum
recCheck = self._checkProgress()
if recCheck:
LOGGER.info("...at record %i...", recCheck)
conn.commit()
conn.close()
I'm trying to populate a SQLite database using Django with data from a file that consists of 6 million records. However the code that I've written is giving me a lot of time issues even with 50000 records.
This is the code with which I'm trying to populate the database:
import os
def populate():
with open("filename") as f:
for line in f:
col = line.strip().split("|")
duns=col[1]
name=col[8]
job=col[12]
dun_add = add_c_duns(duns)
add_contact(c_duns = dun_add, fn=name, job=job)
def add_contact(c_duns, fn, job):
c = Contact.objects.get_or_create(duns=c_duns, fullName=fn, title=job)
return c
def add_c_duns(duns):
cd = Contact_DUNS.objects.get_or_create(duns=duns)[0]
return cd
if __name__ == '__main__':
print "Populating Contact db...."
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "settings")
from web.models import Contact, Contact_DUNS
populate()
print "Done!!"
The code works fine since I have tested this with dummy records, and it gives the desired results. I would like to know if there is a way using which I can lower the execution time of this code. Thanks.
I don't have enough reputation to comment, but here's a speculative answer.
Basically the only way to do this through django's ORM is to use bulk_create . So the first thing to consider is the use of get_or_create. If your database has existing records that might have duplicates in the input file, then your only choice is writing the SQL yourself. If you use it to avoid duplicates inside the input file, then preprocess it to remove duplicate rows.
So if you can live without the get part of get_or_create, then you can follow this strategy:
Go through each row of the input file and instantiate a Contact_DUNS instance for each entry (don't actually create the rows, just write Contact_DUNS(duns=duns) ) and save all instances to an array. Pass the array to bulk_create to actually create the rows.
Generate a list of DUNS-id pairs with value_list and convert them to a dict with the DUNS number as the key and the row id as the value.
Repeat step 1 but with Contact instances. Before creating each instance use the DUNS number to get the Contact_DUNS id from the dictionary of step 2. The instantiate each Contact in the following way: Contact(duns_id=c_duns_id, fullName=fn, title=job). Again, after collecting the Contact instances just pass them to bulk_create to create the rows.
This should radically improve performance as you'll be no longer executing a query for each input line. But as I said above, this can only work if you can be certain that there are no duplicates in the database or the input file.
EDIT Here's the code:
import os
def populate_duns():
# Will only work if there are no DUNS duplicates
# (both in the DB and within the file)
duns_instances = []
with open("filename") as f:
for line in f:
duns = line.strip().split("|")[1]
duns_instances.append(Contact_DUNS(duns=duns))
# Run a single INSERT query for all DUNS instances
# (actually it will be run in batches run but it's still quite fast)
Contact_DUNS.objects.bulk_create(duns_instances)
def get_duns_dict():
# This is basically a SELECT query for these two fields
duns_id_pairs = Contact_DUNS.objects.values_list('duns', 'id')
return dict(duns_id_pairs)
def populate_contacts():
# Repeat the same process for Contacts
contact_instances = []
duns_dict = get_duns_dict()
with open("filename") as f:
for line in f:
col = line.strip().split("|")
duns = col[1]
name = col[8]
job = col[12]
ci = Contact(duns_id=duns_dict[duns],
fullName=name,
title=job)
contact_instances.append(ci)
# Again, run only a single INSERT query
Contact.objects.bulk_create(contact_instances)
if __name__ == '__main__':
print "Populating Contact db...."
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "settings")
from web.models import Contact, Contact_DUNS
populate_duns()
populate_contacts()
print "Done!!"
CSV Import
First of all 6 million records is a quite a lot for sqllite and worse still sqlite isn't very good and importing CSV data directly.
There is no standard as to what a CSV file should look like, and the
SQLite shell does not even attempt to handle all the intricacies of
interpreting a CSV file. If you need to import a complex CSV file and
the SQLite shell doesn't handle it, you may want to try a different
front end, such as SQLite Database Browser.
On the other hand Mysql and Postgresql are more capable of handling CSV data and mysql's LOAD DATA IN FILE and Postgresql COPY are both painless ways to import very large amounts of data in a very short period of time.
Suitability of Sqlite.
You are using django => you are building a web app => more than one user will access the database. This is from the manual about concurrency.
SQLite supports an unlimited number of simultaneous readers, but it
will only allow one writer at any instant in time. For many
situations, this is not a problem. Writer queue up. Each application
does its database work quickly and moves on, and no lock lasts for
more than a few dozen milliseconds. But there are some applications
that require more concurrency, and those applications may need to seek
a different solution.
Even your read operations are likely to be rather slow because an sqlite database is just one single file. So with this amount of data there will be a lot of seek operations involved. The data cannot be spread across multiple files or even disks as is possible with proper client server databases.
The good news for you is that with Django you can usually switch from Sqlite to Mysql to Postgresql just by changing your settings.py. No other changes are needed. (The reverse isn't always true)
So I urge you to consider switching to mysql or postgresl before you get in too deep. It will help you solve your present problem and also help to avoid problems that you will run into sooner or later.
6,000,000 is quite a lot to import via Python. If Python is not a hard requirement, you could write a SQLite script that directly import the CSV data and create your tables using SQL statements. Even faster would be to preprocess your file using awk and output two CSV files corresponding to your two tables.
I used to import 20,000,000 records using sqlite3 CSV importer and it took only a few minutes minutes.
I have a script built using procedural programming that uses a sqlite database file. The script processes a CSV file, then uses a standard cursor to pass its particulars to a single SQLite DB.
After this, the script extracts from the DB to produce a number of spreadsheets in Excel via xlwt.
The problem with this is that the script only handles one input file at a time, whereas I will need to be iterating through about 70-90 of these files on any given day.
I've been trying to rewrite the script as object-oriented, but I'm having trouble with sharing the cursor.
The original input file comes in a zip archive that I would extract via Linux or Mac OS X command lines. Previously this was done manually; now I've managed to write classes and loop through totally ad-hoc numbers of multiple input files via the multi version of tkfiledialog.
Furthermore the original input file (ie one of the 70-90) is a text file in csv format with a DRF extension (obv., not really important) that gets picked by a simple tkfiledialog box:
FILENAMER = tkFileDialog.askopenfilename(title="Open file", \
filetypes=[("txt file",".DRF"),("txt file", ".txt"),\
("All files",".*")])
The DRF file itself is issued daily by location and date, ie 'BHP0123.DRF' is for the BHP location, issued for 23 January. To keep everything as straightforward as possible the procedural script further decomposes the DRF to just the BHP0123 part or prefix, then uses it to build a SQLite DB.
FBASENAME = os.path.basename(FILENAMER)
FBROOT = os.path.splitext(FBNAMED)[0]
OUTPUTDATABASE = 'sqlite_' + FBROOT + '.db'
Basically with the program as a procedural script I just had to create one DB, one connection and one cursor, which could be shared by all the functions in the script:
conn = sqlite3.connect(OUTPUTDATABASE) # <-- originally :: Is this the core problem?
curs = conn.cursor()
conn.text_factory = sqlite3.OptimizedUnicode
In the procedural version these variables above are global.
Procedurally I have
1) one function to handle formatting, and
2) another to handle the calculations needed. The DRF is indexed with about 2500 fields per row; I discard the majority and only use about 400-500 of these per row.
The formatting function parses out the CSV via a for-loop (discards junk characters, incomplete data, etc), then passes the formatted data for the calculator to process and chew on. The core problem seems to be that on the one hand I need the DB connection to be constant for each input DRF file, but on the other that connection can only be shared by the formatter and calculator, and 'regenerated' for each DRF.
Crucially, I've tried to rewrite as little of the formatter and calculator as possible.
I've tried to create a separate dbcxn class, then create an instance to share, but I'm confused as to how to handle the output DB situation with the cursor (and pass it intact to both formatter and calculator):
class DBcxn(object):
def __init__(self, OUTPUTDATABASE):
OUTPUTDATABASE = ?????
self.OUTPUTDATABASE = OUTPUTDATABASE
def init_db_cxn(self, OUTPUTDATABASE):
conn = sqlite3.connect(OUTPUTDATABASE) # < ????
self.conn = conn
curs = conn.cursor()
self.curs = curs
conn.text_factory = sqlite3.OptimizedUnicode
dbtest = DBcxn( ???? )
If anyone might suggest a way of untangling this I'd be very grateful. Please let me know if you need more information.
Cheers
Massimo Savino
I'm quite new to Python, so any help will be appreciated. I am trying to extract and sort data from 2000 .mdb files using mdbtools on Linux. So far I was able to just take the .mdb file and dump all the tables into .csv. It creates huge mess since there are lots of files that need to be processed.
What I need is to extract particular sorted data from particular table. Like for example, I need the table called "Voltage". The table consists of numerous cycles and each cycle has several rows also. The cycles usually go in chronological order, but in some cases time stamp get recorded with delay. Like cycle's one first row can have later time than cycles 1 first row. I need to extract the latest row of the cycle based on time for the first or last five cycles. For example, in table below, I will need the second row.
Cycle# Time Data
1 100.59 34
1 101.34 54
1 98.78 45
2
2
2 ...........
Here is the script I use. I am using the command python extract.py table_files.mdb. But I would like the script to just be invoked with ./extract.py. The path to filenames should be in the script itself.
import sys, subprocess, os
DATABASE = sys.argv[1]
subprocess.call(["mdb-schema", DATABASE, "mysql"])
# Get the list of table names with "mdb-tables"
table_names = subprocess.Popen(["mdb-tables", "-1", DATABASE],
stdout=subprocess.PIPE).communicate()[0]
tables = table_names.splitlines()
print "BEGIN;" # start a transaction, speeds things up when importing
sys.stdout.flush()
# Dump each table as a CSV file using "mdb-export",
# converting " " in table names to "_" for the CSV filenames.
for table in tables:
if table != '':
filename = table.replace(" ","_") + ".csv"
file = open(filename, 'w')
print("Dumping " + table)
contents = subprocess.Popen(["mdb-export", DATABASE, table],
stdout=subprocess.PIPE).communicate()[0]
file.write(contents)
file.close()
Personally, I wouldn't spend a whole lot of time fussing around trying to get mdbtools, unixODBC and pyodbc to work together. As Pedro suggested in his comment, if you can get mdb-export to dump the tables to CSV files then you'll probably save a fair bit of time by just importing those CSV files into SQLite or MySQL, i.e., something that will be more robust than using mdbtools on the Linux platform.
A few suggestions:
Given the sheer number of .mdb files (and hence .csv files) involved, you'll probably want to import the CSV data into one big table with an additional column to indicate the source filename. That will be much easier to manage than ~2000 separate tables.
When creating your target table in the new database you'll probably want to use a decimal (as opposed to float) data type for the [Time] column.
At the same time, rename the [Cycle#] column to just [Cycle]. "Funny characters" in column names can be a real nuisance.
Finally, to select the "last" reading (largest [Time] value) for a given [SourceFile] and [Cycle] you can use a query something like this:
SELECT
v1.SourceFile,
v1.Cycle,
v1.Time,
v1.Data
FROM
Voltage v1
INNER JOIN
(
SELECT
SourceFile,
Cycle,
MAX([Time]) AS MaxTime
FROM Voltage
GROUP BY SourceFile, Cycle
) v2
ON v1.SourceFile=v2.SourceFile
AND v1.Cycle=v2.Cycle
AND v1.Time=v2.MaxTime
To bring it directly to Pandas in python3 I wrote this little snippet
import sys, subprocess, os
from io import StringIO
import pandas as pd
VERBOSE = True
def mdb_to_pandas(database_path):
subprocess.call(["mdb-schema", database_path, "mysql"])
# Get the list of table names with "mdb-tables"
table_names = subprocess.Popen(["mdb-tables", "-1", database_path],
stdout=subprocess.PIPE).communicate()[0]
tables = table_names.splitlines()
sys.stdout.flush()
# Dump each table as a stringio using "mdb-export",
out_tables = {}
for rtable in tables:
table = rtable.decode()
if VERBOSE: print('running table:',table)
if table != '':
if VERBOSE: print("Dumping " + table)
contents = subprocess.Popen(["mdb-export", database_path, table],
stdout=subprocess.PIPE).communicate()[0]
temp_io = StringIO(contents.decode())
print(table, temp_io)
out_tables[table] = pd.read_csv(temp_io)
return out_tables
There's an alternative to mdbtools for Python: JayDeBeApi with the UcanAccess driver. It uses a Python -> Java bridge which slows things down, but I've been using it with considerable success and comes with decent error handling.
It takes some practice setting it up, but if you have a lot of databases to wrangle, it's well worth it.