Add an iterative legend to a python function - python

I have 2 functions, 'one function calling other' to plot some curves. What I want is to have legends in these functions that can be seen as one in the final plot, but I am unable to achieve that. Can someone help me with this? Code below (works fine without the label/legend lines).
import matplotlib.colors as mcolors
from matplotlib.patches import Polygon
def gradient_fill(x, y, fill_color=None, ax=None, label = None, **kwargs):
"""
Plot a line with a linear alpha gradient filled beneath it.
Parameters
----------
x, y : array-like
The data values of the line.
"""
if ax is None:
ax = plt.gca()
line, = ax.plot(x, y, **kwargs, color='black', lw = 1.5)
if fill_color is None:
fill_color = line.get_color()
zorder = line.get_zorder()
alpha = line.get_alpha()
alpha = 1.0 if alpha is None else alpha
z = np.empty((100, 1, 4), dtype=float)
rgb = mcolors.colorConverter.to_rgb(fill_color)
z[:,:,:3] = rgb
z[:,:,-1] = np.linspace(0, alpha, 100)[:,None]
xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()
im = ax.imshow(z, aspect='auto', extent=[xmin, xmax, ymin, ymax*1.12],
origin='lower', zorder=zorder,alpha = 0.8, label = label)
ax.legend([str(label)])
xy = np.column_stack([x, y])
xy = np.vstack([[xmin, ymin], xy, [xmax, ymin], [xmin, ymin]])
clip_path = Polygon(xy, facecolor='none', edgecolor= None, closed=True)
ax.add_patch(clip_path)
im.set_clip_path(clip_path)
ax.autoscale(True)
return line, im
def gaussian_kde(data,bandwidth = 20,x_range_st = -50,x_range_end = 1000, N = 1000, fill_color = None, label = None):
from sklearn.neighbors import KernelDensity
# instantiate and fit the KDE model
kde = KernelDensity(bandwidth=bandwidth, kernel='gaussian')
kde.fit(data[:, None])
x_d = np.linspace(x_range_st, x_range_end, N)
# score_samples returns the log of the probability density
logprob = kde.score_samples(x_d[:, None])
#plt.fill_between(x_d, np.exp(logprob), alpha=0.5)
gradient_fill(x_d,np.exp(logprob), fill_color = fill_color, label = label)
plt.gca().invert_yaxis()
Example of the code:
gaussian_kde(data1, label = 'Apple')
gaussian_kde(data2, label = 'Banana', fill_color = 'red')
gaussian_kde(data3, label = 'Mango', fill_color = 'green')
I want to add label directly in the gaussian_kde function so that it appears in the final figure. The error I get with the code TypeError: zip argument #2 must support iteration. The code works fine, but only displays the last label. Can someone provide some guidance on how to get all the labels as also defined in the figure?

Related

How to apply gradient fill with datetime on x-axis using matplotlib?

I am trying to use the gradient fill under curves in matplotlib with datetime values on x-axis using this answer. I tried converting the datetime values to float to fix this, but that was not helpful.
The MWE and the error is given below. How to apply gradient fill under curves with datetime values on x-axis in matplotlib?
MWE
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import matplotlib.patches as patches
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFilter
from datetime import datetime, timedelta
np.random.seed(1977)
def demo_blur_underside():
for _ in range(5):
# gradient_fill(*generate_data(100), zfunc=None) # original
gradient_fill(*generate_data(100), zfunc=zfunc)
plt.show()
def generate_data(num):
x = np.linspace(0, 100, num)
y = np.random.normal(0, 1, num).cumsum()
return x, y
def zfunc(x, y, fill_color='k', alpha=1.0):
scale = 10
x = (x*scale).astype(int)
y = (y*scale).astype(int)
xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()
w, h = xmax-xmin, ymax-ymin
z = np.empty((h, w, 4), dtype=float)
rgb = mcolors.colorConverter.to_rgb(fill_color)
z[:,:,:3] = rgb
# Build a z-alpha array which is 1 near the line and 0 at the bottom.
img = Image.new('L', (w, h), 0)
draw = ImageDraw.Draw(img)
xy = (np.column_stack([x, y]))
xy -= xmin, ymin
# Draw a blurred line using PIL
draw.line(map(tuple, xy.tolist()), fill=255, width=15)
img = img.filter(ImageFilter.GaussianBlur(radius=100))
# Convert the PIL image to an array
zalpha = np.asarray(img).astype(float)
zalpha *= alpha/zalpha.max()
# make the alphas melt to zero at the bottom
n = zalpha.shape[0] // 4
zalpha[:n] *= np.linspace(0, 1, n)[:, None]
z[:,:,-1] = zalpha
return z
def gradient_fill(x, y, fill_color=None, ax=None, zfunc=None, **kwargs):
if ax is None:
ax = plt.gca()
line, = ax.plot(x, y, **kwargs)
if fill_color is None:
fill_color = line.get_color()
zorder = line.get_zorder()
alpha = line.get_alpha()
alpha = 1.0 if alpha is None else alpha
if zfunc is None:
h, w = 100, 1
z = np.empty((h, w, 4), dtype=float)
rgb = mcolors.colorConverter.to_rgb(fill_color)
z[:,:,:3] = rgb
z[:,:,-1] = np.linspace(0, alpha, h)[:,None]
else:
z = zfunc(x, y, fill_color=fill_color, alpha=alpha)
xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()
im = ax.imshow(z, aspect='auto', extent=[xmin, xmax, ymin, ymax],
origin='lower', zorder=zorder)
xy = np.column_stack([x, y])
xy = np.vstack([[xmin, ymin], xy, [xmax, ymin], [xmin, ymin]])
clip_path = patches.Polygon(xy, facecolor='none', edgecolor='none', closed=True)
ax.add_patch(clip_path)
im.set_clip_path(clip_path)
ax.autoscale(True)
return line, im
# x = np.linspace(0, 100, 100)
# y = np.sin(x) + x
x = np.arange(datetime(2010,7,1), datetime(2015,7,1), timedelta(hours=12)).astype(datetime)
y = np.linspace(0, 100, len(x))
fig, ax = plt.subplots()
ax.plot(x, y)
gradient_fill(x, y, ax=ax, zfunc=zfunc)
ax.grid()
fig.savefig("test.pdf")
plt.show()
Error
File "./gradient_fill_test.py", line 95, in <module>
gradient_fill(x, y, ax=ax, zfunc=zfunc)
File "./radient_fill_test.py", line 69, in gradient_fill
z = zfunc(x, y, fill_color=fill_color, alpha=alpha)
File "./gradient_fill_test.py", line 24, in zfunc
x = (x*scale).astype(int)
TypeError: unsupported operand type(s) for *: 'datetime.datetime' and 'int'
Try something like:
x = np.arange(datetime(2010,7,1), datetime(2015,7,1), timedelta(hours=12)).astype(datetime)
y = np.linspace(0, 100, len(x))
fig, ax = plt.subplots()
ax.plot(x, y)
gradient_fill(mdates.date2num(x), y, ax=ax, zfunc=zfunc)
I couldn't actually get that to work because your zfunc seems to have a bug in it, but if you fix that it will get you properly labeled date ticks.

Does the fill_between function in matplotlib have a gradient feature? [duplicate]

I happened to see a beautiful graph on this page which is shown below:
Is it possible to get such color gradients in matplotlib?
There have been a handful of previous answers to similar questions (e.g. https://stackoverflow.com/a/22081678/325565), but they recommend a sub-optimal approach.
Most of the previous answers recommend plotting a white polygon over a pcolormesh fill. This is less than ideal for two reasons:
The background of the axes can't be transparent, as there's a filled polygon overlying it
pcolormesh is fairly slow to draw and isn't smoothly interpolated.
It's a touch more work, but there's a method that draws much faster and gives a better visual result: Set the clip path of an image plotted with imshow.
As an example:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from matplotlib.patches import Polygon
np.random.seed(1977)
def main():
for _ in range(5):
gradient_fill(*generate_data(100))
plt.show()
def generate_data(num):
x = np.linspace(0, 100, num)
y = np.random.normal(0, 1, num).cumsum()
return x, y
def gradient_fill(x, y, fill_color=None, ax=None, **kwargs):
"""
Plot a line with a linear alpha gradient filled beneath it.
Parameters
----------
x, y : array-like
The data values of the line.
fill_color : a matplotlib color specifier (string, tuple) or None
The color for the fill. If None, the color of the line will be used.
ax : a matplotlib Axes instance
The axes to plot on. If None, the current pyplot axes will be used.
Additional arguments are passed on to matplotlib's ``plot`` function.
Returns
-------
line : a Line2D instance
The line plotted.
im : an AxesImage instance
The transparent gradient clipped to just the area beneath the curve.
"""
if ax is None:
ax = plt.gca()
line, = ax.plot(x, y, **kwargs)
if fill_color is None:
fill_color = line.get_color()
zorder = line.get_zorder()
alpha = line.get_alpha()
alpha = 1.0 if alpha is None else alpha
z = np.empty((100, 1, 4), dtype=float)
rgb = mcolors.colorConverter.to_rgb(fill_color)
z[:,:,:3] = rgb
z[:,:,-1] = np.linspace(0, alpha, 100)[:,None]
xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()
im = ax.imshow(z, aspect='auto', extent=[xmin, xmax, ymin, ymax],
origin='lower', zorder=zorder)
xy = np.column_stack([x, y])
xy = np.vstack([[xmin, ymin], xy, [xmax, ymin], [xmin, ymin]])
clip_path = Polygon(xy, facecolor='none', edgecolor='none', closed=True)
ax.add_patch(clip_path)
im.set_clip_path(clip_path)
ax.autoscale(True)
return line, im
main()
Please note Joe Kington deserves the lion's share of the credit here; my sole contribution is zfunc.
His method opens to door to many gradient/blur/drop-shadow
effects. For example, to make the lines have an evenly blurred underside, you
could use PIL to build an alpha layer which is 1 near the line and 0 near the bottom edge.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import matplotlib.patches as patches
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFilter
np.random.seed(1977)
def demo_blur_underside():
for _ in range(5):
# gradient_fill(*generate_data(100), zfunc=None) # original
gradient_fill(*generate_data(100), zfunc=zfunc)
plt.show()
def generate_data(num):
x = np.linspace(0, 100, num)
y = np.random.normal(0, 1, num).cumsum()
return x, y
def zfunc(x, y, fill_color='k', alpha=1.0):
scale = 10
x = (x*scale).astype(int)
y = (y*scale).astype(int)
xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()
w, h = xmax-xmin, ymax-ymin
z = np.empty((h, w, 4), dtype=float)
rgb = mcolors.colorConverter.to_rgb(fill_color)
z[:,:,:3] = rgb
# Build a z-alpha array which is 1 near the line and 0 at the bottom.
img = Image.new('L', (w, h), 0)
draw = ImageDraw.Draw(img)
xy = np.column_stack([x, y])
xy -= xmin, ymin
# Draw a blurred line using PIL
draw.line(list(map(tuple, xy)), fill=255, width=15)
img = img.filter(ImageFilter.GaussianBlur(radius=100))
# Convert the PIL image to an array
zalpha = np.asarray(img).astype(float)
zalpha *= alpha/zalpha.max()
# make the alphas melt to zero at the bottom
n = zalpha.shape[0] // 4
zalpha[:n] *= np.linspace(0, 1, n)[:, None]
z[:,:,-1] = zalpha
return z
def gradient_fill(x, y, fill_color=None, ax=None, zfunc=None, **kwargs):
if ax is None:
ax = plt.gca()
line, = ax.plot(x, y, **kwargs)
if fill_color is None:
fill_color = line.get_color()
zorder = line.get_zorder()
alpha = line.get_alpha()
alpha = 1.0 if alpha is None else alpha
if zfunc is None:
h, w = 100, 1
z = np.empty((h, w, 4), dtype=float)
rgb = mcolors.colorConverter.to_rgb(fill_color)
z[:,:,:3] = rgb
z[:,:,-1] = np.linspace(0, alpha, h)[:,None]
else:
z = zfunc(x, y, fill_color=fill_color, alpha=alpha)
xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()
im = ax.imshow(z, aspect='auto', extent=[xmin, xmax, ymin, ymax],
origin='lower', zorder=zorder)
xy = np.column_stack([x, y])
xy = np.vstack([[xmin, ymin], xy, [xmax, ymin], [xmin, ymin]])
clip_path = patches.Polygon(xy, facecolor='none', edgecolor='none', closed=True)
ax.add_patch(clip_path)
im.set_clip_path(clip_path)
ax.autoscale(True)
return line, im
demo_blur_underside()
yields
I've tried something :
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
xData = range(100)
yData = range(100)
plt.plot(xData, yData)
NbData = len(xData)
MaxBL = [[MaxBL] * NbData for MaxBL in range(100)]
Max = [np.asarray(MaxBL[x]) for x in range(100)]
for x in range (50, 100):
plt.fill_between(xData, Max[x], yData, where=yData >Max[x], facecolor='red', alpha=0.02)
for x in range (0, 50):
plt.fill_between(xData, yData, Max[x], where=yData <Max[x], facecolor='green', alpha=0.02)
plt.fill_between([], [], [], facecolor='red', label="x > 50")
plt.fill_between([], [], [], facecolor='green', label="x < 50")
plt.legend(loc=4, fontsize=12)
plt.show()
fig.savefig('graph.png')
.. and the result:
Of course the gradient could go down to 0 by changing the range of feel_between function.

Matplotlib is not rendering gradient under the curve correctly when directly saving

I'm using some sample code I got from:
https://stackoverflow.com/a/29331211/9469766
I'm attempting to save as pdf but whenever I do the gradient colors are formatted incorrectly. But if I simply show instead of saving or save the file as .png instead, the gradients appear correctly. Which leads me to believe that its the .pdf format that's the issue. Are there specific parameters that I need to set when saving as pdf?
Expected Image Output:
Actual Image Output
My code:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from matplotlib.patches import Polygon
np.random.seed(1977)
import os
def main():
home_dir = os.path.expanduser('~/Desktop/test2.pdf')
x, y = generate_data(100)
for _ in range(5):
gradient_fill(*generate_data(100))
# plt.show()
plt.savefig(home_dir, rasterized = True, dpi=300)
plt.close()
def generate_data(num):
x = np.linspace(0, 100, num)
y = np.random.normal(0, 1, num).cumsum()
return x, y
def gradient_fill(x, y, fill_color=None, ax=None, **kwargs):
"""
"""
if ax is None:
ax = plt.gca()
line, = ax.plot(x, y, **kwargs)
if fill_color is None:
fill_color = line.get_color()
zorder = line.get_zorder()
alpha = line.get_alpha()
alpha = 1.0 if alpha is None else alpha
z = np.empty((100, 1, 4), dtype=float)
rgb = mcolors.colorConverter.to_rgb(fill_color)
z[:,:,:3] = rgb
z[:,:,-1] = np.linspace(0, alpha, 100)[:,None]
xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()
im = ax.imshow(z, aspect='auto', extent=[xmin, xmax, ymin, ymax],
origin='lower', zorder=zorder)
xy = np.column_stack([x, y])
xy = np.vstack([[xmin, ymin], xy, [xmax, ymin], [xmin, ymin]])
clip_path = Polygon(xy, facecolor='none', edgecolor='none', closed=True)
ax.add_patch(clip_path)
im.set_clip_path(clip_path)
ax.autoscale(True)
return line, im
main()
The problem is the same as in https://github.com/matplotlib/matplotlib/issues/7151.
The solution is to use the "image.composite_image" rc parameter and set it to False.
plt.rcParams["image.composite_image"] =False

Is it possible to get color gradients under curve in matplotlib?

I happened to see a beautiful graph on this page which is shown below:
Is it possible to get such color gradients in matplotlib?
There have been a handful of previous answers to similar questions (e.g. https://stackoverflow.com/a/22081678/325565), but they recommend a sub-optimal approach.
Most of the previous answers recommend plotting a white polygon over a pcolormesh fill. This is less than ideal for two reasons:
The background of the axes can't be transparent, as there's a filled polygon overlying it
pcolormesh is fairly slow to draw and isn't smoothly interpolated.
It's a touch more work, but there's a method that draws much faster and gives a better visual result: Set the clip path of an image plotted with imshow.
As an example:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from matplotlib.patches import Polygon
np.random.seed(1977)
def main():
for _ in range(5):
gradient_fill(*generate_data(100))
plt.show()
def generate_data(num):
x = np.linspace(0, 100, num)
y = np.random.normal(0, 1, num).cumsum()
return x, y
def gradient_fill(x, y, fill_color=None, ax=None, **kwargs):
"""
Plot a line with a linear alpha gradient filled beneath it.
Parameters
----------
x, y : array-like
The data values of the line.
fill_color : a matplotlib color specifier (string, tuple) or None
The color for the fill. If None, the color of the line will be used.
ax : a matplotlib Axes instance
The axes to plot on. If None, the current pyplot axes will be used.
Additional arguments are passed on to matplotlib's ``plot`` function.
Returns
-------
line : a Line2D instance
The line plotted.
im : an AxesImage instance
The transparent gradient clipped to just the area beneath the curve.
"""
if ax is None:
ax = plt.gca()
line, = ax.plot(x, y, **kwargs)
if fill_color is None:
fill_color = line.get_color()
zorder = line.get_zorder()
alpha = line.get_alpha()
alpha = 1.0 if alpha is None else alpha
z = np.empty((100, 1, 4), dtype=float)
rgb = mcolors.colorConverter.to_rgb(fill_color)
z[:,:,:3] = rgb
z[:,:,-1] = np.linspace(0, alpha, 100)[:,None]
xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()
im = ax.imshow(z, aspect='auto', extent=[xmin, xmax, ymin, ymax],
origin='lower', zorder=zorder)
xy = np.column_stack([x, y])
xy = np.vstack([[xmin, ymin], xy, [xmax, ymin], [xmin, ymin]])
clip_path = Polygon(xy, facecolor='none', edgecolor='none', closed=True)
ax.add_patch(clip_path)
im.set_clip_path(clip_path)
ax.autoscale(True)
return line, im
main()
Please note Joe Kington deserves the lion's share of the credit here; my sole contribution is zfunc.
His method opens to door to many gradient/blur/drop-shadow
effects. For example, to make the lines have an evenly blurred underside, you
could use PIL to build an alpha layer which is 1 near the line and 0 near the bottom edge.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import matplotlib.patches as patches
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFilter
np.random.seed(1977)
def demo_blur_underside():
for _ in range(5):
# gradient_fill(*generate_data(100), zfunc=None) # original
gradient_fill(*generate_data(100), zfunc=zfunc)
plt.show()
def generate_data(num):
x = np.linspace(0, 100, num)
y = np.random.normal(0, 1, num).cumsum()
return x, y
def zfunc(x, y, fill_color='k', alpha=1.0):
scale = 10
x = (x*scale).astype(int)
y = (y*scale).astype(int)
xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()
w, h = xmax-xmin, ymax-ymin
z = np.empty((h, w, 4), dtype=float)
rgb = mcolors.colorConverter.to_rgb(fill_color)
z[:,:,:3] = rgb
# Build a z-alpha array which is 1 near the line and 0 at the bottom.
img = Image.new('L', (w, h), 0)
draw = ImageDraw.Draw(img)
xy = np.column_stack([x, y])
xy -= xmin, ymin
# Draw a blurred line using PIL
draw.line(list(map(tuple, xy)), fill=255, width=15)
img = img.filter(ImageFilter.GaussianBlur(radius=100))
# Convert the PIL image to an array
zalpha = np.asarray(img).astype(float)
zalpha *= alpha/zalpha.max()
# make the alphas melt to zero at the bottom
n = zalpha.shape[0] // 4
zalpha[:n] *= np.linspace(0, 1, n)[:, None]
z[:,:,-1] = zalpha
return z
def gradient_fill(x, y, fill_color=None, ax=None, zfunc=None, **kwargs):
if ax is None:
ax = plt.gca()
line, = ax.plot(x, y, **kwargs)
if fill_color is None:
fill_color = line.get_color()
zorder = line.get_zorder()
alpha = line.get_alpha()
alpha = 1.0 if alpha is None else alpha
if zfunc is None:
h, w = 100, 1
z = np.empty((h, w, 4), dtype=float)
rgb = mcolors.colorConverter.to_rgb(fill_color)
z[:,:,:3] = rgb
z[:,:,-1] = np.linspace(0, alpha, h)[:,None]
else:
z = zfunc(x, y, fill_color=fill_color, alpha=alpha)
xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()
im = ax.imshow(z, aspect='auto', extent=[xmin, xmax, ymin, ymax],
origin='lower', zorder=zorder)
xy = np.column_stack([x, y])
xy = np.vstack([[xmin, ymin], xy, [xmax, ymin], [xmin, ymin]])
clip_path = patches.Polygon(xy, facecolor='none', edgecolor='none', closed=True)
ax.add_patch(clip_path)
im.set_clip_path(clip_path)
ax.autoscale(True)
return line, im
demo_blur_underside()
yields
I've tried something :
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
xData = range(100)
yData = range(100)
plt.plot(xData, yData)
NbData = len(xData)
MaxBL = [[MaxBL] * NbData for MaxBL in range(100)]
Max = [np.asarray(MaxBL[x]) for x in range(100)]
for x in range (50, 100):
plt.fill_between(xData, Max[x], yData, where=yData >Max[x], facecolor='red', alpha=0.02)
for x in range (0, 50):
plt.fill_between(xData, yData, Max[x], where=yData <Max[x], facecolor='green', alpha=0.02)
plt.fill_between([], [], [], facecolor='red', label="x > 50")
plt.fill_between([], [], [], facecolor='green', label="x < 50")
plt.legend(loc=4, fontsize=12)
plt.show()
fig.savefig('graph.png')
.. and the result:
Of course the gradient could go down to 0 by changing the range of feel_between function.

How does one add a colorbar to a polar plot (rose diagram)?

In this example the color is correlative to the radius of each bar. How would one add a colorbar to this plot?
My code mimics a "rose diagram" projection which is essentially a bar chart on a polar projection.
here is a part of it:
angle = radians(10.)
patches = radians(360.)/angle
theta = np.arange(0,radians(360.),angle)
count = [0]*patches
for i, item in enumerate(some_array_of_azimuth_directions):
temp = int((item - item%angle)/angle)
count[temp] += 1
width = angle * np.ones(patches)
# force square figure and square axes looks better for polar, IMO
fig = plt.figure(figsize=(8,8))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
rmax = max(count) + 1
ax.set_rlim(0,rmax)
ax.set_theta_offset(np.pi/2)
ax.set_thetagrids(np.arange(0,360,10))
ax.set_theta_direction(-1)
# project strike distribution as histogram bars
bars = ax.bar(theta, count, width=width)
r_values = []
colors = []
for r,bar in zip(count, bars):
r_values.append(r/float(max(count)))
colors.append(cm.jet(r_values[-1], alpha=0.5))
bar.set_facecolor(colors[-1])
bar.set_edgecolor('grey')
bar.set_alpha(0.5)
# Add colorbar, make sure to specify tick locations to match desired ticklabels
colorlist = []
r_values.sort()
values = []
for val in r_values:
if val not in values:
values.append(val*float(max(count)))
color = cm.jet(val, alpha=0.5)
if color not in colorlist:
colorlist.append(color)
cpt = mpl.colors.ListedColormap(colorlist)
bounds = range(max(count)+1)
norm = mpl.colors.BoundaryNorm(values, cpt.N-1)
cax = fig.add_axes([0.97, 0.3, 0.03, 0.4])
cb = mpl.colorbar.ColorbarBase(cax, cmap=cpt,
norm=norm,
boundaries=bounds,
# Make the length of each extension
# the same as the length of the
# interior colors:
extendfrac='auto',
ticks=[bounds[i] for i in range(0, len(bounds), 2)],
#ticks=bounds,
spacing='uniform')
and here is the resulting plot:
As you can see, the colorbar is not quite right. If you look closely, between 16 and 17, there is a color missing (darker orange) and according to the colorbar the yellows reach a value of 15, which is not true in the rose diagram (or the data).
I have played around with the code so much and I just can't figure out how to normalize the colorbar correctly.
The easiest way is to use a PatchCollection and pass in your "z" (i.e. the values you want to color by) as the array kwarg.
As a simple example:
import itertools
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from matplotlib.collections import PatchCollection
import numpy as np
def main():
fig = plt.figure()
ax = fig.add_subplot(111, projection='polar')
x = np.radians(np.arange(0, 360, 10))
y = np.random.random(x.size)
z = np.random.random(y.size)
cmap = plt.get_cmap('cool')
coll = colored_bar(x, y, z, ax=ax, width=np.radians(10), cmap=cmap)
fig.colorbar(coll)
ax.set_yticks([0.5, 1.0])
plt.show()
def colored_bar(left, height, z=None, width=0.8, bottom=0, ax=None, **kwargs):
if ax is None:
ax = plt.gca()
width = itertools.cycle(np.atleast_1d(width))
bottom = itertools.cycle(np.atleast_1d(bottom))
rects = []
for x, y, w, h in zip(left, bottom, width, height):
rects.append(Rectangle((x,y), w, h))
coll = PatchCollection(rects, array=z, **kwargs)
ax.add_collection(coll)
ax.autoscale()
return coll
if __name__ == '__main__':
main()
If you want a discrete color map, it's easiest to just specify the number of intervals you'd like when you call plt.get_cmap. For example, in the code above, if you replace the line cmap = plt.get_cmap('cool') with:
cmap = plt.get_cmap('cool', 5)
Then you'll get a discrete colormap with 5 intervals. (Alternately, you could pass in the ListedColormap that you created in your example.)
If you want a "full-featured" rose diagram function, you might do something like this:
import itertools
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from matplotlib.collections import PatchCollection
import numpy as np
def main():
azi = np.random.normal(20, 30, 100)
z = np.cos(np.radians(azi + 45))
plt.figure(figsize=(5,6))
plt.subplot(111, projection='polar')
coll = rose(azi, z=z, bidirectional=True)
plt.xticks(np.radians(range(0, 360, 45)),
['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW'])
plt.colorbar(coll, orientation='horizontal')
plt.xlabel('A rose diagram colored by a second variable')
plt.rgrids(range(5, 20, 5), angle=290)
plt.show()
def rose(azimuths, z=None, ax=None, bins=30, bidirectional=False,
color_by=np.mean, **kwargs):
"""Create a "rose" diagram (a.k.a. circular histogram).
Parameters:
-----------
azimuths: sequence of numbers
The observed azimuths in degrees.
z: sequence of numbers (optional)
A second, co-located variable to color the plotted rectangles by.
ax: a matplotlib Axes (optional)
The axes to plot on. Defaults to the current axes.
bins: int or sequence of numbers (optional)
The number of bins or a sequence of bin edges to use.
bidirectional: boolean (optional)
Whether or not to treat the observed azimuths as bi-directional
measurements (i.e. if True, 0 and 180 are identical).
color_by: function or string (optional)
A function to reduce the binned z values with. Alternately, if the
string "count" is passed in, the displayed bars will be colored by
their y-value (the number of azimuths measurements in that bin).
Additional keyword arguments are passed on to PatchCollection.
Returns:
--------
A matplotlib PatchCollection
"""
azimuths = np.asanyarray(azimuths)
if color_by == 'count':
z = np.ones_like(azimuths)
color_by = np.sum
if ax is None:
ax = plt.gca()
ax.set_theta_direction(-1)
ax.set_theta_offset(np.radians(90))
if bidirectional:
other = azimuths + 180
azimuths = np.concatenate([azimuths, other])
if z is not None:
z = np.concatenate([z, z])
# Convert to 0-360, in case negative or >360 azimuths are passed in.
azimuths[azimuths > 360] -= 360
azimuths[azimuths < 0] += 360
counts, edges = np.histogram(azimuths, range=[0, 360], bins=bins)
if z is not None:
idx = np.digitize(azimuths, edges)
z = np.array([color_by(z[idx == i]) for i in range(1, idx.max() + 1)])
z = np.ma.masked_invalid(z)
edges = np.radians(edges)
coll = colored_bar(edges[:-1], counts, z=z, width=np.diff(edges),
ax=ax, **kwargs)
return coll
def colored_bar(left, height, z=None, width=0.8, bottom=0, ax=None, **kwargs):
"""A bar plot colored by a scalar sequence."""
if ax is None:
ax = plt.gca()
width = itertools.cycle(np.atleast_1d(width))
bottom = itertools.cycle(np.atleast_1d(bottom))
rects = []
for x, y, h, w in zip(left, bottom, height, width):
rects.append(Rectangle((x,y), w, h))
coll = PatchCollection(rects, array=z, **kwargs)
ax.add_collection(coll)
ax.autoscale()
return coll
if __name__ == '__main__':
main()

Categories

Resources