I'd like to generate a dynamically threads or processes in Python to consume each own queue.
My code: main.py
import cv2
import numpy as np
from classes import roi_process
import time
import os
import copy
import queue
import multiprocessing
roi_list = eval("[(0,0,639,720,1),(640,0,1280,720,2)]")
for _ROI in roi_list:
print("################# " + str(_ROI[4]))
vars()["FILA_"+str(_ROI[4])] = queue.Queue(maxsize=4)
vars()["T_"+str(_ROI[4])] = multiprocessing.Process(target = roi_process.RoiProcess, args = ( eval("FILA_"+str(_ROI[4])) , str(_ROI[4])), daemon=True)
for _ROI in roi_list:
eval("T_"+str(_ROI[4])).start()
classes/roi_process.py
import cv2
import queue
import numpy as np
import imutils
import time
import os
class RoiProcess:
def __init__(self, queue_pool = None, id_roi = 0):
self.id_roi = id_roi
self.queue_pool = queue_pool
print("Iniciou em thread o id: " + self.id_roi)
self.run()
def run(self):
i = 0
while True:
print(str(self.id_roi) + ": " + str(i))
i = i + 1
time.sleep(1)
This is generating the following error:
(tensorflow) C:\projects\car detector\semparar\AI_CARANDPLATE>python main.py
################# 1
################# 2
Traceback (most recent call last):
File "main.py", line 64, in <module>
eval("T_"+str(_ROI[4])).start()
File "C:\Users\MasterRoot\Anaconda3\envs\tensorflow\lib\multiprocessing\process.py", line 121, in start
self._popen = self._Popen(self)
File "C:\Users\MasterRoot\Anaconda3\envs\tensorflow\lib\multiprocessing\context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Users\MasterRoot\Anaconda3\envs\tensorflow\lib\multiprocessing\context.py", line 326, in _Popen
return Popen(process_obj)
File "C:\Users\MasterRoot\Anaconda3\envs\tensorflow\lib\multiprocessing\popen_spawn_win32.py", line 93, in __init__
reduction.dump(process_obj, to_child)
File "C:\Users\MasterRoot\Anaconda3\envs\tensorflow\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
TypeError: cannot pickle '_thread.lock' object
(tensorflow) C:\projects\car detector\semparar\AI_CARANDPLATE>Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:\Users\MasterRoot\Anaconda3\envs\tensorflow\lib\multiprocessing\spawn.py", line 107, in spawn_main
new_handle = reduction.duplicate(pipe_handle,
File "C:\Users\MasterRoot\Anaconda3\envs\tensorflow\lib\multiprocessing\reduction.py", line 79, in duplicate
return _winapi.DuplicateHandle(
PermissionError: [WinError 5] Acesso negado
I really need to start dynamic threads or processes to consume every each poll that will be fed by a while True: in main.py
I will make a opencv frame reader and slice the main frame into many pieces.
After that I will feed a dynamic queue object with this information and each thread will process a predictor as I need.
I changed my code to:
FILA={}
T={}
#cria fila para cada ROI e instancia uma thread de obj para ler esta fila continuamente.
for _ROI in roi_list:
print("################# " + str(_ROI[4]))
FILA[_ROI[4]] = queue.Queue(maxsize=4)
T[_ROI[4]] = multiprocessing.Process(target = roi_process.RoiProcess, args = ( FILA[_ROI[4]] , str(_ROI[4])), daemon=True).start()
but its keepeing going to do the same error for threads.
Don't use standard Queue with multiprocessing, use:
from multiprocessing import Queue
Related
Code:
from aiohttp import web
from aiortc.mediastreams import MediaStreamTrack
from aiortc import RTCPeerConnection, RTCSessionDescription
from aiortc.contrib.media import MediaPlayer
import asyncio
import json
import os
from multiprocessing import Process, freeze_support
from queue import Queue
import sys
import threading
from time import sleep
import fractions
import time
class RadioServer(Process):
def __init__(self,q):
super().__init__()
self.q = q
self.ROOT = os.path.dirname(__file__)
self.pcs = []
self.channels = []
self.stream_offers = []
self.requests = []
def run(self):
self.app = web.Application()
self.app.on_shutdown.append(self.on_shutdown)
self.app.router.add_get("/", self.index)
self.app.router.add_get("/radio.js", self.javascript)
self.app.router.add_get("/jquery-3.5.1.min.js", self.jquery)
self.app.router.add_post("/offer", self.offer)
threading.Thread(target=self.fill_the_queues).start()
web.run_app(self.app, access_log=None, host="192.168.1.20", port="8080", ssl_context=None)
def fill_the_queues(self):
while(True):
frame = self.q.get()
for stream_offer in self.stream_offers:
stream_offer.q.put(frame)
async def index(self,request):
content = open(os.path.join(self.ROOT, "index.html"), encoding="utf8").read()
return web.Response(content_type="text/html", text=content)
async def javascript(self,request):
content = open(os.path.join(self.ROOT, "radio.js"), encoding="utf8").read()
return web.Response(content_type="application/javascript", text=content)
async def jquery(self,request):
content = open(os.path.join(self.ROOT, "jquery-3.5.1.min.js"), encoding="utf8").read()
return web.Response(content_type="application/javascript", text=content)
async def offer(self,request):
params = await request.json()
offer = RTCSessionDescription(sdp=params["sdp"], type=params["type"])
pc = RTCPeerConnection()
self.pcs.append(pc)
self.requests.append(request)
# prepare epalxeis media
self.stream_offers.append(CustomRadioStream())
pc.addTrack(self.stream_offers[-1])
#pc.on("iceconnectionstatechange")
async def on_iceconnectionstatechange():
if pc.iceConnectionState == "failed":
self.pcs.remove(pc)
self.requests.remove(request)
print(str(request.remote)+" disconnected from radio server")
print("Current peer connections:"+str(len(self.pcs)))
# handle offer
await pc.setRemoteDescription(offer)
# send answer
answer = await pc.createAnswer()
await pc.setLocalDescription(answer)
return web.Response(content_type="application/json",text=json.dumps({"sdp": pc.localDescription.sdp, "type": pc.localDescription.type}))
async def on_shutdown(self,app):
# close peer connections
if self.pcs:
coros = [pc.close() for pc in self.pcs]
await asyncio.gather(*coros)
self.pcs = []
self.channels = []
self.stream_offers = []
"""
some other classes here such as CustomRadioStream and RadioOutputStream
"""
if __name__ == "__main__":
freeze_support()
q = Queue()
custom_server_child_process = RadioServer(q)
custom_server_child_process.start()
Error
Traceback (most recent call last):
File "123.py", line 106, in <module>
custom_server_child_process.start()
File "C:/msys64/mingw64/lib/python3.8/multiprocessing/process.py", line 121, i
n start
self._popen = self._Popen(self)
File "C:/msys64/mingw64/lib/python3.8/multiprocessing/context.py", line 224, i
n _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:/msys64/mingw64/lib/python3.8/multiprocessing/context.py", line 327, i
n _Popen
return Popen(process_obj)
File "C:/msys64/mingw64/lib/python3.8/multiprocessing/popen_spawn_win32.py", l
ine 93, in __init__
reduction.dump(process_obj, to_child)
File "C:/msys64/mingw64/lib/python3.8/multiprocessing/reduction.py", line 60,
in dump
ForkingPickler(file, protocol).dump(obj)
TypeError: cannot pickle '_thread.lock' object
What I am doing wrong?
If I call the run function (instead of start) directly, then there is no problem, but i want to use processing for this class.
Edit: Ok with multiprocessing.Queue works fine but now with similar code there is this error:
$ python "Papinhio_player.py"
Traceback (most recent call last):
File "Papinhio_player.py", line 3078, in <module>
program = PapinhioPlayerCode()
File "Papinhio_player.py", line 250, in __init__
self.manage_decks_instance = Manage_Decks(self)
File "C:\python\scripts\Papinhio player\src\main\python_files/manage_decks.py"
, line 356, in __init__
self.custom_server_child_process.start()
File "C:/msys64/mingw64/lib/python3.8/multiprocessing/process.py", line 121, i
n start
self._popen = self._Popen(self)
File "C:/msys64/mingw64/lib/python3.8/multiprocessing/context.py", line 224, i
n _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:/msys64/mingw64/lib/python3.8/multiprocessing/context.py", line 327, i
n _Popen
return Popen(process_obj)
File "C:/msys64/mingw64/lib/python3.8/multiprocessing/popen_spawn_win32.py", l
ine 93, in __init__
reduction.dump(process_obj, to_child)
File "C:/msys64/mingw64/lib/python3.8/multiprocessing/reduction.py", line 60,
in dump
ForkingPickler(file, protocol).dump(obj)
File "stringsource", line 2, in av.audio.codeccontext.AudioCodecContext.__redu
ce_cython__
TypeError: self.parser,self.ptr cannot be converted to a Python object for pickl
ing
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:/msys64/mingw64/lib/python3.8/multiprocessing/spawn.py", line 116, in
spawn_main
exitcode = _main(fd, parent_sentinel)
File "C:/msys64/mingw64/lib/python3.8/multiprocessing/spawn.py", line 126, in
_main
self = reduction.pickle.load(from_parent)
EOFError: Ran out of input
Some objects cannot be serialized then unserialized.
The stack trace you posted mentions :
TypeError: cannot pickle '_thread.lock' object
a lock, which holds a state in memory and gives guarantees that no other process can own the same lock at the same moment, is typically a very bad candidate for this operation -- what should be created when you deserialize it ?
To fix this : choose a way to select the relevant fields of the object you want to serialize, and pickle/unpickle that part.
I create a PyTable object W_hat where processes should share and save the results their instead of returning them.
from multiprocessing import Lock
from multiprocessing import Pool
import tables as tb
def parallel_l21(labels, X, lam, g, W_hat):
g_indxs = np.where(labels == g)[0]
tmp = rfs(X[g_indxs, 1:].T, X[:, :-1].T, gamma=lam, verbose=False).T
tmp[abs(tmp) <= 1e-6] = 0
with lock:
W_hat[:, g_indxs] = np.array(tmp)
def init_child(lock_):
global lock
lock = lock_
#Previous code is omitted.
n_ = X_test.shape[0]
tb.file._open_files.close_all()
f = tb.open_file(path_name + 'dot' + sub_num + str(lam) + '.h5', 'w')
filters = tb.Filters(complevel=5, complib='blosc')
W_hat = f.create_carray(f.root, 'data', tb.Float32Atom(), shape=(n_, n_), filters=filters)
W_hats = []
for i in np.unique(labels):
W_hats.append(W_hat)
lock = Lock()
with Pool(processes=cpu_count, initializer=init_child, initargs=(lock,)) as pool:
print(pool)
pool.starmap(parallel_l21, zip(repeat(labels), repeat(X), repeat(lam), np.unique(labels), W_hats))
Now, when running into starmap, this error shows up:
Traceback (most recent call last):
File "/Applications/PyCharm CE 2.app/Contents/plugins/python-ce/helpers/pydev/_pydevd_bundle/pydevd_exec2.py", line 3, in Exec
exec(exp, global_vars, local_vars)
File "<input>", line 1, in <module>
File "/usr/local/Cellar/python#3.8/3.8.6_1/Frameworks/Python.framework/Versions/3.8/lib/python3.8/multiprocessing/pool.py", line 372, in starmap
return self._map_async(func, iterable, starmapstar, chunksize).get()
File "/usr/local/Cellar/python#3.8/3.8.6_1/Frameworks/Python.framework/Versions/3.8/lib/python3.8/multiprocessing/pool.py", line 771, in get
raise self._value
File "/usr/local/Cellar/python#3.8/3.8.6_1/Frameworks/Python.framework/Versions/3.8/lib/python3.8/multiprocessing/pool.py", line 537, in _handle_tasks
put(task)
File "/usr/local/Cellar/python#3.8/3.8.6_1/Frameworks/Python.framework/Versions/3.8/lib/python3.8/multiprocessing/connection.py", line 206, in send
self._send_bytes(_ForkingPickler.dumps(obj))
File "/usr/local/Cellar/python#3.8/3.8.6_1/Frameworks/Python.framework/Versions/3.8/lib/python3.8/multiprocessing/reduction.py", line 51, in dumps
cls(buf, protocol).dump(obj)
File "stringsource", line 2, in tables.hdf5extension.Array.__reduce_cython__
TypeError: self.dims,self.dims_chunk,self.maxdims cannot be converted to a Python object for pickling
Note: I thought that the code works fine on Python 3.6.8 but it turns out that it is not the case.
Quite new to multiprocessing here. I have a code that runs two processes. One to continuously receive data blocks from the server and put it inside a queue and the other to remove the data blocks from the queue and process it.
Below is my client code:
import socket
import turtle
import multiprocessing
from multiprocessing import Process, Queue
from tkinter import *
class GUI:
def __init__(self, master):
rec_data = recv_data()
self.master = master
master.title("Collision Detection")
self.input_label = Label(root, text="Input all the gratings set straight wavelength values in nm")
self.input_label.grid(row=0)
self.core_string = "Core "
self.entries = []
self.label_col_inc = 0
self.entry_col_inc = 1
self.core_range = range(1, 5)
for y in self.core_range:
self.core_text = self.core_string + str(y) + '_' + '25'
self.core_label = Label(root, text=self.core_text)
self.entry = Entry(root)
self.core_label.grid(row=1, column=self.label_col_inc, sticky=E)
self.entry.grid(row=1, column=self.entry_col_inc)
self.entries.append(self.entry)
self.label_col_inc += 2
self.entry_col_inc += 2
self.threshold_label = Label(root, text="Threshold in nm")
self.entry_threshold = Entry(root)
self.threshold_label.grid(row=2, sticky=E)
self.entry_threshold.grid(row=2, column=1)
self.light_label = Label(root, text='Status')
self.light_label.grid(row=3, column=3)
self.canvas = Canvas(root, width=150, height=50)
self.canvas.grid(row=4, column=3)
# Green light
self.green_light = turtle.RawTurtle(self.canvas)
self.green_light.shape('circle')
self.green_light.color('grey')
self.green_light.penup()
self.green_light.goto(0, 0)
# Red light
self.red_light = turtle.RawTurtle(self.canvas)
self.red_light.shape('circle')
self.red_light.color('grey')
self.red_light.penup()
self.red_light.goto(40, 0)
self.data_button = Button(root, text="Get data above threshold", command=rec_data.getData)
self.data_button.grid(row=5, column=0)
class recv_data:
def __init__(self):
self.buff_data = multiprocessing.Queue()
self.p1 = multiprocessing.Process(target=self.recvData)
self.p2 = multiprocessing.Process(target=self.calculate_threshold)
self.host = '127.0.0.1'
self.port = 5001
self.s = socket.socket()
self.s.connect((self.host, self.port))
# function to receive TCP data blocks
def getData(self):
len_message = self.s.recv(4)
bytes_length = int(len_message.decode('utf-8')) # for the self-made server
recvd_data = self.s.recv(bytes_length)
self.buff_data.put(recvd_data)
self.p1.start()
self.p2.start()
self.p1.join()
self.p2.join()
def recvData(self):
len_message = self.s.recv(4)
while len_message:
bytes_length = int(len_message.decode('utf-8')) # for the self-made server
recvd_data = self.s.recv(bytes_length)
self.buff_data.put(recvd_data)
len_message = self.s.recv(4)
else:
print('out of loop')
self.s.close()
def calculate_threshold(self):
rmv_data = self.buff_data.get()
stringdata = rmv_data.decode('utf-8')
rep_str = stringdata.replace(",", ".")
splitstr = rep_str.split()
# received wavelength values
inc = 34
wav_threshold = []
for y in gui.entries:
straight_wav = float(y.get())
wav = float(splitstr[inc])
wav_diff = wav - straight_wav
if wav_diff < 0:
wav_diff = wav_diff * (-1)
wav_threshold.append(wav_diff)
inc += 56
threshold = float(gui.entry_threshold.get())
for x in wav_threshold:
if (x > threshold):
gui.red_light.color('red')
gui.green_light.color('grey')
else:
gui.red_light.color('grey')
gui.green_light.color('green')
# function to write into the file
def write_file(self, data):
with open("Output.txt", "a") as text_file:
text_file.write('\t'.join(data[0:]))
text_file.write('\n')
if __name__ == '__main__':
root = Tk()
gui1 = GUI(root)
root.mainloop()
The error I get is shown below:
Exception in Tkinter callback
Traceback (most recent call last):
File "C:\Users\AppData\Local\Programs\Python\Python38-32\lib\tkinter\__init__.py", line 1883, in __call__
return self.func(*args)
File "C:/Users/PycharmProjects/GUI/GUI_multiprocess.py", line 85, in getData
self.p2.start()
File "C:\Users\AppData\Local\Programs\Python\Python38-32\lib\multiprocessing\process.py", line 121, in start
self._popen = self._Popen(self)
File "C:\Users\AppData\Local\Programs\Python\Python38-32\lib\multiprocessing\context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Users\AppData\Local\Programs\Python\Python38-32\lib\multiprocessing\context.py", line 326, in _Popen
return Popen(process_obj)
File "C:\Users\AppData\Local\Programs\Python\Python38-32\lib\multiprocessing\popen_spawn_win32.py", line 93, in __init__
reduction.dump(process_obj, to_child)
File "C:\Users\AppData\Local\Programs\Python\Python38-32\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
TypeError: cannot pickle 'weakref' object
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:\Users\AppData\Local\Programs\Python\Python38-32\lib\multiprocessing\spawn.py", line 116, in spawn_main
exitcode = _main(fd, parent_sentinel)
File "C:\Users\AppData\Local\Programs\Python\Python38-32\lib\multiprocessing\spawn.py", line 126, in _main
self = reduction.pickle.load(from_parent)
EOFError: Ran out of input
What am I doing wrong here and how can I fix it? Any help is appreciated. Thank you!
I just came to the same traceback and managed to solve it. It was due to that an object had a running or exited Process as a variable and it was starting another Process using that object.
Problem
This is a minimal code to produce your error:
import multiprocessing
class Foo:
def __init__(self):
self.process_1 = multiprocessing.Process(target=self.do_stuff1)
self.process_2 = multiprocessing.Process(target=self.do_stuff2)
def do_multiprocessing(self):
self.process_1.start()
self.process_2.start()
def do_stuff1(self):
print("Doing 1")
def do_stuff2(self):
print("Doing 2")
if __name__ == '__main__':
foo = Foo()
foo.do_multiprocessing()
[out]:
Traceback (most recent call last):
File "myfile.py", line 21, in <module>
foo.do_multiprocessing()
File "myfile.py", line 11, in do_multiprocessing
self.process_2.start()
File "...\lib\multiprocessing\process.py", line 121, in start
self._popen = self._Popen(self)
File "...\lib\multiprocessing\context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "...\lib\multiprocessing\context.py", line 327, in _Popen
return Popen(process_obj)
File "...\lib\multiprocessing\popen_spawn_win32.py", line 93, in __init__
reduction.dump(process_obj, to_child)
File "...\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
TypeError: cannot pickle 'weakref' object
Doing 1
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "...\lib\multiprocessing\spawn.py", line 116, in spawn_main
exitcode = _main(fd, parent_sentinel)
File "...\lib\multiprocessing\spawn.py", line 126, in _main
self = reduction.pickle.load(from_parent)
EOFError: Ran out of input
So the issue is that Foo contains also the running/exited process foo.process_1 when it starts foo.process_2.
Solution 1
Set foo.process_1 to None or something else. Or store the Processes somewhere else than in foo to prevent being passed when starting process_2.
...
def do_multiprocessing(self):
self.process_1.start()
self.process_1 = None # Remove exited process
self.process_2.start()
...
Solution 2
Remove the problematic variable (process_1) from pickling:
class Foo:
def __getstate__(self):
# capture what is normally pickled
state = self.__dict__.copy()
# remove unpicklable/problematic variables
state['process_1'] = None
return state
...
This seems to be problem in newer Python versions. My own code worked fine for 3.7 but failed due to this issue in 3.9.
I tested your code (from recv_data). Since you join the processes and need them, you should do the solution 2 or store the processes somewhere else than in recv_data. Not sure what other problems your code has.
I want to start a new process after main tkinter window is loaded.
I do it like This:
if __name__ == "__main__":
app = MainFrame()
print(("App loaded"))
canvasWindow = app.getCurrentTopFrame().start()
app.mainloop()
print("Window change")
after tkinter init i call function to start new thread
def start(self):
print("Before logic thread init")
lock = mp.Lock()
pro = mp.Process(target = self.manager.startTraining, args = (deley,lock))
pro.start()
This is startTrening fun
def startTraining(self,lock):
"""Starts training sequence"""
print("start tra")
for x in range(0,self.numOfGenerations):
print("x")
self.population.nextGeneration()
print("Iteration num ",x,"Fitness of best one is
",self.population.bestSalesman)
lock.acquire()
...........self.canvas.updateFrame(self.population.bestSalesman.dna.getAsListOfTuple())
lock.release()
This is updateFrame fun
def updateFrame(self,listOfPoints):
self.canvas.delete("all")
for y in listOfPoints:
self.canvas.create_oval(y[0], y[1], y[0]+5, y[1]+5, fill="Black")
li = cycle(listOfPoints)
p2 = next(li)
for x in listOfPoints:
p1,p2 = p2, next(li)
self.canvas.create_line(p1[0],p1[1],p2[0]+2,p2[1]+2)
if p2 == listOfPoints[-1]:
self.canvas.create_line(p2[0],p2[1],listOfPoints[0]+2,listOfPoints[0][1]+2)
self.canvas.pack()
I dont get why but behavior is such that main window does load and the
error occure
After init
After tkrasie
after start
App loaded
Before logic thread init
Traceback (most recent call last):
File "C:\Users\CrazyUrusai\git\WarsawSchoolOfAI\GeneticsAlgorithms\MainFrame.py", line 129, in <module>
canvasWindow = app.getCurrentTopFrame().start()
File "C:\Users\CrazyUrusai\git\WarsawSchoolOfAI\GeneticsAlgorithms\MainFrame.py", line 111, in start
pro.start()
File "C:\Users\CrazyUrusai\AppData\Local\Programs\Python\Python36\lib\multiprocessing\process.py", line 105, in start
self._popen = self._Popen(self)
File "C:\Users\CrazyUrusai\AppData\Local\Programs\Python\Python36\lib\multiprocessing\context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Users\CrazyUrusai\AppData\Local\Programs\Python\Python36\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
File "C:\Users\CrazyUrusai\AppData\Local\Programs\Python\Python36\lib\multiprocessing\popen_spawn_win32.py", line 65, in __init__
reduction.dump(process_obj, to_child)
File "C:\Users\CrazyUrusai\AppData\Local\Programs\Python\Python36\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
TypeError: can't pickle _tkinter.tkapp objects
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:\Users\CrazyUrusai\AppData\Local\Programs\Python\Python36\lib\multiprocessing\spawn.py", line 105, in spawn_main
exitcode = _main(fd)
File "C:\Users\CrazyUrusai\AppData\Local\Programs\Python\Python36\lib\multiprocessing\spawn.py", line 115, in _main
self = reduction.pickle.load(from_parent)
EOFError: Ran out of input
I'm wrting a program that spawns a process and restarts the process on certain conditions. For example, if a child process doesn't send data anymore to the mother process, for a certain period of time, I want the mother process to terminate the child process and restart it. I thought I could use a thread to recieve data from a child process and restart the child process, but it doesn't work the way I thought.
import numpy as np
import multiprocessing as mp
import threading
import time
from apscheduler.schedulers.background import BackgroundScheduler
pipe_in, pipe_out = mp.Pipe()
class Mother():
def __init__(self):
self.pipe_out = pipe_out
self.proc = mp.Process(target = self.test_func, args=(pipe_in, ))
self.proc.start()
self.thread = threading.Thread(target=self.thread_reciever, args=(self.pipe_out, ))
self.thread.start()
def thread_reciever(self, pipe_out):
while True:
value = pipe_out.recv()
print(value)
if value == 5:
self.proc.terminate()
time.sleep(2)
self.proc = mp.Process(target = self.test_func)
self.proc.start()
def test_func(self, pipe_in):
for i in range(10):
pipe_in.send(i)
time.sleep(1)
if __name__ == '__main__':
r = Mother()
It prints out this error.
D:\>d:\python36-32\python.exe temp06.py
0
1
2
3
4
5
Exception in thread Thread-1:
Traceback (most recent call last):
File "d:\python36-32\lib\threading.py", line 916, in _bootstrap_inner
self.run()
File "d:\python36-32\lib\threading.py", line 864, in run
self._target(*self._args, **self._kwargs)
File "temp06.py", line 28, in thread_reciever
self.proc.start()
File "d:\python36-32\lib\multiprocessing\process.py", line 105, in start
self._popen = self._Popen(self)
File "d:\python36-32\lib\multiprocessing\context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "d:\python36-32\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
File "d:\python36-32\lib\multiprocessing\popen_spawn_win32.py", line 65, in __init__
reduction.dump(process_obj, to_child)
File "d:\python36-32\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
TypeError: can't pickle _thread.lock objects
D:\>Traceback (most recent call last):
File "<string>", line 1, in <module>
File "d:\python36-32\lib\multiprocessing\spawn.py", line 99, in spawn_main
new_handle = reduction.steal_handle(parent_pid, pipe_handle)
File "d:\python36-32\lib\multiprocessing\reduction.py", line 82, in steal_handle
_winapi.PROCESS_DUP_HANDLE, False, source_pid)
OSError: [WinError 87]
How could I start and terminate a process inside a thread? (I'm using a thread because it can synchronously recieve data from a different process) Or are there any other ways to do this job?
test_func as a global function
import numpy as np
import multiprocessing as mp
import threading
import time
from apscheduler.schedulers.background import BackgroundScheduler
pipe_in, pipe_out = mp.Pipe()
def test_func( pipe_in):
for i in range(10):
pipe_in.send(i)
time.sleep(1)
class Mother():
def __init__(self):
self.pipe_out = pipe_out
mp.freeze_support()
self.proc = mp.Process(target = test_func, args=(pipe_in, ))
self.proc.start()
self.thread = threading.Thread(target=self.thread_reciever, args=(self.pipe_out, ))
self.thread.start()
def thread_reciever(self, pipe_out):
while True:
value = pipe_out.recv()
print(value)
if value == 5:
self.proc.terminate()
time.sleep(2)
mp.freeze_support()
self.proc = mp.Process(target = test_func, args=(pipe_in,))
self.proc.start()
if __name__ == '__main__':
r = Mother()
OUTPUT
D:\> d:\python36-32\python.exe temp06.py
0
1
2
3
4
5
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "d:\python36-32\lib\multiprocessing\spawn.py", line 105, in spawn_main
exitcode = _main(fd)
File "d:\python36-32\lib\multiprocessing\spawn.py", line 115, in _main
self = reduction.pickle.load(from_parent)
AttributeError: Can't get attribute 'test_func' on <module '__main__' (built-in)>
under windows, as there is no fork syscall, python starts a new interpreter instance, use pickle/unpickle to reconstruct execution context, but thread.Lock is not picklable. while pickling self.test_func, self.thread reference to a thread.Lock object, makes it unpicklable.
you could simply change test_func to a plain global function, without thread object reference :
self.proc = mp.Process(target = test_func, args=(pipe_in,))
...
def test_func(pipe_in):
for i in range(10):
pipe_in.send(i)
time.sleep(1)