Program description:
Find all the prime numbers between 1 and 4,027 and print them in a table which
"reads down", using as few rows as possible, and using as few sheets of paper
as possible. (This is because I have to print them out on paper to turn it in.) All numbers should be right-justified in their column. The height
of the columns should all be the same, except for perhaps the last column,
which might have a few blank entries towards its bottom row.
The plan for my first function is to find all prime numbers between the range above and put them in a list. Then I want my second function to display the list in a table that reads up to down.
2 23 59
3 29 61
5 31 67
7 37 71
11 41 73
13 43 79
17 47 83
19 53 89
ect...
This all I've been able to come up with myself:
def findPrimes(n):
""" Adds calculated prime numbers to a list. """
prime_list = list()
for number in range(1, n + 1):
prime = True
for i in range(2, number):
if(number % i == 0):
prime = False
if prime:
prime_list.append(number)
return prime_list
def displayPrimes():
pass
print(findPrimes(4027))
I'm not sure how to make a row/column display in Python. I remember using Java in my previous class and we had to use a for loop inside a for loop I believe. Do I have to do something similar to that?
Although I frequently don't answer questions where the original poster hasn't even made an attempt to solve the problem themselves, I decided to make an exception of yours—mostly because I found it an interesting (and surprisingly challenging) problem that required solving a number of somewhat tricky sub-problems.
I also optimized your find_primes() function slightly by taking advantage of some reatively well-know computational shortcuts for calculating them.
For testing and demo purposes, I made the tables only 15 rows high to force more than one page to be generated as shown in the output at the end.
from itertools import zip_longest
import locale
import math
locale.setlocale(locale.LC_ALL, '') # enable locale-specific formatting
def zip_discard(*iterables, _NULL=object()):
""" Like zip_longest() but doesn't fill out all rows to equal length.
https://stackoverflow.com/questions/38054593/zip-longest-without-fillvalue
"""
return [[entry for entry in iterable if entry is not _NULL]
for iterable in zip_longest(*iterables, fillvalue=_NULL)]
def grouper(n, seq):
""" Group elements in sequence into groups of "n" items. """
for i in range(0, len(seq), n):
yield seq[i:i+n]
def tabularize(width, height, numbers):
""" Print list of numbers in column-major tabular form given the dimensions
of the table in characters (rows and columns). Will create multiple
tables of required to display all numbers.
"""
# Determine number of chars needed to hold longest formatted numeric value
gap = 2 # including space between numbers
col_width = len('{:n}'.format(max(numbers))) + gap
# Determine number of columns that will fit within the table's width.
num_cols = width // col_width
chunk_size = num_cols * height # maximum numbers in each table
for i, chunk in enumerate(grouper(chunk_size, numbers), start=1):
print('---- Page {} ----'.format(i))
num_rows = int(math.ceil(len(chunk) / num_cols)) # rounded up
table = zip_discard(*grouper(num_rows, chunk))
for row in table:
print(''.join(('{:{width}n}'.format(num, width=col_width)
for num in row)))
def find_primes(n):
""" Create list of prime numbers from 1 to n. """
prime_list = []
for number in range(1, n+1):
for i in range(2, int(math.sqrt(number)) + 1):
if not number % i: # Evenly divisible?
break # Not prime.
else:
prime_list.append(number)
return prime_list
primes = find_primes(4027)
tabularize(80, 15, primes)
Output:
---- Page 1 ----
1 47 113 197 281 379 463 571 659 761 863
2 53 127 199 283 383 467 577 661 769 877
3 59 131 211 293 389 479 587 673 773 881
5 61 137 223 307 397 487 593 677 787 883
7 67 139 227 311 401 491 599 683 797 887
11 71 149 229 313 409 499 601 691 809 907
13 73 151 233 317 419 503 607 701 811 911
17 79 157 239 331 421 509 613 709 821 919
19 83 163 241 337 431 521 617 719 823 929
23 89 167 251 347 433 523 619 727 827 937
29 97 173 257 349 439 541 631 733 829 941
31 101 179 263 353 443 547 641 739 839 947
37 103 181 269 359 449 557 643 743 853 953
41 107 191 271 367 457 563 647 751 857 967
43 109 193 277 373 461 569 653 757 859 971
---- Page 2 ----
977 1,069 1,187 1,291 1,427 1,511 1,613 1,733 1,867 1,987 2,087
983 1,087 1,193 1,297 1,429 1,523 1,619 1,741 1,871 1,993 2,089
991 1,091 1,201 1,301 1,433 1,531 1,621 1,747 1,873 1,997 2,099
997 1,093 1,213 1,303 1,439 1,543 1,627 1,753 1,877 1,999 2,111
1,009 1,097 1,217 1,307 1,447 1,549 1,637 1,759 1,879 2,003 2,113
1,013 1,103 1,223 1,319 1,451 1,553 1,657 1,777 1,889 2,011 2,129
1,019 1,109 1,229 1,321 1,453 1,559 1,663 1,783 1,901 2,017 2,131
1,021 1,117 1,231 1,327 1,459 1,567 1,667 1,787 1,907 2,027 2,137
1,031 1,123 1,237 1,361 1,471 1,571 1,669 1,789 1,913 2,029 2,141
1,033 1,129 1,249 1,367 1,481 1,579 1,693 1,801 1,931 2,039 2,143
1,039 1,151 1,259 1,373 1,483 1,583 1,697 1,811 1,933 2,053 2,153
1,049 1,153 1,277 1,381 1,487 1,597 1,699 1,823 1,949 2,063 2,161
1,051 1,163 1,279 1,399 1,489 1,601 1,709 1,831 1,951 2,069 2,179
1,061 1,171 1,283 1,409 1,493 1,607 1,721 1,847 1,973 2,081 2,203
1,063 1,181 1,289 1,423 1,499 1,609 1,723 1,861 1,979 2,083 2,207
---- Page 3 ----
2,213 2,333 2,423 2,557 2,687 2,789 2,903 3,037 3,181 3,307 3,413
2,221 2,339 2,437 2,579 2,689 2,791 2,909 3,041 3,187 3,313 3,433
2,237 2,341 2,441 2,591 2,693 2,797 2,917 3,049 3,191 3,319 3,449
2,239 2,347 2,447 2,593 2,699 2,801 2,927 3,061 3,203 3,323 3,457
2,243 2,351 2,459 2,609 2,707 2,803 2,939 3,067 3,209 3,329 3,461
2,251 2,357 2,467 2,617 2,711 2,819 2,953 3,079 3,217 3,331 3,463
2,267 2,371 2,473 2,621 2,713 2,833 2,957 3,083 3,221 3,343 3,467
2,269 2,377 2,477 2,633 2,719 2,837 2,963 3,089 3,229 3,347 3,469
2,273 2,381 2,503 2,647 2,729 2,843 2,969 3,109 3,251 3,359 3,491
2,281 2,383 2,521 2,657 2,731 2,851 2,971 3,119 3,253 3,361 3,499
2,287 2,389 2,531 2,659 2,741 2,857 2,999 3,121 3,257 3,371 3,511
2,293 2,393 2,539 2,663 2,749 2,861 3,001 3,137 3,259 3,373 3,517
2,297 2,399 2,543 2,671 2,753 2,879 3,011 3,163 3,271 3,389 3,527
2,309 2,411 2,549 2,677 2,767 2,887 3,019 3,167 3,299 3,391 3,529
2,311 2,417 2,551 2,683 2,777 2,897 3,023 3,169 3,301 3,407 3,533
---- Page 4 ----
3,539 3,581 3,623 3,673 3,719 3,769 3,823 3,877 3,919 3,967 4,019
3,541 3,583 3,631 3,677 3,727 3,779 3,833 3,881 3,923 3,989 4,021
3,547 3,593 3,637 3,691 3,733 3,793 3,847 3,889 3,929 4,001 4,027
3,557 3,607 3,643 3,697 3,739 3,797 3,851 3,907 3,931 4,003
3,559 3,613 3,659 3,701 3,761 3,803 3,853 3,911 3,943 4,007
3,571 3,617 3,671 3,709 3,767 3,821 3,863 3,917 3,947 4,013
Currently I am iterating over one array and for each value in this array I am looking for the closest value at the corresponding point in another array that is within a region surrounding the corresponding point.
In summary: For any point in an array, how far away from a corresponding point in another array do you need to go to get the same value.
The code seems to work well for small arrays, however I am working now with 1024x768 arrays, leading me to wait a long time for each run....
Any help or advice would be greatly appreciated as I have been on this for a while!!
Example matrix in format Im using: np.array[[1,2],[3,4]]
#Distance to agreement
#Used later to define a region of pixels around a corresponding point
#to iterate over:
DTA = 26
#To account for noise in pixels - doesnt have to find the exact value,
#just one within +/-130 of it.
limit = 130
#Containers for all pixel value matches and also the smallest distance
#to pixel match
Dist = []
Dist_min = []
#Continer matrix for gamma pass/fail values
Dist_to_agree = np.zeros((i_size,j_size))
#i,j indexes the reference matrix (x), ii,jj indexes the measured
#matrix(y). Finds a match within the limits,
#appends the distance to the match into Dist.
#Then find the minimum distance to a match for that pixel and append it
#to dist_min
for i, k in enumerate(x):
for j, l in enumerate(k):
#added 10 packing to y matrix, so need to shift it by 10 in i&j
for ii in range((i+10)-DTA,(i+10)+DTA):
for jj in range((j+10)-DTA,(j+10)+DTA):
#If the pixel value is within a range to account for noise,
#let it be "found"
if (y[ii,jj]-limit) <= x[i,j] <= (y[ii,jj]+limit):
#Calculating distance
dist_eu = sqrt(((i)-(ii))**2 + ((j) - (jj))**2)
Dist.append(dist_eu)
#If a value cannot be found within the noise range,
#append 10 = instant fail.
else:
Dist.append(10)
try:
Dist_min.append(min(Dist))
Dist_to_agree[i,j] = min(Dist)
except ValueError:
pass
#Need to reset container or previous values will also be
#accounted for when finding minimum
Dist = []
print Dist_to_agree
First, you are getting the elements of x in k and l, but then throwing that away and indexing x again. So in place of x[i,j], you could just use l, which would be much faster (although l isn't a very meaningful name, something like xi and xij might be better).
Second, you are recomputing y[ii,jj]-limit and y[ii,jj]+limitevery time. If you have enough memory, you can-precomputer these:ym = y-limitandyp = y+limit`.
Third, appending to a list is slower than creating an array and setting the values for long lists vs. long arrays. You can also skip the entire else clause by pre-setting the default value.
Fourth, you are computing min(dist) twice, and further may be using the python version rather than the numpy version, the latter being faster for arrays (which is another reason to make dist and array).
However, the biggest speedup would be to vectorize the inner two loops. Here is my tests, with x=np.random.random((10,10)) and y=np.random.random((100,100)):
Your version takes 623 ms.
Here is my version, which takes 7.6 ms:
dta = 26
limit = 130
dist_to_agree = np.zeros_like(x)
dist_min = []
ym = y-limit
yp = y+limit
for i, xi in enumerate(x):
irange = (i-np.arange(i+10-dta, i+10+dta))**2
if not irange.size:
continue
ymi = ym[i+10-dta:i+10+dta, :]
ypi = yp[i+10-dta:i+10+dta, :]
for j, xij in enumerate(xi):
jrange = (j-np.arange(j+10-dta, j+10+dta))**2
if not jrange.size:
continue
ymij = ymi[:, j+10-dta:j+10+dta]
ypij = ypi[:, j+10-dta:j+10+dta]
imesh, jmesh = np.meshgrid(irange, jrange, indexing='ij')
dist = np.sqrt(imesh+jmesh)
dist[ymij > xij or xij < ypij] = 10
mindist = dist.min()
dist_min.append(mindist)
dist_to_agree[i,j] = mindist
print(dist_to_agree)
#Ciaran
Meshgrid is kinda a vectorized equivalent of two nested loops. Below are two equivalent ways of calculating the dist. One with loops and one with meshgrid+numpy vector operations. The second one is six times faster.
DTA=5
i=100
j=200
def func1():
dist1=np.zeros((DTA*2,DTA*2))
for ii in range((i+10)-DTA,(i+10)+DTA):
for jj in range((j+10)-DTA,(j+10)+DTA):
dist1[ii-((i+10)-DTA),jj-((j+10)-DTA)] =sqrt(((i)-(ii))**2 + ((j) - (jj))**2)
return dist1
def func2():
dist2=np.zeros((DTA*2,DTA*2))
ii, jj = meshgrid(np.arange((i+10)-DTA,(i+10)+DTA),
np.arange((j+10)-DTA,(j+10)+DTA))
dist2=np.sqrt((i-ii)**2+(j-jj)**2)
return dist2
This is how ii and jj matrices look after meshgrid operation
ii=
[[105 106 107 108 109 110 111 112 113 114]
[105 106 107 108 109 110 111 112 113 114]
[105 106 107 108 109 110 111 112 113 114]
[105 106 107 108 109 110 111 112 113 114]
[105 106 107 108 109 110 111 112 113 114]
[105 106 107 108 109 110 111 112 113 114]
[105 106 107 108 109 110 111 112 113 114]
[105 106 107 108 109 110 111 112 113 114]
[105 106 107 108 109 110 111 112 113 114]
[105 106 107 108 109 110 111 112 113 114]]
jj=
[[205 205 205 205 205 205 205 205 205 205]
[206 206 206 206 206 206 206 206 206 206]
[207 207 207 207 207 207 207 207 207 207]
[208 208 208 208 208 208 208 208 208 208]
[209 209 209 209 209 209 209 209 209 209]
[210 210 210 210 210 210 210 210 210 210]
[211 211 211 211 211 211 211 211 211 211]
[212 212 212 212 212 212 212 212 212 212]
[213 213 213 213 213 213 213 213 213 213]
[214 214 214 214 214 214 214 214 214 214]]
for loops are very slow in pure python and you have four nested loops which will be very slow. Cython does wonders to the for loop speed. You can also try vectorization. While I'm not sure I fully understand what you are trying to do, you may try to vectorize at last some of the operations. Especially the last two loops.
So instead of two ii,jj cycles over
y[ii,jj]-limit) <= x[i,j] <= (y[ii,jj]+limit)
you can do something like
ii, jj = meshgrid(np.arange((i+10)-DTA,(i+10)+DTA), np.arange((j+10)-DTA,(j+10)+DTA))
t=(y[(i+10)-DTA,(i+10)+DTA]-limit>=x[i,j]) & (y[(i+10)-DTA,(i+10)+DTA]+limit<=x[i,j])
Dist=np.sqrt((i-ii)**2)+(j-jj)**2))
np.min(Dist[t]) will have your minimum distance for element i,j
The numbapro compiler offers gpu Acceleration. Unfortunately it isn't free.
http://docs.continuum.io/numbapro/