Python Plotly histogram bins by day and month but not week - python

I am following the example found here: https://plot.ly/python/aggregations/#histogram-binning
The code they have works as expected, but I am trying to expand it to autobin by week as well as day, month, etc. I know this data set doesn't have time, but I would also like to bin my own set of data that has time using hour as well. It seems like this would be straightforward, but this code does not produce the correct results:
import plotly.io as pio
import pandas as pd
df = pd.read_csv("https://plot.ly/~public.health/17.csv")
data = [dict(
x = df['date'],
autobinx = False,
autobiny = True,
marker = dict(color = 'rgb(68, 68, 68)'),
name = 'date',
type = 'histogram',
xbins = dict(
end = '2016-12-31 12:00',
size = 'M1',
start = '1983-12-31 12:00'
)
)]
layout = dict(
paper_bgcolor = 'rgb(240, 240, 240)',
plot_bgcolor = 'rgb(240, 240, 240)',
title = '<b>Shooting Incidents</b>',
xaxis = dict(
title = '',
type = 'date'
),
yaxis = dict(
title = 'Shootings Incidents',
type = 'linear'
),
updatemenus = [dict(
x = 0.1,
y = 1.15,
xref = 'paper',
yref = 'paper',
yanchor = 'top',
active = 1,
showactive = True,
buttons = [
dict(
args = ['xbins.size', 'D1'],
label = 'Day',
method = 'restyle',
), dict(
args = ['xbins.size', 'D7'],
label = 'Week',
method = 'restyle',
), dict(
args = ['xbins.size', 'M1'],
label = 'Month',
method = 'restyle',
), dict(
args = ['xbins.size', 'M3'],
label = 'Quater',
method = 'restyle',
), dict(
args = ['xbins.size', 'M6'],
label = 'Half Year',
method = 'restyle',
), dict(
args = ['xbins.size', 'M12'],
label = 'Year',
method = 'restyle',
)]
)]
)
fig_dict = dict(data=data, layout=layout)
pio.show(fig_dict, validate=False)
Does anyone know how to get bins by week (as well as hypothetical bins by hour) to work? Thanks!

I figured out how to do what I was trying to do. The answer was buried in the Plot.ly docs found here: https://plot.ly/python/reference/
Specifically under xbins.size, they refer to following the same scheme in axis.dtick. Here is the axis.dtick documentation that had the answer:
dtick
Parent: data[type=histogram].marker.colorbar
Type: number or categorical coordinate string
Sets the step in-between ticks on this axis. Use with tick0. Must be a positive number, or special strings available to "log" and "date" axes. If the axis type is "log", then ticks are set every 10^(n"dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L", where f is a positive number, gives ticks linearly spaced in value (but not position). For example tick0 = 0.1, dtick = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). tick0 is ignored for "D1" and "D2". If the axis type is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set dtick to 86400000.0. "date" also has special values "M" gives ticks spaced by a number of months. n must be a positive integer. To set ticks on the 15th of every third month, set tick0 to "2000-01-15" and dtick to "M3". To set ticks every 4 years, set dtick to "M48"
As a result, the new snippet of code for the bin sizing is:
buttons = [
dict(
args = ['xbins.size', ' 3600000.0'],
label = 'Hour',
method = 'restyle',
), dict(
args = ['xbins.size', '86400000.0'],
label = 'Day',
method = 'restyle',
), dict(
args = ['xbins.size', ' 604800000.0'],
label = 'Week',
method = 'restyle',
), dict(
args = ['xbins.size', 'M1'],
label = 'Month',
method = 'restyle',
)]
But with this in mind, I would have suspected that using "D1" wouldn't have worked either. If anyone who works at Plot.ly sees this, could you make a note to update the example to point out this specific nuance?

Related

Plotly go.Bar : Add custom legend labels based on values

I have a dataframe with positive and negative values in one column. I am using plotly barplot, and I'd like customize legend labels based on the value.
Here's a mock pandas DataFrame:
df = pd.DataFrame({'Date': [07-2020, 08-2020, 09-2020, 10-2020],
'Value': [3, -2, 4, -1] })
df["Color"] = np.where(df["Value"]<0, 'rgb(0,0,255)', 'rgb(255,0,0)')
df["Name"] = np.where(df["Value"]<0, 'Low', 'High')
fig = go.Figure(
data=[
go.Bar(
x=df["Date"],
y=df["Value"],
color=df['Name'],
marker_color=df['Color']
),
],
layout=go.Layout(
xaxis=dict(
tickangle=60,
tickfont=dict(family="Rockwell", color="crimson", size=14)
),
yaxis=dict(
title="Net Change",
showticklabels=True
),
barmode="stack",
)
)
How do I add legend labels Low when value is negative and High when positive?
I wasn't sure if your legend label was a legend or an annotation label, so I added support for both. To annotate a bar chart, you can specify it in the text The display position will automatically determine the location. To add high and low to the legend, I created a high data frame and a low data frame and gave each a name. As a layout, we specify the tick positions and display names in order to arrange them in data frame order.
import pandas as pd
import plotly.graph_objects as go
import numpy as np
df = pd.DataFrame({'Date': ['07-2020', '08-2020', '09-2020', '10-2020'], 'Value': [3, -2, 4, -1] })
df["Color"] = np.where(df["Value"]<0, 'rgb(0,0,255)', 'rgb(255,0,0)')
df["Name"] = np.where(df["Value"]<0, 'Low', 'High')
df_high = df[df['Name'] == 'High']
df_Low = df[df['Name'] == 'Low']
fig = go.Figure(data=[
go.Bar(
x=[0,2],
y=df_high["Value"],
text=df_high["Name"],
textposition='auto',
name='High',
marker_color=df_high['Color']
),],)
fig.add_trace(
go.Bar(
x=[1,3],
y=df_Low["Value"],
text=df_Low["Name"],
textposition='auto',
name='Low',
marker_color=df_Low['Color'])
)
fig.update_layout(
xaxis=dict(
tickangle=60,
tickfont=dict(family="Rockwell", color="crimson", size=14),
tickvals=[0,1,2,3],
ticktext=df['Date']
),
yaxis=dict(
title="Net Change",
showticklabels=True
),
barmode="stack",
)
fig.show()

Deal with overlapping in multiple x-axes in plotly python

I am trying to create a plot using plotly with multiple axes. And for this, I am using the following code:
#Plotly libraries and options for graphic logic
from plotly.io import to_html
import plotly.io as pio
pio.renderers.default='browser'
import plotly.graph_objects as go
#Generic libraries
import pandas as pd
import numpy as np
from datetime import datetime
input_df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
threshold =2.8
name_yaxis="Gap"
input_df["AAPL.High"] = (input_df["AAPL.High"]-min(input_df["AAPL.High"]))*(threshold)/(max(input_df["AAPL.High"])-min(input_df["AAPL.High"]))+np.random.uniform(0.3,0.4,1)
ID_TAIL = "ID_1"
fig = go.Figure()
fig.add_trace(go.Scatter(x=input_df['Date'], y=input_df['AAPL.High'],
mode='lines+markers',
marker_size=12,
line = dict(color="#C4C4C4"),
marker=dict(color=( (0 < input_df['AAPL.High']) & (input_df['AAPL.High'] < threshold)).astype('int'),
colorscale=[[0, '#A51890'], [1, '#3BBFFE']]
),
showlegend=False,
xaxis="x1",
name = ""
)
)
my_x = [ID_TAIL + "_" +format(i, '04d') + "_0" for i in range(1,input_df.shape[0])]
fig.add_trace(go.Scatter(x=my_x, y=input_df['AAPL.High'],
mode='lines+markers',
marker_size=12,
line = dict(color="#C4C4C4"),
marker=dict(color=( (0 < input_df['AAPL.High']) & (input_df['AAPL.High'] < threshold)).astype('int'),
colorscale=[[0, '#A51890'], [1, '#3BBFFE']]
),
showlegend=False,
xaxis="x2",
name = ""
)
)
#== Add title boxes ==#
# Add title legend for box status
fig.add_annotation( text="<b>Health status<b>", xref="paper", yref="paper",
x=1.02, xanchor="left",
y=0.9, yanchor="bottom", # Same y as legend below
showarrow=False,
font = dict(family = "Roboto", size = 10))
#== End ==#
My problem is that as you can see in the following image, the ticks are overlapping:
So, my question is, how to create space between them?
Thanks in advance.
Here's a quick fix. Pop this line at the bottom of your code, and it will move xaxis2 to the top of the graph:
fig.update_layout({'xaxis2': {'side': 'top', 'tickangle': 45, 'nticks': 50}})
Output:
Shifting the secondary xaxis to the top will look like this.
Another Option:
Another approach would be to concatenate the axis titles into a single string, and display the concatenated string on the x-axis. This SO answer demonstrates this logic.
You can reduce the number of ticks by adding the following line
fig.update_layout(xaxis={'nticks': 8, 'tickangle': 90}, xaxis2={'nticks': 8, 'tickangle': 90})
Depending on the size of the plot, ticks may still overlap. In that case, you can either further reduce the tick number or hardcode the tick positions:
tickvalsX = ['2015-07', '2016-01', '2016-07', '2017-01']
tickvalsY = ['ID_1_0001_0', 'ID_1_00100_0', 'ID_1_0200_0', 'ID_1_0300_0', 'ID_1_0400_0', 'ID_1_0500_0']
fig.update_layout(xaxis={'tickmode': 'array', 'tickangle': 90, 'tickvals': tickvalsX}, xaxis2={'tickmode': 'array', 'tickangle': 90, 'tickvals': tickvalsY})
Further style elements of the axis you can find in the Plotly reference.

How to change axis titles when using sliders in plotly

I'm plotting scatter3d projections of the 4d iris data set using plotly. To display all 4 possible projections in the same figure I am using sliders. However when "sliding" from one projection to the next the axis titles do not change. Normally I would use fig.update_layout() but that isn't working. How can I get these to change with the slider?
Projection 1
Projection 2
Here's the code for reference:
import numpy as np
import plotly.graph_objects as go
from matplotlib import cm
from itertools import combinations
def nd2scatter3d(X, labels = None, features = None, plot_axes = None, hovertext = None):
"""
Parameters
----------
X : array-like, shape = (n_samples, n_features).
labels : 1d int array, shape = (n_samples), optional, default None.
Target or clustering labels for each sample.
Defaults to np.ones(n_samples).
features : list, len = n_features, optional, default None.
List of feature names.
Defaults to numeric labeling.
plot_axes : list of 3-tuples, optional, default None.
List of axes to include in 3d projections. i.e. [(0,1,2), (0,1,3)] displays
projections along the 4th axis and 3rd axis in that order.
Defaults to all possible axes combinations.
hovertext : list, len = n_samples, optional, default None.
List of text to display on mouse hover.
Defaults to no text on hover.
"""
if labels is None:
labels = np.ones(X.shape[0]).astype(int)
if features is None:
features = np.arange(X.shape[1]).astype(str)
if plot_axes is None:
plot_axes = list(combinations(np.arange(X.shape[1]), 3))
if hovertext is None:
hoverinfo = 'none'
else:
hoverinfo = 'text'
fig = go.Figure()
for i in range(len(plot_axes)):
fig.add_trace(
go.Scatter3d(
visible=False,
x=X[:, plot_axes[i][0]],
y=X[:, plot_axes[i][1]],
z=X[:, plot_axes[i][2]],
mode='markers',
marker=dict(
size=3,
color = [list(cm.tab10.colors[c]) for c in labels],
opacity=1
),
hovertemplate=None,
hoverinfo= hoverinfo,
hovertext = hovertext,
),)
fig.data[0].visible = True
steps = []
for i in range(len(fig.data)):
step = dict(
method="update",
args=[{"visible": [False] * len(fig.data)},
{"title": features[plot_axes[i][0]] + ' vs. ' + features[plot_axes[i][1]] + ' vs. ' + features[plot_axes[i][2]]}, # layout attribute
],
label = str(plot_axes[i]),
)
step["args"][0]["visible"][i] = True # Toggle i'th trace to "visible"
steps.append(step)
sliders = [dict(
active=10,
currentvalue={"prefix": "Projection: "},
pad={"t": 10},
steps=steps,
)]
fig.update_layout(
sliders=sliders
)
fig.update_layout(width=900, height = 500, margin=dict(r=45, l=45, b=10, t=50),
showlegend=False)
fig.update_layout(scene_aspectmode='cube',
scene2_aspectmode='cube',
scene3_aspectmode='cube',
scene4_aspectmode='cube',
scene = dict(
xaxis_title = features[plot_axes[0][0]],
yaxis_title = features[plot_axes[0][1]],
zaxis_title = features[plot_axes[0][2]],),
scene2 = dict(
xaxis_title = features[plot_axes[1][0]],
yaxis_title = features[plot_axes[1][1]],
zaxis_title = features[plot_axes[1][2]],),
scene3 = dict(
xaxis_title = features[plot_axes[2][0]],
yaxis_title = features[plot_axes[2][1]],
zaxis_title = features[plot_axes[2][2]],),
scene4 = dict(
xaxis_title = features[plot_axes[3][0]],
yaxis_title = features[plot_axes[3][1]],
zaxis_title = features[plot_axes[3][2]],)
)
fig.show()
Solution thanks to jayveesea, as well as some minor changes:
def nd2scatter3d(X, labels = None, features = None, plot_axes = None, hovertext = None, size = 3):
"""
Parameters
----------
X : array-like, shape = (n_samples, n_features).
labels : 1d int array, shape = (n_samples), optional, default None.
Target or clustering labels for each sample.
Defaults to np.ones(n_samples).
features : list, len = n_features, optional, default None.
List of feature names.
Defaults to numeric labeling.
plot_axes : list of 3-tuples, optional, default None.
List of axes to include in 3d projections. i.e. [(0,1,2), (0,1,3)] displays
projections along the 4th axis and 3rd axis in that order.
Defaults to all possible axes combinations.
hovertext : list, len = n_samples, optional, default None.
List of text to display on mouse hover.
Defaults to no text on hover.
size : int, default 3.
Sets marker size.
"""
if labels is None:
# Label all datapoints zero.
labels = np.zeros(X.shape[0]).astype(int)
if features is None:
# numerical features if no names are passed.
features = np.arange(X.shape[1]).astype(str)
if plot_axes is None:
# plot all possible axes if none are passed.
plot_axes = list(combinations(np.arange(X.shape[1]), 3))
if hovertext is None:
hoverinfo = 'none'
else:
hoverinfo = 'text'
# Determine colormap from number of labels.
if len(np.unique(labels)) <= 10:
color = [list(cm.tab10.colors[c]) if c >= 0 else [0,0,0,1] for c in labels]
elif len(np.unique(labels)) <= 20:
color = [list(cm.tab20.colors[c]) if c >= 0 else [0,0,0,1] for c in labels]
else:
norm_labels = labels/max(labels)
color = [cm.viridis(c) if c >= 0 else [0,0,0,1] for c in norm_labels]
# Genterate 3d scatter plot slider.
fig = go.Figure()
for i in range(len(plot_axes)):
fig.add_trace(
# Scatter plot params.
go.Scatter3d(
visible=False,
x=X[:, plot_axes[i][0]],
y=X[:, plot_axes[i][1]],
z=X[:, plot_axes[i][2]],
mode='markers',
marker=dict(
size=size,
color = color,
opacity=1
),
hovertemplate=None,
hoverinfo= hoverinfo,
hovertext = hovertext,
),)
fig.data[0].visible = True
steps = []
# Slider update params.
for i in range(len(fig.data)):
step = dict(
method="update",
args=[{"visible": [False] * len(fig.data)},
{"title": features[plot_axes[i][0]] + ' vs. '
+ features[plot_axes[i][1]] + ' vs. ' + features[plot_axes[i][2]],
"scene.xaxis.title": features[plot_axes[i][0]],
"scene.yaxis.title": features[plot_axes[i][1]],
"scene.zaxis.title": features[plot_axes[i][2]],
},
],
label = str(plot_axes[i]),
)
step["args"][0]["visible"][i] = True # Toggle i'th trace to "visible".
steps.append(step)
sliders = [dict(
active=10,
currentvalue={"prefix": "Projection: (x, y, z) = "},
pad={"t": 10},
steps=steps,
)]
fig.update_layout(sliders=sliders)
fig.update_layout(width=900, height = 500, margin=dict(r=45, l=45, b=10, t=50))
fig.update_layout(scene_aspectmode='cube')
fig.show()
To update the axis titles you need to include the axis names with your slider entry. It may help to reference plotly's js document on update.
So instead of this chunk:
for i in range(len(fig.data)):
step = dict(
method="update",
args=[{"visible": [False] * len(fig.data)},
{"title": features[plot_axes[i][0]] + ' vs. '
+ features[plot_axes[i][1]] + ' vs. ' + features[plot_axes[i][2]]},
],
label = str(plot_axes[i]),
)
Use something like:
for i in range(len(fig.data)):
step = dict(
method="update",
args=[{"visible": [False] * len(fig.data)},
{"title": features[plot_axes[i][0]] + ' vs. '
+ features[plot_axes[i][1]] + ' vs. ' + features[plot_axes[i][2]],
"scene.xaxis.title": features[plot_axes[i][0]],
"scene.yaxis.title": features[plot_axes[i][1]],
"scene.zaxis.title": features[plot_axes[i][2]],
},
],
label = str(plot_axes[i]),
)
This creates an entry that will update the data and title and the axes titles when the slider changes.

Side-by-side boxplots with Pandas

I need to plot comparison of five variable, stored in pandas dataframe. I used an example from here, it worked, but now I need to change the axes and titles, but I'm struggling to do so.
Here is my data:
df1.groupby('cls').head()
Out[171]:
sensitivity specificity accuracy ppv auc cls
0 0.772091 0.824487 0.802966 0.799290 0.863700 sig
1 0.748931 0.817238 0.776366 0.785910 0.859041 sig
2 0.774016 0.805909 0.801975 0.789840 0.853132 sig
3 0.826670 0.730071 0.795715 0.784150 0.850024 sig
4 0.781112 0.803839 0.824709 0.791530 0.863411 sig
0 0.619048 0.748290 0.694969 0.686138 0.713899 baseline
1 0.642348 0.702076 0.646216 0.674683 0.712632 baseline
2 0.567344 0.765410 0.710650 0.665614 0.682502 baseline
3 0.644046 0.733645 0.754621 0.683485 0.734299 baseline
4 0.710077 0.653871 0.707933 0.684313 0.732997 baseline
Here is my code:
>> fig, axes = plt.subplots(ncols=5, figsize=(12, 5), sharey=True)
>> df1.query("cls in ['sig', 'baseline']").boxplot(by='cls', return_type='axes', ax=axes)
And the resulting pictures are:
How to:
change the title ('Boxplot groupped by cls')
get rid of annoying [cls] plotted along the horizontal line
reorder the plotted categories as they appear in df1? (first sensitivity, followed by speci...)
I suggest using seaborn
Here is an example that might help you:
Imports
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
Make data
data = {'sensitivity' : np.random.normal(loc = 0, size = 10),
'specificity' : np.random.normal(loc = 0, size = 10),
'accuracy' : np.random.normal(loc = 0, size = 10),
'ppv' : np.random.normal(loc = 0, size = 10),
'auc' : np.random.normal(loc = 0, size = 10),
'cls' : ['sig', 'sig', 'sig', 'sig', 'sig', 'baseline', 'baseline', 'baseline', 'baseline', 'baseline']}
df = pd.DataFrame(data)
df
Seaborn has a nifty tool called factorplot that creates a grid of subplots where the rows/cols are built with your data. To be able to do this, we need to "melt" the df into a more usable shape.
df_melt = df.melt(id_vars = 'cls',
value_vars = ['accuracy',
'auc',
'ppv',
'sensitivity',
'specificity'],
var_name = 'columns')
Now we can create the factorplot using the col "columns".
a = sns.factorplot(data = df_melt,
x = 'cls',
y = 'value',
kind = 'box', # type of plot
col = 'columns',
col_order = ['sensitivity', # custom order of boxplots
'specificity',
'accuracy',
'ppv',
'auc']).set_titles('{col_name}') # remove 'column = ' part of title
plt.show()
You can also just use Seaborn's boxplot.
b = sns.boxplot(data = df_melt,
hue = 'cls', # different colors for different 'cls'
x = 'columns',
y = 'value',
order = ['sensitivity', # custom order of boxplots
'specificity',
'accuracy',
'ppv',
'auc'])
sns.plt.title('Boxplot grouped by cls') # You can change the title here
plt.show()
This will give you the same plot but all in one figure instead of subplots. It also allows you to change the title of the figure with one line. Unfortunately I can't find a way to remove the 'columns' subtitle but hopefully this will get you what you need.
EDIT
To view the plots sideways:
Factorplot
Swap your x and y values, change col = 'columns' to row = 'columns', change col_order = [...] to row_order = [...], and change '{col_name}' to '{row_name}' like so
a1 = sns.factorplot(data = df_melt,
x = 'value',
y = 'cls',
kind = 'box', # type of plot
row = 'columns',
row_order = ['sensitivity', # custom order of boxplots
'specificity',
'accuracy',
'ppv',
'auc']).set_titles('{row_name}') # remove 'column = ' part of title
plt.show()
Boxplot
Swap your x and y values then add the parameter orient = 'h' like so
b1 = sns.boxplot(data = df_melt,
hue = 'cls',
x = 'value',
y = 'columns',
order = ['sensitivity', # custom order of boxplots
'specificity',
'accuracy',
'ppv',
'auc'],
orient = 'h')
sns.plt.title('Boxplot grouped by cls')
plt.show()
Maybe this helps you:
fig, axes = pyplot.subplots(ncols=4, figsize=(12, 5), sharey=True)
df.query("E in [1, 2]").boxplot(by='E', return_type='axes', ax=axes, column=list('bcda')) # Keeping original columns order
pyplot.suptitle('Boxplot') # Changing title
[ax.set_xlabel('') for ax in axes] # Changing xticks for all plots

Subplots with two y axes (each) - plotly and python/pandas

Are there guidelines on how to set up secondary Y-axes in python for plotly?
I am assinging axis style through an iterative loop, as follows:
all_plots = ['plot1','plot2'...'plot20']
fig = tools.make_subplots(rows=nrow, cols=ncol, shared_xaxes=False, shared_yaxes=False, subplot_titles=all_plots)
for i in all_plots:
fig['layout']['yaxis'+str(j)].update()
How does the assignment of y axes work?
If my subplot included, say, 4 rows and 5 columns for a total of 20 subplots, do I have to assume that plotly needs to receive odd and even numbers, meaning:
yaxis1 and yaxis2 for plot1
....
yaxis39 and yaxis40 for plot20
It is possible, to do this, but its not particularly intuitive. Take this example where I create a plot 2x2 subplots, and add a secondary y axis to the plot in position 2,2.
When you create a subplots, they are assigned y axes: "y1","y2","y3","y4" on the left side of each subplot. To a secondary y axes, you need to use fig['layout'].updateto create new axes "y5", "y6", "y7", "y8" which correspond to "y1","y2","y3","y4". So the bottom right subplot would have axes y4(right) and y8(left). In the example below, I only create a secondary y axis for the last plot, but expanding it to more/all the subplots is pretty straightforward.
It is important to note, that creating the secondary axes, and assigning it in trace5 doesn't automatically place it on the proper axes. You still have to manually assign it with fig['data'][4].update(yaxis='y'+str(8)) to plot it relative to the left axis.
fig = tools.make_subplots(rows=2, cols=2,subplot_titles=('Air Temperature', 'Photon Flux Density',
'Ground Temps','Water Table & Precip'))
fig['layout']['xaxis1'].update( range=[174, 256])
fig['layout']['xaxis3'].update(title='Day of Year', range=[174, 256])
fig['layout']['yaxis1'].update(title='Degrees C',range=[-5,30])
fig['layout']['yaxis2'].update(title='mmol m<sup>-2</sup> m<sup>-d</sup>', range=[0, 35])
fig['layout']['yaxis3'].update(title='Ground Temps', range=[0, 11])
fig['layout']['yaxis4'].update(title='depth cm', range=[-20, 0])
fig['layout']['yaxis8'].update(title='rainfall cm', range=[0, 1.6])
fig['layout'].update(showlegend=False, title='Climate Conditions')
# In this example, I am only doing it for the last subplot, but if you wanted to do if for all,
# Just change to range(1,5)
for k in range(4,5):
fig['layout'].update({'yaxis{}'.format(k+4): dict(anchor='x'+str(k),
overlaying='y'+str(k),
side='right',
)
})
trace1 = go.Scatter(
y=Daily['AirTC_Avg'],
x=Daily.index,
marker = dict(
size = 10,
color = 'rgba(160, 0, 0, .8)',),
error_y=dict(
type='data',
array=Daily_Max['AirTC_Avg']-Daily_Min['AirTC_Avg'],
visible=True,
color = 'rgba(100, 0, 0, .5)',
),
name = 'Air Temp'
)
trace2 = go.Bar(
y=Daily['PPFD']/1000,
x=Daily.index,
name='Photon Flux',
marker=dict(
color='rgb(180, 180, 0)'
),
yaxis='y2',
)
trace3 = go.Scatter(
y=Daily['Temp_2_5_1'],
x=Daily.index,
name='Soil Temp',
marker=dict(
color='rgb(180, 0, 0)'
),
yaxis='y3',
)
trace4 = go.Scatter(
y=Daily['Table_1']*100,
x=Daily.index,
name='Water Table',
marker=dict(
color='rgb(0, 0, 180)'
),
yaxis='y4',
)
trace5 = go.Bar(
y=Daily['Rain']/10,
x=Daily.index,
name='Rain',
marker=dict(
color='rgb(0, 100, 180)'
),
yaxis='y8',
)
fig.append_trace(trace1, 1, 1)
fig.append_trace(trace2, 1, 2)
fig.append_trace(trace3, 2, 1)
fig.append_trace(trace4, 2, 2)
fig.append_trace(trace5, 2, 2)
## This part is important!!! you have to manually assing the data to the axis even
# though you do it when defining trace 5
fig['data'][4].update(yaxis='y'+str(8))
plot(fig, filename='FI_Climate')
Not an exact answer but I thought it might help...
I like to use pandas and cufflinks. Here is an example of how to plot two sets of data from one dataframe (df) on a graph using a secondary y axis. The data from each axis is displayed in different formats in this example (scatter and bar). The data is arranged into columns beforehand.
import pandas as pd
import cufflinks as cf
from plotly.offline import download_plotlyjs, init_notebook_mode,plot,iplot
fig1 = df.iplot(kind='scatter', mode='lines+markers', x=['col1', 'col2'],
y=['col3', 'col4',],
asFigure=True)
fig2 = df.iplot(kind='bar', x=['col1', 'col2'],
y=['col3', 'col4', ],
secondary_y=['col5','col6'],asFigure=True)
fig2['data'].extend(fig1['data'])
The naming convention is y, y2, y3... y40, and you make the reference to the axis in the trace dict.
So your traces should be like...
trace0 = dict(
x = xvals,
y = yvals,
yaxis = 'y'
)
trace1 = dict(
x = x2vals,
y = y2vals,
yaxis = 'y2'
)
....
trace40 = dict(
x = x40vals,
y = y40vals,
yaxis = 'y40'
)

Categories

Resources