I am trying to build a heatmap with annotations and a title. This title and the annotations should update when the slider is moved. I get this to work, but only for one of the two arguments at the same time. The argument that is at index [1] is being updated, but the other one isn't
Below is a snippet of my code and the error happens in the step for loop:
from plotly.offline import init_notebook_mode, iplot
import plotly.graph_objs as go
import numpy as np
# initialize notebook for offline plotting
init_notebook_mode()
# Set initial slider/title index
start_index = 0
# Build all traces with visible=False
timestep = 5
#df2 = np.random.rand(18,365)*70
data = [go.Heatmap(
visible = False,
x = ['P', 'C', 'S'],
y = [11,10,9,8,7,6],
z = df.iloc[:18,[step]].to_numpy().reshape(6,3),
# z = df2[:,step].reshape(6,3),
zmin = 0,
zmax = 70)
for step in np.arange(0, len(df2.transpose())-1, timestep)
]
# Make initial trace visible
data[start_index]['visible'] = True
# Build slider steps
steps = []
for i in range(len(data)):
step = dict(
# Update method allows us to update both trace and layout properties
method = 'update',
args = [
# Make the ith trace visible
{'visible': [t == i for t in range(len(data))]},
{'annotations' : [dict(
x = x,
y = y,
text = str(round(df.iloc[:18,[i]].to_numpy().reshape(6,3)[-y+11,x],1)),
# text = str(df2[:,i].reshape(6,3)[-y+11,x]),
showarrow = False)
for x in range(3) for y in range(6,12)]},
{'title.text': str(df.columns[i*timestep])},]
)
steps.append(step)
# Build sliders
sliders = [go.layout.Slider(
active = start_index,
currentvalue = {"prefix": "Timestep: "},
pad = {"t": 72},
steps = steps
)]
layout = go.Layout(
sliders=sliders,
title={'text': str(df.columns[start_index])},
yaxis = dict(
tickmode = 'array',
tickvals = [11,10,9,8,7,6],
ticktext = ['06','07','08','09','10','11']
),
annotations = steps[start_index]['args'][1]['annotations']
)
fig = go.Figure(
data=data,
layout=layout)
iplot(fig)
I found the problem. Apparently you need to specify 'annotations' and 'title.text in the same dictionary, instead of seperate ones. The code should thus be changed to:
{'annotations' : [dict(
x = x,
y = y,
text = str(round(df.iloc[:18,[i]].to_numpy().reshape(6,3)[-y+11,x],1)),
# text = str(df2[:,i].reshape(6,3)[-y+11,x]),
showarrow = False)
for x in range(3) for y in range(6,12)],
'title.text': str(df.columns[i*timestep])}
Related
I am working on a plotter for Finite Element Method solutions. I decided to use the Plotly library because of the carpet plots. I have my data to plot and this is my result:
Flow over NACA0012
Each element is represented as a Carpet, and for each carpet the solution is shown as a Countourcarpet. Everything is in place, but the rendering is too slow and the interactive interface is therefore nearly useless. Is there a way to enhance the performance of the rendering? I have read about different renderers in Plotly, but the plot just does not open. Is there a a way to speed up the rendering? Surely I will have to manage larger dataset. In this example I am using 740 carpets.
These are the Contourcarpet settings:
fig.add_trace(go.Contourcarpet(
a = a,
b = b,
z = u, # Sution correspondent at (a,b) parametric location
showlegend = showLegendFlag,
name = "Density",
legendgroup = "Density",
autocolorscale = False,
colorscale = "Inferno",
autocontour = False,
carpet = str(e), # The carpet on which to plot the solution is
# referenced as a string number
contours = dict(
start = start1, # Min value
end = end1, # Max value
size = abs(end1-start1) / countour_number, # Plot colour discretization
showlines = False
),
line = dict(
smoothing = 0
),
colorbar = dict(
len = 0.4,
y = 0.25
)
))
And these are the layout settings:
fig.update_layout(
plot_bgcolor="#FFF",
yaxis = dict(
zeroline = False,
range = [-1.800,1.800],
showgrid = False
),
dragmode = "pan",
height = 700,
xaxis = dict(
zeroline = False,
scaleratio = 1,
scaleanchor = 'y',
range = [-3.800,3.800],
showgrid = False
),
title = "Flow over NACA 0012",
hovermode = "closest",
margin = dict(
r = 80,
b = 40,
l = 40,
t = 80
),
width = 900
)
fig.show()
I'm prototyping some code to then bring in some more complex time series data (and a lot of it) but can't for the life of me figure out how to get the vector components to animate in the below code. The blue path looks good to start with then disappears on play. And secondly, only the x component displays on play. I've been working mostly off the tutorials on the main plotly site so far, but, as the project builds complexity, my lack of expertise in plotly has let me down. I'm developing in an online Jupyter notebook if someone has any suggestions on how to make my code better. Thanks.
N = 50
vec_x, vec_y, vec_z = [0,0,0]
list_of_lists = []
choice = [-0.2, 0.2]
for i in range(N):
vec_x = vec_x + np.random.choice(choice)
vec_y = vec_y + np.random.choice(choice)
vec_z = vec_z + np.random.choice(choice)
list_of_lists.append([vec_x, vec_y, vec_z])
points = np.array(list_of_lists)
source = points.T
def frameMaker(i):
"""
returns x,y,z dict of currently indexed frame by vector component key
"""
scale = 10
list_of_lists = dict({
"x": [[source[0][i],scale * source[0][i+1]], [source[1][i],source[1][i]], [source[2][i],source[2][i]]],
"y": [[source[0][i],source[0][i]], [source[1][i],scale * source[1][i+1]], [source[2][i], source[2][i]]],
"z": [[source[0][i],source[0][i]], [source[1][i],source[1][i]], [source[2][i], scale * source[2][i+1]]]
})
return list_of_lists
#graphics
plt = go.Figure(
data=[go.Scatter3d(
x=source[0],
y=source[1],
z=source[2],
mode="lines",
line=dict(
color="darkblue",
width=2)),
go.Scatter3d(
x=source[0],
y=source[1],
z=source[2],
mode="lines",
line=dict(
color="darkblue",
width=2))
],
layout =
go.Layout(
title = go.layout.Title(text="Title | Total Frames: "+ str(N)),
scene_aspectmode="cube",
scene = dict(
xaxis = dict(range=[-2,2], nticks=10, autorange=False),
yaxis = dict(range=[-2,2], nticks=10, autorange=False),
zaxis = dict(range=[-2,2], nticks=10, autorange=False)),
updatemenus=[dict(type="buttons",
buttons=[dict(label="Play",
method="animate",
args=[None])])]
),
frames=[go.Frame(
data=[go.Scatter3d(
x = [source[0][k]],
y = [source[1][k]],
z = [source[2][k]],
mode="markers",
marker=dict(color="red",size=10,opacity=0.5)),
go.Scatter3d(
x=frameMaker(k)["x"][0],
y=frameMaker(k)["x"][1],
z=frameMaker(k)["x"][2],
line=dict(color='darkblue',width=2)),
go.Scatter3d(
x=frameMaker(k)["y"][0],
y=frameMaker(k)["y"][1],
z=frameMaker(k)["y"][2],
line=dict(color='#bcbd22',width=2)),
go.Scatter3d(
x=frameMaker(k)["z"][0],
y=frameMaker(k)["z"][1],
z=frameMaker(k)["z"][2],
line=dict(color='#d62728',width=2))],
layout=go.Layout(
title = go.layout.Title(text=str([k+1,list(map(lambda x: round(x,3), source.T[k]))]))
)
) for k in range(N-1)
]
)
plt.show()
import pandas as pd
import numpy as np
from bokeh.io import show, output_notebook, push_notebook
from bokeh.plotting import figure
from bokeh.models import CategoricalColorMapper, HoverTool, ColumnDataSource, Panel
from bokeh.models.widgets import CheckboxGroup, Slider, RangeSlider, Tabs
from bokeh.layouts import column, row, WidgetBox
from bokeh.palettes import Category20_16
from bokeh.application.handlers import FunctionHandler
from bokeh.application import Application
output_notebook()
def histogram_tab(webs):
def make_dataset(params_list, range_start = 0.0, range_end = 1, bin_width = 0.005):
#check to make sure the start is less than the end
assert range_start < range_end, "Start must be less than end!"
#by_params = pd.DataFrame(columns=[ ,'Max', 'Avarage', 'Min','color'])
by_params = pd.DataFrame(columns=[ 'left','right', 'proportion', 'p_proportion','p_interval', 'name', 'w_name','color'])
#
range_extent = range_end - range_start
values = ['Min', "Avarage", 'Max']
# Iterate through all the parameters
for i, para_name in enumerate(params_list):
#print para_name
# Subset to the parameter
subset = webs[para_name]
# note: subset have to be a list of values
# [webs.columns[i%6]]
# Create a histogram with specified bins and range
arr_hist, edges = np.histogram(subset,
bins = int(range_extent / bin_width),
range = [range_start, range_end])
# Divide the counts by the total to get a proportion and create df
arr_df= pd.DataFrame({'proportion': arr_hist ,
'left': edges[:-1], 'right': edges[1:]}) #/ np.sum(arr_hist)
# Format the proportion
arr_df['p_proportion'] = ['%0.00005f' % proportion for proportion in arr_df['proportion']]
# Format the interval
arr_df['p_interval'] = ['%d to %d scale' % (left, right) for left,
right in zip(arr_df['left'], arr_df['right'])]
# Assign the parameter for labels
arr_df['name'] = para_name
arr_df['w_name'] = webs['Site name']
# Color each parametr differently
arr_df['color'] = Category20_16[i]
# Add to the overall dataframe
by_params = by_params.append(arr_df)
# Overall dataframe
by_params = by_params.sort_values(['name','left'])
return ColumnDataSource(by_params)
def style(p):
# Title
p.title.align = 'center'
p.title.text_font_size ='20pt'
p.title.text_font = 'serif'
# Axis titles
p.xaxis.axis_label_text_font_size = '14pt'
p.xaxis.axis_label_text_font_style = 'bold'
p.yaxis.axis_label_text_font_size = '14pt'
p.yaxis.axis_label_text_font_style = 'bold'
# Tick labels
p.xaxis.major_label_text_font_size = '12pt'
p.yaxis.major_label_text_font_size = '12pt'
return p
def make_plot(src):
# Blank plot with correct labels
p = figure(plot_width = 700, plot_height = 700,
title = "Histogram of Parametes for the websites",
x_axis_label = 'parameters', y_axis_label = "values")
# Quad glyphs to create a histogram
p.quad(source=src, bottom =0,left = 'left', right = 'right', color ='color', top= 'proportion',fill_alpha = 0.7, hover_fill_color = 'color', legend = 'name',
hover_fill_alpha = 1.0, line_color = 'white') #top='proportion',
# Hover tool with vline mode
hover = HoverTool(tooltips=[('Parameter','#name'),
('Website','#w_name'),
('Proportion','p_proportion')
],
mode='vline')
p.add_tools(hover)
# Stypling
p = style(p)
return p
# Update function takes three default parameters
def update(attr, old, new):
# Get the list of parameter for the graph
parameter_to_plot = [para_selection.labels[i] for i in para_selection.active]
# Make a new dataset based on the selected parameter and the
# make_dataset function defined earlier
new_src = make_dataset(parameter_to_plot, range_start = 0, range_end = 1, bin_width = 0.005) # note range are not specified
# Convert dataframe to column data source
new_src = ColumnDataSource(new_src)
# Update the source used the quad glpyhs
src.data.update(new_src.data)
list_of_params = list(webs.columns[1:].unique())
list_of_params.sort()
para_selection = CheckboxGroup(labels=list_of_params, active = [0,1])
para_selection.on_change('active',update)
binwidth_select = Slider(start =0, end = 1,
step = 0.00025, value = 0.0005,
title = 'Change in parameter')
binwidth_select.on_change('value', update)
range_select = RangeSlider(start=0, end=1, value =(0,1),
step=0.00025, title = 'Change in range')
range_select.on_change('value', update)
initial_params = [para_selection.labels[i] for i in para_selection.active]
src = make_dataset(initial_params,
range_start = range_select.value[0],
range_end = range_select.value[1],
bin_width = binwidth_select.value)
p = make_plot(src)
#show(p)
# Put controls in a single element
controls = WidgetBox(para_selection, binwidth_select, range_select)
# Create a row layout
layout = row(controls, p)
# Make a tab with the layout
tab = Panel(child = layout, title = 'Histogram')
#return tab
tabs = Tabs(tabs=[tab])
webs.add_root(tabs)
# Set up an application
handler = FunctionHandler(histogram_tab(webs))
app = Application(handler)
add_root is a method on Document, you are trying to call it on a DataFrame called webs, apparently, which is why you get that message. The structure of a Bokeh app in a notebook should look like this:
# create a function to define the app, must accept "doc" as the parameter
def myfunc(doc):
# make Bokeh objects
# add stuff to doc
doc.add_root(stuff)
# pass the function, but *don't* execute it
handler = FunctionHandler(myfunc)
app = Application(handler)
Note that the last two lines are not necessary in recent version of Bokeh, you can just call:
show(myfunc)
directly. There is a full example in the repo:
https://github.com/bokeh/bokeh/blob/master/examples/howto/server_embed/notebook_embed.ipynb
Your code should be structured very similarly to that.
I'm using Plotly's Python interface to generate a network. I've managed to create a network with my desired nodes and edges, and to control the size of the nodes.
I am desperately looking for help on how to do the following:
add node labels
add edge labels according to a list of weights
control the edge line width according to a list of weights
All this without using the "hovering" option, as it has to go in a non-interactive paper. I'd greatly appreciate any help! Plotly's output |
In case this fails, the figure itself |
matrix.csv
This is my code (most is copy-pasted from the Plotly tutorial for Networkx):
import pandas as pd
import plotly.plotly as py
from plotly.graph_objs import *
import networkx as nx
matrix = pd.read_csv("matrix.csv", sep = "\t", index_col = 0, header = 0)
G = nx.DiGraph()
# add nodes:
G.add_nodes_from(matrix.columns)
# add edges:
edge_lst = [(i,j, matrix.loc[i,j])
for i in matrix.index
for j in matrix.columns
if matrix.loc[i,j] != 0]
G.add_weighted_edges_from(edge_lst)
# create node trace:
node_trace = Scatter(x = [], y = [], text = [], mode = 'markers',
marker = Marker(
showscale = True,
colorscale = 'YIGnBu',
reversescale = True,
color = [],
size = [],
colorbar = dict(
thickness = 15,
title = 'Node Connections',
xanchor = 'left',
titleside = 'right'),
line = dict(width = 2)))
# set node positions
pos = nx.spring_layout(G)
for node in G.nodes():
G.node[node]['pos']= pos[node]
for node in G.nodes():
x, y = G.node[node]['pos']
node_trace['x'].append(x)
node_trace['y'].append(y)
# create edge trace:
edge_trace = Scatter(x = [], y = [], text = [],
line = Line(width = [], color = '#888'),
mode = 'lines')
for edge in G.edges():
x0, y0 = G.node[edge[0]]['pos']
x1, y1 = G.node[edge[1]]['pos']
edge_trace['x'] += [x0, x1, None]
edge_trace['y'] += [y0, y1, None]
edge_trace['text'] += str(matrix.loc[edge[0], edge[1]])[:5]
# size nodes by degree
deg_dict = {deg[0]:int(deg[1]) for deg in list(G.degree())}
for node, degree in enumerate(deg_dict):
node_trace['marker']['size'].append(deg_dict[degree] + 20)
fig = Figure(data = Data([edge_trace, node_trace]),
layout = Layout(
title = '<br>AA Substitution Rates',
titlefont = dict(size = 16),
showlegend = True,
margin = dict(b = 20, l = 5, r = 5, t = 40),
annotations = [dict(
text = "sub title text",
showarrow = False,
xref = "paper", yref = "paper",
x = 0.005, y = -0.002)],
xaxis = XAxis(showgrid = False,
zeroline = False,
showticklabels = False),
yaxis = YAxis(showgrid = False,
zeroline = False,
showticklabels = False)))
py.plot(fig, filename = 'networkx')
So
1. The solution to this is relative easy, you create a list with the node ids and you set it in the text attribute of the scatter plot. Then you set the mode as "markers+text" and you're done.
2. This is a little bit more tricky. You have to calculate the middle of each line and create a list of dicts including the line's middle position and weight. Then you add set as the layout's annotation.
3. This is too compicated to be done using plotly IMO. As for now I am calculating the position of each node using networkx spring_layout function. If you'd want to set the width of each line based on its weight you would have to modify the position using a function that takes into account all the markers that each line is attached to.
Bonus I give you the option to color each of the graph's components differently.
Here's a (slightly modified) function I made a while ago that does 1 and 2:
import pandas as pd
import plotly.plotly as py
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
import networkx as nx
def scatter_plot_2d(G, folderPath, name, savePng = False):
print("Creating scatter plot (2D)...")
Nodes = [comp for comp in nx.connected_components(G)] # Looks for the graph's communities
Edges = G.edges()
edge_weights = nx.get_edge_attributes(G,'weight')
labels = [] # names of the nodes to plot
group = [] # id of the communities
group_cnt = 0
print("Communities | Number of Nodes")
for subgroup in Nodes:
group_cnt += 1
print(" %d | %d" % (group_cnt, len(subgroup)))
for node in subgroup:
labels.append(int(node))
group.append(group_cnt)
labels, group = (list(t) for t in zip(*sorted(zip(labels, group))))
layt = nx.spring_layout(G, dim=2) # Generates the layout of the graph
Xn = [layt[k][0] for k in list(layt.keys())] # x-coordinates of nodes
Yn = [layt[k][1] for k in list(layt.keys())] # y-coordinates
Xe = []
Ye = []
plot_weights = []
for e in Edges:
Xe += [layt[e[0]][0], layt[e[1]][0], None]
Ye += [layt[e[0]][1], layt[e[1]][1], None]
ax = (layt[e[0]][0]+layt[e[1]][0])/2
ay = (layt[e[0]][1]+layt[e[1]][1])/2
plot_weights.append((edge_weights[(e[0], e[1])], ax, ay))
annotations_list =[
dict(
x=plot_weight[1],
y=plot_weight[2],
xref='x',
yref='y',
text=plot_weight[0],
showarrow=True,
arrowhead=7,
ax=plot_weight[1],
ay=plot_weight[2]
)
for plot_weight in plot_weights
]
trace1 = go.Scatter( x=Xe,
y=Ye,
mode='lines',
line=dict(color='rgb(90, 90, 90)', width=1),
hoverinfo='none'
)
trace2 = go.Scatter( x=Xn,
y=Yn,
mode='markers+text',
name='Nodes',
marker=dict(symbol='circle',
size=8,
color=group,
colorscale='Viridis',
line=dict(color='rgb(255,255,255)', width=1)
),
text=labels,
textposition='top center',
hoverinfo='none'
)
xaxis = dict(
backgroundcolor="rgb(200, 200, 230)",
gridcolor="rgb(255, 255, 255)",
showbackground=True,
zerolinecolor="rgb(255, 255, 255)"
)
yaxis = dict(
backgroundcolor="rgb(230, 200,230)",
gridcolor="rgb(255, 255, 255)",
showbackground=True,
zerolinecolor="rgb(255, 255, 255)"
)
layout = go.Layout(
title=name,
width=700,
height=700,
showlegend=False,
plot_bgcolor="rgb(230, 230, 200)",
scene=dict(
xaxis=dict(xaxis),
yaxis=dict(yaxis)
),
margin=dict(
t=100
),
hovermode='closest',
annotations=annotations_list
, )
data = [trace1, trace2]
fig = go.Figure(data=data, layout=layout)
plotDir = folderPath + "/"
print("Plotting..")
if savePng:
plot(fig, filename=plotDir + name + ".html", auto_open=True, image = 'png', image_filename=plotDir + name,
output_type='file', image_width=700, image_height=700, validate=False)
else:
plot(fig, filename=plotDir + name + ".html")
The d3graph library provides the functionalities you want.
pip install d3graph
I downloaded your data and imported it for demonstration:
# Import data
df = pd.read_csv('data.csv', index_col=0)
# Import library
from d3graph import d3graph
# Convert your Pvalues. Note that any edge is set when a value in the matrix is >0. The edge width is however based on this value. A conversion is therefore useful when you work with Pvalues.
df[df.values==0]=1
df = -np.log10(df)
# Increase some distance between edges. Maybe something like this.
df = (np.exp(df)-1)/10
# Make the graph with default settings
d3 = d3graph()
# Make the graph by setting some parameters
d3.graph(df)
# Set edge properties
d3.set_edge_properties(directed=True)
# Set node properties
d3.set_node_properties(color=df.columns.values, size=size, edge_size=10, edge_color='#000000', cmap='Set2')
This will result in an interactive network graph. Two screenshots: one with the default settings and the one with tweaked settings. More examples can be found here.
Trying to use plotly to combine this line graph (that's already stacked):
import plotly
import plotly.graph_objs as plgo
#... Some Code
max = plgo.Scatter(x = day_times_str, y = max_val , name = "Max")
min = plgo.Scatter(x = day_times_str, y = min_val, name = "Min")
layout_opts = plgo.Layout(
xaxis = dict(title = 'xaxis'),
yaxis = dict(title = 'yaxis', rangemode = "tozero"),
)
figure1 = plgo.Figure(
data = [max, min],
layout = layout_opts,
)
and a map that shows location above this line graph...
#Assume geo_coord is a dataframe of coordinates, with columns 'lat', 'long' and 'text'
geo_data = [
plgo.Scattermapbox(
lat = geo_coord['lat'],
lon = geo_coord['lon'],
text = geo_coord['text'],
marker = dict(
color = geo_coord['text'],
size = 12,
),
mode = 'markers'
)
]
geo_layout = plgo.Layout(
autosize=True,
hovermode='closest',
mapbox=dict(
accesstoken= GMapsAPIHelper.MAPBOX_TOKEN, #Constant stored in global object
bearing=0,
pitch=0,
center=dict(
lat=49.04,
lon=-122.7
), #Modify by project details
zoom= 13
),
)
figure2 = dict(data = geo_data, layout = geo_layout)
plotly.offline.plot takes only 1 figure or set of data and I cannot pass in a list for graphing. I have tried using append_trace but because I've defined x and y axes in the line graph layout, this causes an error for the map, as follows:
File "C:\Anaconda2\lib\site-packages\plotly\graph_objs\graph_objs.py", line 934, in append_trace
trace['xaxis'] = ref[0]
TypeError: list indices must be integers, not str
Any help in solving this issue is appreciated.