IndexError: list index out of range with threading - python

I am trying to run a function for a specific period of time during n seconds. However getting an indexError. Been trying several to solve the issue for several hours but I can't seem to find what is going wrong. Below is the and sample code.
def recognize_face_time(i):
global dirname
imageList = list(paths.list_images(dirname))
#print(imageList)
print("[INFO] loading encodings...")
data = pickle.loads(open("encodings.pickle", "rb").read())
# load the input image and convert it from BGR to RGB
image = cv2.imread(imageList[i])
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# detect the (x, y)-coordinates of the bounding boxes corresponding
# to each face in the input image, then compute the facial embeddings
# for each face
print("[INFO] recognizing faces...")
boxes = face_recognition.face_locations(rgb,
model="hog")
encodings = face_recognition.face_encodings(rgb, boxes)
# initialize the list of names for each face detected
names = []
# loop over the facial embeddings
for encoding in encodings:
# attempt to match each face in the input image to our known
# encodings
matches = face_recognition.compare_faces(data["encodings"],
encoding, tolerance=0.45)
name = "Unknown"
# check to see if we have found a match
if True in matches:
# find the indexes of all matched faces then initialize a
# dictionary to count the total number of times each face
# was matched
matchedIdxs = [i for (i, b) in enumerate(matches) if b]
counts = {}
# loop over the matched indexes and maintain a count for
# each recognized face face
for i in matchedIdxs:
name = data["names"][i]
counts[name] = counts.get(name, 0) + 1
# determine the recognized face with the largest number of votes
name = max(counts, key=counts.get)
# update the list of names
names.append(name)
i += 1
x = threading.Timer(1, recognize_face_time, [i])
x.start()
#test_names.append(names)
if i == 4:
x.cancel()
#print(test_names)
Here is the error I am having
image = cv2.imread(imageList[i])
IndexError: list index out of range

Related

Dominant RGB analysis video

I'm trying to find the most dominant RGB color in each frame of a video (made with piCamera) and save this into a csv (or matrix, anything i can use outside of the for loop). But everytime I go out of the for loop, it only saves the last frame RGB data.
I've tried: with open("filename.csv", 'w') as f: but I got a blank file; and export.to_csv only saved the last rgb value. Does anyone know how to do this? Thanks in advance!
'''
while True:
_, frame = cap.read()
#Check whether there are still frames to analyze
if frame is not None:
RGB = frame
# Display the resulting frame
shape = frame.shape
RGBS = RGB.reshape((shape[0]*shape[1],3))
num_clusters = 1
clusters = KMeans(n_clusters=num_clusters)
clusters.fit(RGBS)
# count the dominant colors and put them in "buckets"
histogram = make_histogram(clusters)
# then sort them, most-common first
combined = zip(histogram, clusters.cluster_centers_)
combined2 = sorted(values, key=lambda x: x[0], reverse=True)
# finally, we'll output a graphic showing the colors in order
bars = []
hsv_values=[]
rgb_values = []
for index, rows in enumerate(combined2):
bar, rgb, hsv = make_bar(100, 100, rows[1])
#print(rgb)
#rgb_values.append(rgb)
#hsv_values.append(hsv)
#bars.append(bar)
key = cv2.waitKey(1)
if key == 27:
break
# End the loop if there is no more frame to analyse
else:
break
'''

Error while writing code for face recognition using haarcascade classifier

import cv2
import numpy as np
#Init camera
cap = cv2.VideoCapture(0)
#Face Detection using haarcascade File
face_cascade = cv2.CascadeClassifier('Anaconda3\Lib\site-packages\cv2\data\haarcascade_frontalface_alt.xml')
skip = 0
face_data = []
#dataset_path = ('./Face Recognition Data')
while True:
ret,frame = cap.read()
if ret == False:
continue
faces = face_cascade.detectMultiScale(frame,1.3,5)
#The next line of code is written to only store the largest face in the window frame
faces = sorted(faces,key = lambda f: f[2]*f[3])
#start sorting from the last face since the last face is the largest in terms of area(w*h)
for face in faces[-1:] :
x,y,w,h = face
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,255),2)
#extract the required face or the region of the interest
#Refers to adding an extra 10 pixels on all the sides of the required extracted face
offset = 10
#By default face slicing is done in (y,x) manner
face_section = frame[y-offset:y+h+offset,x-offset:x+w+offset]
face_section = cv2.resize(face_section,(100,100))
if skip%10==0 : #Store every 10th frame
face_data.append(face_section)
print(len(face_data)) #number of faces captured so far
cv2.imshow("Video Frame",frame)
cv2.imshow("Face section frame",face_section)
key_pressed = cv2.waitKey(1) & 0xFF
if key_pressed == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
After running the program, it says that face_section variable is not defined.
Please help
You have more than one face_section. If you need them outside of your for loop you may do like this:
face_section_list = [] # Define a new empty list!
#start sorting from the last face since the last face is the largest in terms of area(w*h)
for face in faces[-1:] :
x,y,w,h = face
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,255),2)
#extract the required face or the region of the interest
#Refers to adding an extra 10 pixels on all the sides of the required extracted face
offset = 10
#By default face slicing is done in (y,x) manner
face_section = frame[y-offset:y+h+offset,x-offset:x+w+offset]
face_section = cv2.resize(face_section,(100,100))
face_section_list.append(face_section) # Append EVERY face!
if skip%10==0 : #Store every 10th frame
face_data.append(face_section)
print(len(face_data)) #number of faces captured so far
And then outside, print every face in order (or do whatever you need to do):
for im in face_section_list:
cv2.imshow("Face section frame",im)
cv2.waitKey(0) # Zero means "wait until a key is pressed"
I've wrote a lot of code for face detection and recognition that you may find helpful, have a look.

Python face_recognition dataset quality

I´m construction a dataset with more than one image for each person for python face_recognition package. It will add a classifier on top of the bultin model. See also this example: face_recognition_knn.py. here is my code:
# import the necessary packages
from imutils import paths
import face_recognition
import pickle
import cv2
import os
# grab the paths to the input images in our dataset
print("[INFO] quantifying faces...")
imagePaths = list(paths.list_images('dataset'))
# initialize the list of known encodings and known names
knownEncodings = []
knownNames = []
# loop over the image paths
for (i, imagePath) in enumerate(imagePaths):
# extract the person name from the image path
print(f"[INFO] processing image {i+1}/{len(imagePaths)} -> {imagePath}")
name = imagePath.split(os.path.sep)[-2]
# load the input image and convert it from BGR (OpenCV ordering)
# to dlib ordering (RGB)
image = cv2.imread(imagePath)
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# detect the (x, y)-coordinates of the bounding boxes
# corresponding to each face in the input image
boxes = face_recognition.face_locations(rgb,
model='hog') #can be cnn
# compute the facial embedding for the face
encodings = face_recognition.face_encodings(rgb, boxes)
# loop over the encodings
for encoding in encodings:
# add each encoding + name to our set of known names and
# encodings
knownEncodings.append(encoding)
knownNames.append(name)
# dump the facial encodings + names to disk
print("[INFO] serializing encodings...")
data = {"encodings": knownEncodings, "names": knownNames}
f = open('encodings.pickle', "wb")
f.write(pickle.dumps(data))
f.close()
Then, I try to identify these people with this code:
import face_recognition
import pickle
import cv2
import numpy as np
import requests
from datetime import datetime
# load the known faces and embeddings
print("[INFO] loading encodings...")
data = pickle.loads(open("encodings.pickle", "rb").read())
def processa_imagem(url):
# load the input image and convert it from BGR to RGB and returns file with cofidence
image = cv2.imread(url)
if image is None:
print(f'Image not found: {imagem}')
#image = np.array(image, dtype=np.uint8)
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# detect the (x, y)-coordinates of the bounding boxes corresponding
# to each face in the input image, then compute the facial embeddings
# for each face
print("[INFO] recognizing faces...")
boxes = face_recognition.face_locations(rgb,
model='hog')
encodings = face_recognition.face_encodings(rgb, boxes)
# initialize the list of names for each face detected
names = []
# loop over the facial embeddings
for encoding in encodings:
# attempt to match each face in the input image to our known
# encodings
## ATTENTION! the ideal is face_recognition.api.batch_face_locations but i dont have a GPU
matches = face_recognition.face_distance(data["encodings"],
encoding)
name = "unkown"
# check to see if we have found a match
if max(matches) > 0.7:
# find the indexes of all matched faces then initialize a
# dictionary to count the total number of times each face
# was matched
matchedIdxs = [i for (i, b) in enumerate(matches) if b]
counts = {}
# loop over the matched indexes and maintain a count for
# each recognized face face
for i in matchedIdxs:
name = data["names"][i]
counts[name] = counts.get(name, 0) + 1
# determine the recognized face with the largest number of
# votes (note: in the event of an unlikely tie Python will
# select first entry in the dictionary)
name = max(counts, key=counts.get)
# update the list of names
names.append(name)
# loop over the recognized faces
for ((top, right, bottom, left), name) in zip(boxes, names):
# draw the predicted face name on the image
cv2.rectangle(image, (left, top), (right, bottom), (255, 0, 0), 2)
y = top - 15 if top - 15 > 15 else top + 15
cv2.putText(image, name, (left, y), cv2.FONT_HERSHEY_SIMPLEX,
0.75, (255, 0, 0), 2)
now = datetime.now()
current_time = now.strftime("%H%M%S%f")
#file_path = f'static/face-{current_time}.jpg'
file_path = f'face-{current_time}.jpg'
cv2.imwrite(file_path,image)
return (file_path, ', '.join(names))
On my dataset, I´ve added, on average, about 10 photos of each individual. The script uses face_recognition.face_distance and it works well to recognize someone in the dataset.
The problema is that, when I use it with someone that OUT. For these people, sometimes I still get about 0.90 higher confidence false positive results.
Some of the pictures in dataset are low quality. Maybe that´s the reason? Should I change my approach, using more detailed photos (2 or 3) and maybe encoding them with jitters?
Thanks for any input!

Stitch two images using Homography transform - Transformed image cropped

Image stitching not work properly. The warped image is cropped and interpolation cannot be done because images do not intersect.
Hi,
I was assigned an homework in which I have to stitch togheter two images, shot by different cameras.
I should find the homography matrix and then warp the second image using this matrix. At the end I must interpolate the two images.
Unfortunately, the code I wrote seems not to work properly. During second image warp I lost most of the image information; a lot of pixels are black and not the whole transformed image is transformed.
I track in the two images four pixels each, in the same order. Below you can find the piece of code I wrote.
# Globals
points = []
def show_and_fetch(image, title):
cv2.namedWindow(title, cv2.WINDOW_NORMAL)
cv2.setMouseCallback(title, mouse_callback)
# Show the image
cv2.imshow(title, image)
# Wait for user input to continue
cv2.waitKey(0)
cv2.destroyAllWindows()
# mouse callback function
def mouse_callback(event,x,y,flags,param):
if event == cv2.EVENT_LBUTTONDOWN:
points.append([x, y])
def stitching():
"""
This procedure stiches two images
:return:
"""
print "Stitching starts..."
###########################################################################
# Get input information
in_file_1 = utils.get_input(
"Insert 0 to exit, the path to the first image to stitch "
"or empty input to use default image: ", "string",
constants.default_stitching1)
in_file_2 = utils.get_input(
"Insert 0 to exit, the path to the second image to stitch "
"or empty input to use default image: ", "string",
constants.default_stitching2)
image_1 = utils.read_image(in_file_1)
image_2 = utils.read_image(in_file_2)
global points
show_and_fetch(image_1, "Image 1 to Stitch")
image_1_points = np.asarray(points, dtype=np.float32)
points = []
show_and_fetch(image_2, "Image 2 to Stitch")
image_2_points = np.asarray(points, dtype=np.float32)
matrix, mask = cv2.findHomography(image_1_points, image_2_points, cv2.RANSAC, 5)
image_1_warped = cv2.warpPerspective(image_1, matrix, dsize=image_1.shape[0:2])
utils.show_image_and_wait(image_1_warped, 'Image 1 warped', wait=False)
utils.show_image_and_wait(image_1, 'Image 1', wait=False)
utils.show_image_and_wait(image_2, 'Image 2')
if __name__ == "__main__":
stitching()
I expect the warped image to be transformed, preserving the most of the information, in terms of pixels. Then interpolation should apply the intersection of the two images that overlap in a certain area.
For instance I want to interpolete these two images:
I've managed to stitch images based on this solution. Here is the stitching result:
Here is the full code:
import cv2
import imutils
import numpy as np
class Stitcher(object):
def __init__(self):
self.isv3 = imutils.is_cv3()
def stitch(self, images, ratio=0.75, reprojThresh=4.0, showMatches=False):
(imageB, imageA) = images
(kpsA, featuresA) = self.detectAndDescribe(imageA)
(kpsB, featuresB) = self.detectAndDescribe(imageB)
# match features between the two images
m = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh)
if not m:
return None
# otherwise, apply a perspective warp to stitch the images
# together
(matches, H, status) = m
result = cv2.warpPerspective(imageA, H,
(imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
# check to see if the keypoint matches should be visualized
if showMatches:
vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches,
status)
# return a tuple of the stitched image and the
# visualization
return result, vis
# return the stitched image
return result
def detectAndDescribe(self, image):
# convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# check to see if we are using OpenCV 3.X
if self.isv3:
# detect and extract features from the image
descriptor = cv2.xfeatures2d.SIFT_create()
(kps, features) = descriptor.detectAndCompute(image, None)
# otherwise, we are using OpenCV 2.4.X
else:
# detect keypoints in the image
detector = cv2.xfeatures2d.SIFT_create()
kps = detector.detect(gray)
# extract features from the image
extractor = cv2.xfeatures2d.SIFT_create()
(kps, features) = extractor.compute(gray, kps)
# convert the keypoints from KeyPoint objects to NumPy
# arrays
kps = np.float32([kp.pt for kp in kps])
# return a tuple of keypoints and features
return kps, features
def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB,
ratio, reprojThresh):
# compute the raw matches and initialize the list of actual
# matches
matcher = cv2.DescriptorMatcher_create("BruteForce")
rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
matches = []
# loop over the raw matches
for m in rawMatches:
# ensure the distance is within a certain ratio of each
# other (i.e. Lowe's ratio test)
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
matches.append((m[0].trainIdx, m[0].queryIdx))
# computing a homography requires at least 4 matches
if len(matches) > 4:
# construct the two sets of points
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
# compute the homography between the two sets of points
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
reprojThresh)
# return the matches along with the homograpy matrix
# and status of each matched point
return (matches, H, status)
# otherwise, no homograpy could be computed
return None
def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
# initialize the output visualization image
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
# loop over the matches
for ((trainIdx, queryIdx), s) in zip(matches, status):
# only process the match if the keypoint was successfully
# matched
if s == 1:
# draw the match
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
# return the visualization
return vis
image1 = cv2.imread('image1.jpg')
image2 = cv2.imread('image2.jpg')
stitcher = Stitcher()
(result, vis) = stitcher.stitch([image1, image2], showMatches=True)
cv2.imwrite('result.jpg', result)
I faced with the same problem. It turns out that the order of my images was wrong.
I had two images for stitching. One needs to stitch from left to another. However, I was computing the transform as I want it to stitch from right.

error while using ord() for wheel chair symbol in python

I wish to create trained data for vehicle number detection. It is assumed that The vehicle number consists of digits 0 to 9 with special character. Please refer the example imagevehicle plate image. I am using the this image for creating trained data training image. The python code for generating trained data is given below.
import sys
import numpy as np
import cv2
import os
# module level variables ##########################################################################
MIN_CONTOUR_AREA = 100
RESIZED_IMAGE_WIDTH = 20
RESIZED_IMAGE_HEIGHT = 30
###################################################################################################
def main():
imgTrainingNumbers = cv2.imread("training1.png") # read in training numbers image
if imgTrainingNumbers is None: # if image was not read successfully
print "error: image not read from file \n\n" # print error message to std out
os.system("pause") # pause so user can see error message
return # and exit function (which exits program)
# end if
imgGray = cv2.cvtColor(imgTrainingNumbers, cv2.COLOR_BGR2GRAY) # get grayscale image
imgBlurred = cv2.GaussianBlur(imgGray, (5,5), 0) # blur
# filter image from grayscale to black and white
imgThresh = cv2.adaptiveThreshold(imgBlurred, # input image
255, # make pixels that pass the threshold full white
cv2.ADAPTIVE_THRESH_GAUSSIAN_C, # use gaussian rather than mean, seems to give better results
cv2.THRESH_BINARY_INV, # invert so foreground will be white, background will be black
11, # size of a pixel neighborhood used to calculate threshold value
2) # constant subtracted from the mean or weighted mean
cv2.imshow("imgThresh", imgThresh) # show threshold image for reference
imgThreshCopy = imgThresh.copy() # make a copy of the thresh image, this in necessary b/c findContours modifies the image
_,npaContours, npaHierarchy = cv2.findContours(imgThreshCopy, # input image, make sure to use a copy since the function will modify this image in the course of finding contours
cv2.RETR_EXTERNAL, # retrieve the outermost contours only
cv2.CHAIN_APPROX_SIMPLE) # compress horizontal, vertical, and diagonal segments and leave only their end points
# declare empty numpy array, we will use this to write to file later
# zero rows, enough cols to hold all image data
npaFlattenedImages = np.empty((0, RESIZED_IMAGE_WIDTH * RESIZED_IMAGE_HEIGHT))
intClassifications = [] # declare empty classifications list, this will be our list of how we are classifying our chars from user input, we will write to file at the end
# possible chars we are interested in are digits 0 through 9, put these in list intValidChars
intValidChars = [ord('0'), ord('1'), ord('2'), ord('3'), ord('4'), ord('5'), ord('6'), ord('7'), ord('8'), ord('9'),ord('♿')]
for npaContour in npaContours: # for each contour
if cv2.contourArea(npaContour) > MIN_CONTOUR_AREA: # if contour is big enough to consider
[intX, intY, intW, intH] = cv2.boundingRect(npaContour) # get and break out bounding rect
# draw rectangle around each contour as we ask user for input
cv2.rectangle(imgTrainingNumbers, # draw rectangle on original training image
(intX, intY), # upper left corner
(intX+intW,intY+intH), # lower right corner
(0, 0, 255), # red
2) # thickness
imgROI = imgThresh[intY:intY+intH, intX:intX+intW] # crop char out of threshold image
imgROIResized = cv2.resize(imgROI, (RESIZED_IMAGE_WIDTH, RESIZED_IMAGE_HEIGHT)) # resize image, this will be more consistent for recognition and storage
cv2.imshow("imgROI", imgROI) # show cropped out char for reference
cv2.imshow("imgROIResized", imgROIResized) # show resized image for reference
cv2.imshow("training_numbers.png", imgTrainingNumbers) # show training numbers image, this will now have red rectangles drawn on it
intChar = cv2.waitKey(0) # get key press
if intChar == 27: # if esc key was pressed
sys.exit() # exit program
elif intChar in intValidChars: # else if the char is in the list of chars we are looking for . . .
intClassifications.append(intChar) # append classification char to integer list of chars (we will convert to float later before writing to file)
npaFlattenedImage = imgROIResized.reshape((1, RESIZED_IMAGE_WIDTH * RESIZED_IMAGE_HEIGHT)) # flatten image to 1d numpy array so we can write to file later
npaFlattenedImages = np.append(npaFlattenedImages, npaFlattenedImage, 0)
cv2.imshow("imgROI", npaFlattenedImages)
# add current flattened impage numpy array to list of flattened image numpy arrays
# end if
# end if
# end for
fltClassifications = np.array(intClassifications, np.float32) # convert classifications list of ints to numpy array of floats
npaClassifications = fltClassifications.reshape((fltClassifications.size, 1))
print npaClassifications
# flatten numpy array of floats to 1d so we can write to file later
print "\n\ntraining complete !!\n"
# np.savetxt(str(raw_input('Insert the name of the file (ex: "a.txt"): ')), npaClassifications,delimiter="\t") # write flattened images to file
# np.savetxt((raw_input('a.txt')), npaFlattenedImages)
np.savetxt('testimage_1.txt',npaFlattenedImages) #
np.savetxt('test1_1.txt',npaClassifications)
cv2.destroyAllWindows()
#save(data)
#'a.txt'
#return data # remove windows from memory
#def save(data):
# np.savetxt(str(input('Insert name of the list(ex: a.txt): ')), npaFlattenedImages)
# return
if __name__ == "__main__":
main()
I got the error as
intValidChars = [ord('0'), ord('1'), ord('2'), ord('3'), ord('4'), ord('5'), ord('6'), ord('7'), ord('8'), ord('9'),ord('♿')]
TypeError: ord() expected a character, but string of length 3 found
How can i overcome this error?
In python 2 you can try:
u'♿'
For example:
>>> ord(u'♿')
9855
Since you are using the ord() result as a mapping between key presses and labels, you can't use ♿ as a key press. I would try to use another ascii char to identify that case (like ord('a')).
You could replace that a later when reading from the keyboard:
elif intChar in intValidChars:
if intChar == ord('a'):
intChar = ord('♿')
intClassifications.append(intChar)
But probably, the training function doesn't even need that, as long as you remember to translate the prediction result.

Categories

Resources