Optimal trajectory to minimize force, issues with final conditions - python

I am trying to find a trajectory that minimizes the squared integral of the force to move a block from one point to another. Here are the system dynamics:
dx/dt = v (derivative of position is velocity)
dv/dt = u (derivative of velocity is acceleration, which is what I am trying to minimize)
min integral of u**2
The initial conditions and final conditions are:
x(0) = 0, v(0) = 0
x(1) = 1, v(1) = 1
I have implemented this in python using the Gekko library, but I cannot get the final conditions working properly. Using m.fix() to fix the end position makes the problem unsolvable.
Reading online, I used m.Minimize() to make a soft constraint, but the solution was very far off from the end conditions. I added an extra equation to make the velocity less than zero at the end, and that made the solution look like the correct solution, albeit the end position was wrong (if the solution was scaled by a factor, it would be correct).
I should I properly solve this problem?
from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
##model
m = GEKKO() # initialize gekko
nt = 101
m.time = np.linspace(0,1,nt)
# Variables
x = m.Var(value=0)
v = m.Var(value=0)
u = m.Var( fixed_initial=False)
p = np.zeros(nt) # mark final time point
p[-1] = 1.0
final = m.Param(value=p)
# Equations
m.Equation(x.dt()==v)
m.Equation(v.dt()==u)
#m.Equation(x*final >= 1) ##error: Solution Not Found
m.Equation(v*final <= 0)
m.Minimize(final*(x-1)**2)
m.Minimize(final*(v-0)**2)
m.Obj(m.integral(u**2)*final) # Objective function
m.options.IMODE = 6 # optimal control mode
##solve
m.solve() # solve
##plot
plt.figure(1) # plot results
plt.plot(m.time,x.value,'k-',label=r'$x$')
plt.plot(m.time,v.value,'b-',label=r'$v$')
plt.plot(m.time,u.value,'r--',label=r'$u$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Value')
##show plot
plt.show()
Plot of my results

You can fix the problem by putting a higher weight on the final conditions:
m.Minimize(final*1e5*(x-1)**2)
m.Minimize(final*1e5*(v-0)**2)
There is still some tradeoff with the u minimization but it is minimal.
The constraint m.Equation(x*final >= 1) is infeasible when final=0 because this results in the inequality 0 >= 1. If you'd like to use the final position constraint, you'll need to use m.Equation((x-1)*final >= 0) so that the constraint is enforced only at the end but is feasible (0 >= 0) elsewhere. You don't necessarily need the hard constraints with the soft (objective function) constraints for the final condition. Here is a related problem with an inverted pendulum.
from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
m = GEKKO() # initialize gekko
nt = 101; m.time = np.linspace(0,1,nt)
# Variables
x = m.Var(value=0)
v = m.Var(value=0)
u = m.Var(fixed_initial=False)
p = np.zeros(nt) # mark final time point
p[-1] = 1.0
final = m.Param(value=p)
# Equations
m.Equation(x.dt()==v)
m.Equation(v.dt()==u)
m.Equation((x-1)*final >= 0)
m.Equation(v*final <= 0)
m.Minimize(final*1e5*(x-1)**2)
m.Minimize(final*1e5*(v-0)**2)
m.Obj(m.integral(u**2)*final) # Objective function
m.options.IMODE = 6 # optimal control mode
m.solve() # solve
plt.figure(1) # plot results
plt.grid()
plt.plot(m.time,x.value,'k-',label=r'$x$')
plt.plot(m.time,v.value,'b-',label=r'$v$')
plt.plot(m.time,u.value,'r--',label=r'$u$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Value')
plt.show()

Related

Gekko solver for optimizing function; Certain local minimum, but it will be found just on rare occasions

from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
m = GEKKO() # initialize gekko
nt=200
m.time = np.linspace(0,1,nt)
# Variables
x1 = m.Var(value=20,lb=0,)
x2 = m.Var(value=0,lb=0,)
x3 = m.Var(value=0,lb=0,)
p = np.zeros(nt) # mark final time point
p[-1] = 1.0
# optimize final time
tf = m.FV(value=0.7,lb=0.001,ub=100.0)
tf.STATUS = 1
# Equations
m.Equation(x1.dt() == -5*x1*tf)
m.Equation(x2.dt() == (5* x1 - 0.5*x2)*tf)
m.Equation(x3.dt() == 0.5*x2*tf)
#Minifunc
#m.Minimize(tf)
m.Maximize(x2)
#options
m.options.IMODE = 6
m.options.SOLVER = 3 #IPOPT optimizer
m.options.RTOL = 1E-8
m.options.OTOL = 1E-8
m.options.NODES = 5
m.solve(disp=True,debug=1)
print('Final Time: ' + str(tf.value[0]))
#Plotting stuff
tm = np.linspace(0,tf.value[0],nt)
plt.figure(1) # plot results
plt.plot(tm, x1.value, "k-", label=r"$x_1$")
plt.plot(tm, x2.value, "b-", label=r"$x_2$")
plt.plot(tm, x3.value, "r--", label=r"$x_3$")
plt.legend(loc="best")
plt.xlabel("Time")
plt.ylabel("Value")
plt.show()
I am trying to get used to Gekko as an optimization tool for some kinetic data. Therefore, I tried to implement a simple ode system based on an example of the Gekko website. Nevertheless, it never found the global maximum unless I force the derivative to be dx2/dt>0 to get the right maximum. This is somewhat unsatisfying, as I would expect a solver to find the maximum of component x2 just by asking to find the Maximum via m.Maximize(x2) for such a simple system. Is there any setting I did wrong or is my solution badly proposed? Thanks for helping.
The result: shows clearly that the maximum is not found...
The unconstrained objective (without the constraint dx2dt>=0) is 10416.8 while the objective with the constraint is 9236.4 (worse). Additional constraints never improve the optimization result but can make the objective worse for convex optimization problems such as this one.
m.Equation(x2.dt() >= 0)
Here is the code that shows the results of adding the constraint:
import numpy as np
from gekko import GEKKO
import matplotlib.pyplot as plt
m = GEKKO() # initialize gekko
nt=200
m.time = np.linspace(0,1,nt)
# Variables
x1 = m.Var(value=20,lb=0,)
x2 = m.Var(value=0,lb=0,)
x3 = m.Var(value=0,lb=0,)
p = np.zeros(nt) # mark final time point
p[-1] = 1.0
# optimize final time
tf = m.FV(value=0.7,lb=0.001,ub=100.0)
tf.STATUS = 1
# Equations
m.Equation(x1.dt() == -5*x1*tf)
m.Equation(x2.dt() == (5* x1 - 0.5*x2)*tf)
m.Equation(x3.dt() == 0.5*x2*tf)
#Minifunc
#m.Minimize(tf)
m.Maximize(x2)
#options
m.options.IMODE = 6
m.options.SOLVER = 1 #APOPT optimizer
m.options.RTOL = 1E-8
m.options.OTOL = 1E-8
m.options.NODES = 5
m.solve(disp=True,debug=1)
plt.figure(1)
tm = np.linspace(0,tf.value[0],nt)
plt.plot(tm, x2.value, "b:", label=r"$x_2$ Optimal")
# add constraint
m.Equation(x2.dt() >= 0)
m.options.TIME_SHIFT=0
m.solve(disp=True,debug=1)
tm = np.linspace(0,tf.value[0],nt)
plt.plot(tm, x2.value, "r--", label=r"$x_2$ Constrained")
plt.legend(loc="best"); plt.xlabel("Time"); plt.ylabel("Value")
print('Final Time: ' + str(tf.value[0]))
plt.figure(2) # plot results
plt.plot(tm, x1.value, "k-", label=r"$x_1$")
plt.plot(tm, x2.value, "b-", label=r"$x_2$")
plt.plot(tm, x3.value, "r--", label=r"$x_3$")
plt.legend(loc="best"); plt.xlabel("Time"); plt.ylabel("Value")
plt.show()
The current objective statement is to maximize the value of x2 everywhere.
m.Maximize(x2)
Even though there is a maximum part-way through the simulation, the final objective is the summation of all the x2 values. Make the following changes to maximize only the final x2 point.
p = np.zeros(nt) # mark final time point
p[-1] = 1.0
final = m.Param(p)
m.Maximize(x2*final)
The optimal solution is now just the final point for x2 that is 15.485.

Python Gekko Tool

I have just started to work with Gekko optimization software. So far, I figured out how to obtain an optimal solution for my problem. But I am not sure if it is possible to see all possible results, which satisfy the constraint? (not only the optimal value). The problem is that for my particular task, I need to do optimization multiple times and despite the optimal values being optimal at one point, the optimal sequence of decisions might be different over time. I want to check this by creating an MDP. But to do this, I need to know the possible states, which represent all possible values of the variable to be optimized, which satisfy the constraints. I have not found yet how to do this in Gekko, so maybe somebody had similar issues?
Thank you!
A contour plot is a nice way to show the optimal solution and all possible feasible solutions. Below is an example contour plot for the Tubular Column Design Optimization problem.
# -*- coding: utf-8 -*-
"""
BYU Intro to Optimization. Column design
https://apmonitor.com/me575/index.php/Main/TubularColumn
Contour plot additions by Al Duke 11/30/2019
"""
from gekko import GEKKO
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import fsolve
m = GEKKO()
#%% Constants
pi = m.Const(3.14159,'pi')
P = 2300 # compressive load (kg_f)
o_y = 450 # allowable yield stress (kg_f/cm^2)
E = 0.65e6 # elasticity (kg_f/cm^2)
p = 0.0020 # weight density (kg_f/cm^3)
l = 300 # length of the column (cm)
#%% Variables (the design variables available to the solver)
d = m.Var(value=8.0,lb=2.0,ub=14.0) # mean diameter (cm)
t = m.Var(value=0.3,lb=0.2 ,ub=0.8) # thickness (cm)
cost = m.Var()
#%% Intermediates (computed by solver from design variables and constants)
d_i = m.Intermediate(d - t)
d_o = m.Intermediate(d + t)
W = m.Intermediate(p*l*pi*(d_o**2 - d_i**2)/4) # weight (kgf)
o_i = m.Intermediate(P/(pi*d*t)) # induced stress
# second moment of area of the cross section of the column
I = m.Intermediate((pi/64)*(d_o**4 - d_i**4))
# buckling stress (Euler buckling load/cross-sectional area)
o_b = m.Intermediate((pi**2*E*I/l**2)*(1/(pi*d*t)))
#%% Equations (constraints, etc. Cost could be an intermediate variable)
m.Equations([
o_i - o_y <= 0,
o_i - o_b <= 0,
cost == 5*W + 2*d
])
#%% Objective
m.Minimize(cost)
#%% Solve and print solution
m.options.SOLVER = 1
m.solve()
print('Optimal cost: ' + str(cost[0]))
print('Optimal mean diameter: ' + str(d[0]))
print('Optimal thickness: ' + str(t[0]))
minima = np.array([d[0], t[0]])
#%% Contour plot
# create a cost function as a function of the design variables d and t
f = lambda d, t: 2 * d + 5 * p * l * np.pi * ((d+t)**2 - (d-t)**2)/4
xmin, xmax, xstep = 2, 14, .2 # diameter
ymin, ymax, ystep = .2, .8, .05 # thickness
d, t = np.meshgrid(np.arange(xmin, xmax + xstep, xstep), \
np.arange(ymin, ymax + ystep, ystep))
z = f(d, t)
# Determine the compressive stress constraint line.
#stress = P/(pi*d*t) # induced axial stress
t_stress = np.arange(ymin, ymax, .025) # use finer step to get smoother constraint line
d_stress = []
for tt in t_stress:
dd = P/(np.pi * tt * o_y)
d_stress.append(dd)
# Determine buckling constraint line. This is tougher because we cannot
# solve directly for t from d. Used scipy.optimize.fsolve to find roots
d_buck = []
t_buck = []
for d3 in np.arange(6, xmax, .005):
fb = lambda t : o_y-np.pi**2*E*((d3+t)**4-(d3-t)**4)/(64*l**2*d3*t)
tr = np.array([0.3])
roots = fsolve(fb, tr)
if roots[0] != 0:
if roots[0] >= .1 and roots[0]<=1.:
t_buck.append(roots[0])
d_buck.append(d3)
# Create contour plot
plt.style.use('ggplot') # to make prettier plots
fig, ax = plt.subplots(figsize=(10, 6))
CS = ax.contour(d, t, z, levels=15,)
ax.clabel(CS, inline=1, fontsize=10)
ax.set_xlabel('mean diameter $d$')
ax.set_ylabel('half thickness $t$')
ax.set_xlim((xmin, xmax))
ax.set_ylim((ymin, ymax))
# Add constraint lines and optimal marker
ax.plot(d_stress, t_stress, "->", label="Stress constraint")
ax.plot(d_buck, t_buck, "->", label="Buckling constraint" )
minima_ = minima.reshape(-1, 1)
ax.plot(*minima_, 'r*', markersize=18, label="Optimum")
ax.text(10,.25,"Contours = Cost (objective)\nConstraint line markers point\ntowards feasible space.")
plt.title('Column Design')
plt.legend()
plt.show()
It is more challenging to include more than 2D but time or a 3D plot can show feasible space as a parameter is changed such as in the Interior Point solution demonstration.
There are many other example problems that demonstrate this approach in the Design Optimization course.

Solving optimal control problem with constraint x(0) + x(2) =0 with GEKKO

I am starting to learn Gekko and I am testing optimal control problems. I am trying to solve the following optimal control problem with Gekko
The solution of this problem is (x_1(t) = (t-2)^2 - 2)
How to build the constraint x(0) + x(2) = 0?
My code gives me a wrong solution.
m = GEKKO(remote=False) # initialize gekko
nt = 101
m.time = np.linspace(0,2,nt)
#end_loc = nt-1
# Variables
x1 = m.CV(fixed_initial=False)
x2 = m.CV(fixed_initial=False)
x3 = m.Var(value=0)
#u = m.Var(value=0,lb=-2,ub=2)
u = m.MV(fixed_initial=False,lb=-2,ub=2)
u.STATUS = 1
p = np.zeros(nt) # mark final time point
p[-1] = 1.0
final = m.Param(value=p)
p1 = np.zeros(nt)
p1[0] = 1.0
p1[-1] = 1.0
infin = m.Param(value=p1)
# Equations
m.Equation(x1.dt()==x2)
m.Equation(x2.dt()==u)
m.Equation(x3.dt()==x1)
# Constraints
m.Equation(infin*x1==0)
m.Equation(final*x2==0)
m.Obj(x3*final) # Objective function
#m.fix(x2,pos=end_loc,val=0.0)
m.options.IMODE = 6 # optimal control mode
#m.solve(disp=True) # solve
m.solve(disp=False) # solve
plt.figure(1) # plot results
plt.plot(m.time,x1.value,'k-',label=r'$x_1$')
plt.plot(m.time,x2.value,'b-',label=r'$x_2$')
plt.plot(m.time,x3.value,'g-',label=r'$x_3$')
plt.plot(m.time,u.value,'r--',label=r'$u$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Value')
plt.show()
plt.figure(1) # plot results
plt.plot(m.time,x1.value,'k-',label=r'$x_1$')
plt.plot(m.time,(m.time-2)**2-2,'g--',label=r'$\hat x_1$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Value')
plt.show()
Use m.integral or m.vsum() to create a time weighted summation or vertical summation along the time direction. Here is a solution that replicates the exact solution.
from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
m = GEKKO(remote=True) # initialize gekko
nt = 501
m.time = np.linspace(0,2,nt)
# insert a small time step at the beginning and end
# for final and initial condition equation x(1e-8)+x(2-1e-8)=0
# this doesn't change the numerical solution significantly
m.time = np.insert(m.time,1,1e-8)
m.time = np.insert(m.time,len(m.time)-1,2.0-1e-8)
nt += 2
# Variables
x1 = m.Var(fixed_initial=False,lb=-100,ub=100)
x2 = m.Var(fixed_initial=False)
u = m.MV(fixed_initial=False,lb=-2,ub=2)
u.STATUS = 1
p = np.zeros(nt) # mark final time point
p[-2] = 1.0
final = m.Param(value=p)
q = p.copy()
q[1] = 1.0
final_initial = m.Param(value=q)
xfi = m.Var()
m.Equation(xfi==final_initial*x1)
# Equations
m.Equation(x1.dt()==x2)
m.Equation(x2.dt()==u)
m.Equation(final*m.vsum(xfi)==0)
m.Equation(final*x2==0)
m.Minimize(m.integral(x1)*final) # Objective function
m.options.IMODE = 6 # optimal control mode
m.options.NODES = 2
m.solve(disp=True) # solve
plt.figure(1) # plot results
plt.subplot(2,1,1)
plt.plot(m.time,x1.value,'k-',label=r'$x_1$')
plt.plot(m.time,x2.value,'b-',label=r'$x_2$')
plt.plot(m.time,u.value,'--',color='orange',label=r'$u$')
plt.legend(loc='best')
plt.ylabel('Value')
plt.subplot(2,1,2)
plt.plot(m.time,x1.value,'k-',label=r'$x_1$')
plt.plot(m.time,(m.time-2)**2-2,'r--',label=r'$\hat x_1$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Value')
plt.show()
One issue is that x1(1-e8)+x1(2-1e-8)=0 is used as a constraint instead of x1(0)+x1(2)=0. The numerical solutions should be nearly equivalent and the 1e-8 can be further reduced.

Gekko optimal control. How to create multiple termination objectives/conditions?

So I am simulating plane flight. The plane flies certain distance (pathx and pathy variables) and then the simulation stops, when certain pathx and pathy values are reached. The solver is trying to minimize the fuel consumption (m.Maximize(mass*tf*final), by maximizing the mass value. The solver controls the accelerator pedal position (Tcontr).
Right now the termination condition is defined like this:
For X axis:
m.Equation(x*final<=pathx)
and
m.Minimize(final*(x-pathx)**2)
And for Y axis:
m.Equation(y*final<=pathy)
and
m.Minimize(final*(y-pathy)**2)
And right now the simulation ends when the desired X value is achieved, while desired Y values is not being achieved.
How do I force the simulation to end when both desired (X and Y) values are achieved?
My code:
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
import math
#Gekko model
m = GEKKO(remote=False)
#Time points
nt = 11
tm = np.linspace(0,100,nt)
m.time = tm
# Variables
Ro = m.Var(value=1.1)#air density
g = m.Const(value=9.80665)
pressure = m.Var(value=101325)#
T = m.Var(value=281,lb=100)#temperature
T0 = m.Const(value=288)#temperature at see level
S = m.Const(value=122.6)
Cd = m.Const(value=0.1)#drag coef
Cl = m.Var(value=1)#lift couef
FuelFlow = m.Var()
D = m.Var(value=25000,lb=0)#drag
Thrmax = m.Const(value=200000)#maximum throttle
Thr = m.Var()#throttle
V = m.Var(value=100,lb=50,ub=240)#velocity
gamma = m.Var(value=0)# Flight-path angle
gammaa = gamma.value
Xi = m.Var(value=0)# Heading angle
Xii = Xi.value
x = m.Var(value=0,lb=0)#x position
y = m.Var(value=0,lb=0)#y position
h = m.Var(value=1000,lb=0)# height
mass = m.Var(value=60000,lb=10000)
pathx = m.Const(value=50000) #intended distance length
pathy = m.Const(value=50000)
L = m.Var(value=0.1)#lift
p = np.zeros(nt)
p[-1] = 1.0
final = m.Param(value=p)
m.options.MAX_ITER=10000 # iteration number
#Fixed Variable
tf = m.FV(value=1,lb=0.0001,ub=1000.0)#
tf.STATUS = 1
# Controlled parameters
Tcontr = m.MV(value=0.2,lb=0.1,ub=1)# solver controls throttle pedal position
Tcontr.STATUS = 1
Tcontr.DCOST = 0
#Mu = m.Var(value=0)
Mu = m.MV(value=0,lb=-1.5,ub=1.5)# solver controls bank angle
Mu.STATUS = 1
Mu.DCOST = 0
Muu = Mu.value
# Equations
m.Equation(Thr==Tcontr*Thrmax)
m.Equation(FuelFlow==0.75882*(1+(V/2938.5)))
m.Equation(D==0.5*Ro*(V**2)*Cd*S)
m.Equation(mass.dt()==tf*(-Thr*(FuelFlow/60000)))#
m.Equation(V.dt()==tf*((Thr-D)/mass))#
m.Equation(x.dt()==tf*(V*(math.cos(gammaa.value))*(math.cos(Xii.value))))#
m.Equation(x*final<=pathx)
#pressure and density part
m.Equation(T==T0-(0.0065*h))
m.Equation(pressure==101325*(1-(0.0065*h)/T0)**((g*0.0289652)/(8.31446*0.0065)))#
m.Equation(Ro*(8.31446*T)==(pressure*0.0289652))
#2D addition part
m.Equation(L==0.5*Ro*(V**2)*Cl*S)
m.Equation(Xi.dt()==tf*((L*math.sin(Muu.value))/(mass*V)))
m.Equation(y.dt()==tf*(V*(math.cos(gammaa.value))*(math.sin(Xii.value))))#
m.Equation(y*final<=pathy)
# Objective Function
m.Minimize(final*(x-pathx)**2) #1D part
m.Minimize(final*(y-pathy)**2) #2D part
m.Maximize(mass*tf*final) #objective function
m.options.IMODE = 6
m.options.NODES = 2 # it was 3 before
m.options.MV_TYPE = 1
m.options.SOLVER = 3
#m.open_folder() # to search for infeasibilities
m.solve()
tm = tm * tf.value[0]
fig, axs = plt.subplots(8)
fig.suptitle('Results')
axs[0].plot(tm,Tcontr,'r-',LineWidth=2,label=r'$Tcontr$')
axs[0].legend(loc='best')
axs[1].plot(tm,V.value,'b-',LineWidth=2,label=r'$V$')
axs[1].legend(loc='best')
axs[2].plot(tm,x.value,'r--',LineWidth=2,label=r'$x$')
axs[2].legend(loc='best')
axs[3].plot(tm,D.value,'g-',LineWidth=2,label=r'$D$')
axs[3].legend(loc='best')
axs[4].plot(tm,mass.value,'g:',LineWidth=2,label=r'$mass$')
axs[4].legend(loc='best')
axs[5].plot(tm,T.value,'p-',LineWidth=2,label=r'$T$')
axs[5].legend(loc='best')
axs[6].plot(tm,Mu.value,'p-',LineWidth=2,label=r'$Mu$')
axs[6].legend(loc='best')
axs[7].plot(tm,y.value,'p-',LineWidth=2,label=r'$y$')
axs[7].legend(loc='best')
plt.xlabel('Time')
#plt.ylabel('Value')
plt.show()
Important Update
It looks like termination conditions (all of the above) work as intended. Y axis values can not be reached, because it looks like the math involving it is not working properly.
Y value is being calculated by this equation:
I have turned into this: m.Equation(y.dt()==tf*(V*(math.cos(gammaa.value))*(math.sin(Xii.value))))
Where: V is true air speed (works properly);
tf is a variable that controls simulation time (works properly);
gammaa is derived from gamma, which is flight-path angle, which is 0 in this simulation (works properly);
Xii is derived from Xi, which is heading angle (the main culprit).
Xi value is defined by this equation:
I turned it into this: m.Equation(Xi.dt()==tf*((L*math.sin(Muu.value))/(mass*V)))
Where: L is lift force (works properly);
mass is mass (works properly);
V is true air speed (works properly);
Muu is derived from Mu, which is bank angle, the solver controlled variable (probably the bad apple here).
Y value calculation should be working like this: solver changes Mu, which affects The heading angle Xi, which then should affect Y value.
After some experiments it looks like the range of changes of the Mu value during the simulation is so small, that it barely affects Y value. But it should be a lot wider since Mu boundaries are quite wide (lb=-1.5,ub=1.5). I tried to remove those boundaries, but it did not affect the results of the simulation.
What could be messing up everything here?
Try adding a hard terminal constraint for both:
m.Equation((x-pathx)*final==0)
m.Equation((y-pathy)*final==0)
Alternatively, increase the weight on the terminal condition.
w = 1e3
m.Minimize(w*final*(x-pathx)**2) #1D part
m.Minimize(w*final*(y-pathy)**2) #2D part
You may need to use one or both strategies. Terminal conditions can be challenging to solve.
Response to Important Update
Use the Gekko functions with m.sin() and m.cos() instead of the math functions. Also, don't use .value in the equations. Gekko needs the full symbolic graph so that it can compile the equations into byte-code and produce function evaluations and the derivatives with automatic differentiation.
m.Equation(y.dt()==tf*(V*(m.cos(gammaa))*(m.sin(Xii))))
It also helps to avoid divide by zero by multiplying any denominator over to the other side.
m.Equation(mass*V*Xi.dt()==tf*((L*m.sin(Muu))))

Gekko: Problem with the obtained solution

I am trying to solve the following Optimal Control Problem in GEKKO:
I know a priori that the path for c is:
where the parameter values are: r = 0.33, i = 0.5, K(0) = 10 and T = 10.
I wrote the following code in Python:
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
m = GEKKO(remote=True)
nt = 101; m.time = np.linspace(0,10,nt)
r = 0.33
i = 0.5
# Variables
c = m.Var()
k = m.Var(value=10)
objective = m.Var()
rate = [-r*t/10 for t in range(0, 101)]
factor = m.exp(rate)
p = np.zeros(nt)
p[-1] = 1.0
final = m.Param(value=p)
disc = m.Param(value=factor)
# Equations
m.Equation(k.dt() == i*k - c)
m.Equation(objective.dt() == disc*m.log(c))
# Objective Function
m.Maximize(final*objective)
m.options.IMODE = 6
m.solve()
plt.figure(1)
plt.plot(m.time,c.value,'k:',LineWidth=2,label=r'$C$')
plt.plot(m.time,k.value,'b-',LineWidth=2,label=r'$K$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Value')
plt.show()
The solved path for c and k is as shown below:
This clearly is not right because c should be increasing with time from just eye-balling the solution given before hand.
I'm not sure where I am wrong.
The optimal control problem as it is currently written is unbounded. The value of c will go to infinity to maximize the function. I set an upper bound of 100 on c and the solver went to that bound. I reformulated the model to reflect the current problem statement. Here are a few suggestions:
Use the m.integral() function to make the model more readable.
Initialize c at a value other than 0 (default). You may also want to set a lower bound with c>0.01 so that m.log(c) is not undefined if the solver tries a value <0.
Only use Gekko functions inside Gekko equations such as with factor = m.exp(rate). Use factor = np.exp(rate) instead unless it is in a Gekko equation where it can be evaluated.
Include a plot of the exact solution so that you can compare the exact and numerical solution.
Use m.options.NODES=3 with c=m.MV() and c.STATUS=1 to increase the solution accuracy. The default is m.options.NODES=2 that isn't as accurate.
You can free the initial condition with m.free_initial(c) to calculate the initial value of c.
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
m = GEKKO(remote=True)
nt = 101; m.time = np.linspace(0,10,nt)
r = 0.33
i = 0.5
# Variables
c = m.MV(4,lb=0.01,ub=100); c.STATUS=1
#m.free_initial(c)
k = m.Var(value=10)
objective = m.Var(0)
t = m.Param(m.time)
m.Equation(objective==m.exp(-r*t)*m.log(c))
# just to include on the plot
iobj = m.Intermediate(m.integral(objective))
p = np.zeros(nt)
p[-1] = 1.0
final = m.Param(value=p)
# Equations
m.Equation(k.dt() == i*k - c)
# Objective Function
m.Maximize(final*m.integral(objective))
m.options.IMODE = 6
m.solve()
plt.figure(1)
plt.subplot(3,1,1)
plt.plot(m.time,c.value,'k:',linewidth=2,label=r'$C_{gekko}$')
C_sol = r*10*np.exp((i-r)*m.time)/(1-np.exp(-r*10))
plt.plot(m.time,C_sol,'r--',linewidth=2,label=r'$C_{exact}$')
plt.ylabel('Value'); plt.legend(loc='best')
plt.subplot(3,1,2)
plt.plot(m.time,k.value,'b-',linewidth=2,label=r'$K$')
plt.legend(loc='best')
plt.subplot(3,1,3)
plt.plot(m.time,objective.value,'g:',linewidth=2,label=r'$obj$')
plt.plot(m.time,iobj.value,'k',linewidth=2,label=r'$\int obj$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.show()
Is there additional information that this problem is missing?
Edit: Added additional constraint k>0.
Added additional constraint as suggested in the comment. There is a small difference at the end from the exact solution because the last c value does not appear to influence the solution.
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
m = GEKKO(remote=True)
nt = 101; m.time = np.linspace(0,10,nt)
r = 0.33
i = 0.5
# Variables
c = m.MV(4,lb=0.001,ub=100); c.STATUS=1; c.DCOST=1e-6
m.free_initial(c)
k = m.Var(value=10,lb=0)
objective = m.Var(0)
t = m.Param(m.time)
m.Equation(objective==m.exp(-r*t)*m.log(c))
# just to include on the plot
iobj = m.Intermediate(m.integral(objective))
p = np.zeros(nt)
p[-1] = 1.0
final = m.Param(value=p)
# Equations
m.Equation(k.dt() == i*k - c)
# Objective Function
m.Maximize(final*m.integral(objective))
m.options.IMODE = 6
m.options.NODES = 3
m.solve()
plt.figure(1)
plt.subplot(3,1,1)
plt.plot(m.time,c.value,'k:',linewidth=2,label=r'$C_{gekko}$')
C_sol = r*10*np.exp((i-r)*m.time)/(1-np.exp(-r*10))
plt.plot(m.time,C_sol,'r--',linewidth=2,label=r'$C_{exact}$')
plt.ylabel('Value'); plt.legend(loc='best')
plt.subplot(3,1,2)
plt.plot(m.time,k.value,'b-',linewidth=2,label=r'$K$')
plt.legend(loc='best')
plt.subplot(3,1,3)
plt.plot(m.time,objective.value,'g:',linewidth=2,label=r'$obj$')
plt.plot(m.time,iobj.value,'k',linewidth=2,label=r'$\int obj$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.show()

Categories

Resources