Using a different dataset for ticks with matplotlib - python

I have a question concerning matplotblib in Python. I am working with a dataset, which has 30 sessions. In each session there are 0 to 5 runs. I have created a plot, which displays the values of each run over the run. So the runs go from 0-200. However, I need the ticks to be resetted when a new run starts. So instead of 0-200, I want 0,1,2,3...0,1,2...0,1,2,3,4,5. The graph as it is however, is not supposed to change. Do you have any idea how this would be possible?
The code:
for ses in range(len(all_runs)):
if len(all_runs[ses]) > 0:
plt.plot(xval[ses],all_runs[ses],'.-',color='tab:blue')

You can pass a labels argument to plt.xticks(), specifying the repeating tick labels, without changing the plotted data. For example:
import matplotlib.pyplot as plt
n = 5 # number of ticks per run
r = 3 # number of runs
# sample plot
plt.plot(list(range(n * r)))
plt.xticks(list(range(n * r)))
# set repeating tick labels
ticks = list(plt.xticks()[0])
plt.xticks(ticks, labels = ticks[:n] * r);

If I understand the question correctly, this is how it would work. Optionally, the minor ticks could indicate the sessions.
import matplotlib.pyplot as plt
import numpy as np
xval = [np.array([0, 1, 2, 3, 4]), np.array([5, 6, 7, 8, 9, 10]), np.array([11, 12, 13, 14, 15, 16, 17])]
all_runs = [np.random.randint(1, 10, len(xv)) for xv in xval]
total_len = sum([len(xv) for xv in xval])
for ses in range(len(all_runs)):
if len(all_runs[ses]) > 0:
plt.plot(xval[ses], all_runs[ses], '.-', color='tab:blue')
# if ses > 0:
# plt.axvline(xval[ses][0] - 0.5, ls=':', lw=1, color='purple')
plt.xticks(range(total_len), [i for xv in xval for i in range(len(xv))])
ax = plt.gca()
ax.set_xticks([xv[0] + 0.1 for xv in xval if len(xv) > 0], minor=True)
ax.set_xticklabels([f'session {i}' for i, xv in enumerate(xval) if len(xv) > 0], minor=True)
ax.tick_params(axis='x', which='minor', length=0, pad=18)
for tick in ax.xaxis.get_minor_ticks():
tick.label1.set_horizontalalignment('left')
plt.show()

Related

How to create a step-plot with a gradient based on y-value?

In Python matplotlib, how can you get the line in a line or step plot to display a gradient based on the y-value?
Example plot (made in Tableau):
Code for step plot with a line that changes gradient according to x-value, adapted from this answer:
fig, ax = plt.subplots(figsize=(10, 4))
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
y = [2, 3, 9, 10, 2, 9, 0, 1, 9, 1, -8]
T = np.linspace(0,1,np.size(x))**2
s = 1
for i in range(0, len(x)-s, s):
ax.step(x[i:i+s+1], y[i:i+s+1], marker='.', color=(0.0,0.5,T[i]))
ax.tick_params(axis='both', colors='lightgray', labelsize=8)
The following code is inspired by the multicolored-line example from the matplotlib docs. First the horizontal line segments are drawn and colored using their y-value. The vertical segments are subdivided in small chunks to colored individually.
vmin of the norm is set a bit lower to avoid the too-light range of the colormap.
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
import numpy as np
x = np.arange(50)
y = np.random.randint(-3, 4, x.size).cumsum()
fig, ax = plt.subplots()
norm = plt.Normalize(y.min() - y.ptp() * .2, y.max())
cmap = 'inferno_r' # 'Reds'
horizontal_lines = np.array([x[:-1], y[:-1], x[1:], y[:-1]]).T.reshape(-1, 2, 2)
hor_lc = LineCollection(horizontal_lines, cmap=cmap, norm=norm)
hor_lc.set_array(y[:-1])
ax.add_collection(hor_lc)
factor = 10
long_y0 = np.linspace(y[:-1], y[1:], factor)[:-1, :].T.ravel()
long_y1 = np.linspace(y[:-1], y[1:], factor)[1:, :].T.ravel()
long_x = np.repeat(x[1:], factor - 1)
vertical_lines = np.array([long_x, long_y0, long_x, long_y1]).T.reshape(-1, 2, 2)
ver_lc = LineCollection(vertical_lines, cmap=cmap, norm=norm)
ver_lc.set_array((long_y0 + long_y1) / 2)
ax.add_collection(ver_lc)
ax.scatter(x, y, c=y, cmap=cmap, norm=norm)
plt.autoscale() # needed in case the scatter plot would be omited
plt.show()
Here is another example, with a black background. In this case the darkest part of the colormap is avoided. The changed code parts are:
y = np.random.randint(-9, 10, x.size)
ax.patch.set_color('black')
norm = plt.Normalize(y.min(), y.max() + y.ptp() * .2)
cmap = 'plasma_r'
Here is an example with a TwoSlopeNorm and the blue-white-red colormap:
from matplotlib.colors import TwoSlopeNorm
y = np.random.uniform(-1, 1, x.size * 10).cumsum()[::10]
y = (y - y.min()) / y.ptp() * 15 - 5
norm = TwoSlopeNorm(vmin=-5, vcenter=0, vmax=10)
cmap = 'bwr'

dash from the point to x and y axes in matplotlib

as you can see, I want to make the dash connect to the x and y axes.
There is always a small gap.
I use matplotlib
the vline function, and I don't know how to use the transform parameters.
Using vlines and hlines from matplotlib.pyplot, you can specify your axes and your line limits:
from matplotlib import pyplot as plt
# Drawing example diagram
plt.scatter(x=11,y=0.891)
plt.xlim(5,20)
plt.xticks([5,8,11,14,17,20])
plt.ylim(0.780,0.9)
# Specifying lines, notice how despite setting xmin and ymin lower than your axes,
# the lines stop at each boundary
plt.vlines(x=11, ymin=0.7, ymax=0.891, colors='r',linestyles='dashed')
plt.hlines(y=0.891, xmin=4, xmax=11, colors='k',linestyles='dashed')
plt.show()
The result is beautiful, but the code not so good.
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.ticker as ticker
x = [i for i in range(5, 21, 3)]
# [5, 8, 11, 14, 17, 20]
y = [0.780, 0.865, 0.891, 0.875, 0.884, 0.870]
y_max_index = np.argmax(y)
# print(y_max_index)
# get the max point
x_max = x[y_max_index]
y_max = y[y_max_index]
fig, ax = plt.subplots()
ax.plot(x, y, marker='o', color='r')
# set x ticks as [5, 8, 11, 14, 17, 20]
my_x_ticks = x
plt.xticks(my_x_ticks)
# set x and y lim
axe_y_min, axe_y_max = ax.get_ylim()
axe_x_min, axe_x_max = ax.get_xlim()
ax.set_ylim(axe_y_min, axe_y_max)
ax.set_xlim(axe_x_min, axe_x_max)
plt.gca().yaxis.set_major_formatter(ticker.FormatStrFormatter('%.3f')) # set y axe format
anno_text = "(11, 0.891)"
plt.annotate(anno_text, xy=(x_max, y_max), xytext=(x_max+0.5, y_max)) # annotate
y_scale_trans = (y_max - axe_y_min) / (axe_y_max - axe_y_min)
x_scale_trans = (x_max - axe_x_min) / (axe_x_max - axe_x_min)
ax.vlines(x_max, 0, y_scale_trans, transform=ax.get_xaxis_transform(), colors='black', linestyles="dashed")
ax.hlines(y_max, 0, x_scale_trans, transform=ax.get_yaxis_transform(), colors='black', linestyles="dashed")
plt.ylabel("准确率")
plt.xlabel("滑动窗口大小")
plt.savefig("滑动窗口.pdf", dpi=100)
plt.show()
Here is a solution using plt.plot to draw the lines.
import matplotlib.pyplot as plt
import numpy as np
y = np.random.randint(1, 10, 10)
x = np.arange(len(y))
point = [x[2], y[2]]
plt.plot(x,y)
plt.plot((point[0], point[0]), (0, point[1]), '--')
plt.plot((0, point[0]), (point[1], point[1]), '--')
plt.xlim(0,10)
plt.ylim(0,10)

Is it possible to change the frequency of ticks on a pyplot INDEPENDENT of length of data set and zoom?

When I plot data using matplotlib I always have 5-9 ticks on my x-axis independent of the range I plot, and if I zoom on the x-axis the tick spacing decreases, so I still see 5-9 ticks.
however, I would like 20-30 ticks on my x-axis!
I can achieve this with the following:
from matplotlib import pyplot as plt
import numpy as np
x = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]
y = [1, 4, 3, 2, 7, 6, 9, 8, 10, 5]
number_of_ticks_on_x_axis = 20
plt.plot(x, y)
plt.xticks(np.arange(min(x), max(x)+1, (max(x) - min(x))/number_of_ticks_on_x_axis))
plt.show()
If I now zoom on the x-axis, no new ticks appear between the existing ones. I would like to still have ~20 ticks however much I zoom.
Assuming that you want to fix the no. of ticks on the X axis
...
from matplotlib.ticker import MaxNLocator
...
fig, ax = plt.subplots()
ax.xaxis.set_major_locator(MaxNLocator(15, min_n_ticks=15))
...
Please look at the docs for MaxNLocator
Example
In [36]: import numpy as np
...: import matplotlib.pyplot as plt
In [37]: from matplotlib.ticker import MaxNLocator
In [38]: fig, ax = plt.subplots(figsize=(10,4))
In [39]: ax.grid()
In [40]: ax.xaxis.set_major_locator(MaxNLocator(min_n_ticks=15))
In [41]: x = np.linspace(0, 1, 51)
In [42]: y = x*(1-x)
In [43]: plt.plot(x, y)
Out[43]: [<matplotlib.lines.Line2D at 0x7f9eab409e10>]
gives
and when I zoom into the maximum of the curve I get
You can link a callback function to an event in the canvas. In you case you can trigger a function that updates the axis when a redraw occurs.
from matplotlib import pyplot as plt
import numpy as np
x = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]
y = [1, 4, 3, 2, 7, 6, 9, 8, 10, 5]
n = 20
plt.plot(x, y)
plt.xticks(np.arange(min(x), max(x)+1, (max(x) - min(x))/n), rotation=90)
def on_zoom(event):
ax = plt.gca()
fig = plt.gcf()
x_min, x_max = ax.get_xlim()
ax.set_xticks(np.linspace(x_min, x_max, n))
# had to add flush_events to get the ticks to redraw on the last update.
fig.canvas.flush_events()
fig = plt.gcf()
fig.canvas.mpl_disconnect(cid)
cid = fig.canvas.mpl_connect('draw_event', on_zoom)

matplotlib - How to plot a graph with uneven intervals of 2^n?

I have 2 lists, each has 128 elements
x = [1,2,3,...,128]
y = [y1,y2,...,y128]
How should I use matplotlib to plot (x,y) with x axis appearing as shown in this screenshot?
To replicate the graph, I have (1) created 2 additional lists from the original lists, and (2) used set_xticklabels:
f, ax1 = plt.subplots(1,1,figsize=(16,7))
x1 = [1, 2, 4, 8, 16, 32, 64, 128]
y1 = [y[0],y[1],y[3],y[7],y[15],y[31],y[63],y[127]]
line1 = ax1.plot(x1,y1,label="Performance",color='b',linestyle="-")
ax1.set_xticklabels([0,1,2,4,8,16,32,64,128])
ax1.set_xlabel('Time Period',fontsize=15)
ax1.set_ylabel("Value",color='b',fontsize=15)
The problem with this approach is that only 8 pairs of value are plotted, and 120 pairs are ommitted.
If my comments aren't clear enough, please, ask. :)
from matplotlib import pyplot as plt
# Instanciating my lists...
f = lambda x:x**2
x = [nb for nb in range(1, 129)]
y = [f(nb) for nb in x]
# New values you want to plot, with linear spacing.
indexes_to_keep = [1, 2, 4, 8, 16, 32, 64, 128]
y_to_use = [y[nb - 1] for nb in indexes_to_keep]
# First plot that shows the 128 points as a whole.
fig = plt.figure(figsize=(10, 5.4))
ax1 = fig.add_subplot(121)
ax1.plot(x, y)
ax1.set_title('Former values')
# Second plot that shows only the indexes you wish to keep.
ax2 = fig.add_subplot(122)
# my_ticks = [1, 2, 3, 4, 5, 6, 7]
# meaning : my_ticks will be linear values.
my_ticks = [i for i in range(len(indexes_to_keep))]
# We set the ticks we want to show, meaning : all our list
# instead of some linear spacing matplotlib will show by default
ax2.set_xticks(my_ticks)
# Then, we manually change the name of the X ticks.
ax2.set_xticklabels(indexes_to_keep)
# We will then, plot the LINEAR x axis,
# but with respect to the y-axis values pre-processed.
ax2.plot(my_ticks, y_to_use)
ax2.set_title('New selected values with linear spacing')
plt.show()
Showing...
What you are looking for is a logarithmic scale with base 2. matplotlib provides logarithmic scales and you can define any base you want:
from matplotlib import pyplot as plt
from matplotlib.ticker import ScalarFormatter
#sample data
x = list(range(1, 130))
y = list(range(3, 260, 2))
f, ax1 = plt.subplots(1,1,figsize=(16,7))
x1 = [ 1, 2, 4, 8, 16, 32, 64, 128]
y1 = [y[0],y[1],y[3],y[7],y[15],y[31],y[63],y[127]]
#just the points, where the ticks are
ax1.plot(x1, y1,"bo-", label = "Performance")
#all other points to contrast this
ax1.plot(x, [270 - i for i in y], "rx-", label = "anti-Performance")
#transform x axis into logarithmic scale with base 2
plt.xscale("log", basex = 2)
#modify x axis ticks from exponential representation to float
ax1.get_xaxis().set_major_formatter(ScalarFormatter())
ax1.set_xlabel('Time Period',fontsize=15)
ax1.set_ylabel("Value",color='b',fontsize=15)
plt.legend()
plt.show()
Output:

How to disable the minor ticks of log-plot in Matplotlib?

Here is a simple plot:
1) How to disable the ticks?
2) How to reduce their number?
Here is a sample code:
from pylab import *
import numpy as np
x = [5e-05, 5e-06, 5e-07, 5e-08, 5e-09, 5e-10]
y = [-13, 14, 100, 120, 105, 93]
def myfunc(x,p):
sl,yt,yb,ec=p
y = yb + (yt-yb)/(1+np.power(10, sl*(np.log10(x)-np.log10(ec))))
return y
xp = np.power(10, np.linspace(np.log10(min(x)/10), np.log10(max(x)*10), 100))
pxp=myfunc(xp, [1,100,0,1e-6])
subplot(111,axisbg="#dfdfdf")
plt.plot(x, y, '.', xp, pxp, 'g-', linewidth=1)
plt.xscale('log')
plt.grid(True,ls="-", linewidth=0.4, color="#ffffff", alpha=0.5)
plt.draw()
plt.show()
Which produces:
plt.minorticks_off()
Turns em off!
To change the number of them/position them, you can use the subsx parameter. like this:
plt.xscale('log', subsx=[2, 3, 4, 5, 6, 7, 8, 9])
From the docs:
subsx/subsy: Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10 scale: [2,
3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major
tick.
Calling plt.minorticks_off() will apply this to the current axis. (The function is actually a wrapper to gca().minorticks_off().)
You can also apply this to an individual axis in the same way:
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.minorticks_off()
from pylab import *
import numpy as np
x = [5e-05, 5e-06, 5e-07, 5e-08, 5e-09, 5e-10]
y = [-13, 14, 100, 120, 105, 93]
def myfunc(x,p):
sl,yt,yb,ec=p
y = yb + (yt-yb)/(1+np.power(10, sl*(np.log10(x)-np.log10(ec))))
return y
xp = np.power(10, np.linspace(np.log10(min(x)/10), np.log10(max(x)*10), 100))
pxp=myfunc(xp, [1,100,0,1e-6])
ax=subplot(111,axisbg="#dfdfdf")
plt.plot(x, y, '.', xp, pxp, 'g-', linewidth=1)
plt.xscale('log')
plt.grid(True,ls="-", linewidth=0.4, color="#ffffff", alpha=0.5)
plt.minorticks_off() # turns off minor ticks
plt.draw()
plt.show()

Categories

Resources