I am trying to set an interactive notebook up that plots some interpolated GPS data. I have the plotting working by itself, but I am trying to use the ipython widgets to make it more interactive for others.
Currently, my plotting looks like this
def create_grid(array,spacing=.01):
'''
creates evenly spaced grid from the min and max of an array
'''
grid = np.arange(np.amin(array), np.amax(array),spacing)
return grid
def interpolate(x, y, z, grid_spacing = .01, model='spherical',returngrid = False):
'''Interpolates z value and uses create_grid to create a grid of values based on min and max of x and y'''
grid_x = create_grid(x,spacing = grid_spacing)
grid_y = create_grid(y, spacing = grid_spacing)
OK = OrdinaryKriging(x, y, z, variogram_model=model, verbose = False,\
enable_plotting=False, nlags = 20)
z1, ss1 = OK.execute('grid', grid_x,grid_y,mask = False)
print('Interpolation Complete')
vals=np.ma.getdata(z1)
sigma = np.ma.getdata(ss1)
if returngrid == False:
return vals,sigma
else:
return vals, sigma, grid_x, grid_y
mesh_x, mesh_y = np.meshgrid(grid_x,grid_y)
plot = plt.scatter(mesh_x, mesh_y, c = z1, cmap = cm.hsv)
cb = plt.colorbar(plot)
cb.set_label('Northing Change')
plt.show()
'''
This works currently, but I am trying to set up a widget to change the variogram model in the kriging interpolation, as well as change the field to be interpolated.
Currently, to do that I have:
def update_plot(zfield,variogram):
plt.clf()
z1, ss1, grid_x,grid_y =interpolate(lon,lat,zfield,returngrid= True,model=variogram)
mesh_x, mesh_y = np.meshgrid(grid_x,grid_y)
plot = plt.scatter(mesh_x, mesh_y, c = z1, cmap = cm.hsv)
cb = plot.colorbar(plot)
cb.set_label('Interpolated Value')
variogram = widgets.Dropdown(options = ['linear', 'power', 'gaussian', 'spherical', 'exponential', 'hole-effect'],
value = 'spherical', description = "Variogram model for interpolation")
zfield = widgets.Dropdown(options = {'Delta N':delta_n, 'Delta E': delta_e,'Delta V':delta_v},value = 'Delta N',
description = 'Interpolated value')
widgets.interactive(update_plot, variogram = variogram,zfield =zfield)
Which brings up the error
TraitError: Invalid selection: value not found
the values delta_n, delta_e and delta_v are numpy arrays. I have tried looking at documentation but it is not as detailed as something like matplotlibs documentation or something so I feel like I am kind of flying blind here.
Thank you
In this line, you specify the possible values of the Dropdown as:
zfield = widgets.Dropdown(options = {'Delta N':delta_n, 'Delta E': delta_e,'Delta V':delta_v}
When a mapping is used, the values of the dict are interpreted as the possible options. So value = 'Delta N' causes an error as this is not one of the possible values of the Dropdown (although it is one of the keys in the mapping dict). I believe you want value = delta_n instead.
Related
I have created a code that returns the output that I am after - 2 graphs with multiple lines on each graph. However, the code is slow and quite big (in terms of how many lines of code it takes). I am interested in any improvements I can make that will help me to get such graphs faster, and make my code more presentable.
Additionally, I would like to add more to my graphs (axis names and titles is what I am after). Normally, I would use plt.xlabel,plt.ylabel and plt.title to do so, however I couldn't quite understand how to use them here. The aim here is to add a line to each graph after each loop ( I have adapted this piece of code to do so).
I should note that I need to use Python for this task (so I cannot change to anything else) and I do need Sympy library to find values that are plotted in my graphs.
My code so far is as follows:
import matplotlib.pyplot as plt
import sympy as sym
import numpy as np
sym.init_printing()
x, y = sym.symbols('x, y') # defining our unknown probabilities
al = np.arange(20,1000,5).reshape((196,1)) # values of alpha/beta
prob_of_strA = []
prob_of_strB = []
colours=['r','g','b','k','y']
pen_values = [[0,-5,-10,-25,-50],[0,-25,-50,-125,-250]]
fig1, ax1 = plt.subplots()
fig2, ax2 = plt.subplots()
for j in range(0,len(pen_values[1])):
for i in range(0,len(al)): # choosing the value of beta
A = sym.Matrix([[10, 50], [int(al[i]), pen_values[0][j]]]) # defining matrix A
B = sym.Matrix([[pen_values[1][j], 50], [int(al[i]), 10]]) # defining matrix B
sigma_r = sym.Matrix([[x, 1-x]]) # defining the vector of probabilities
sigma_c = sym.Matrix([y, 1-y]) # defining the vector of probabilities
ts1 = A * sigma_c ; ts2 = sigma_r * B # defining our utilities
y_sol = sym.solvers.solve(ts1[0] - ts1[1],y,dict = True) # solving for y
x_sol = sym.solvers.solve(ts2[0] - ts2[1],x,dict = True) # solving for x
prob_of_strA.append(y_sol[0][y]) # adding the value of y to the vector
prob_of_strB.append(x_sol[0][x]) # adding the value of x to the vector
ax1.plot(al,prob_of_strA,colours[j],label = ["penalty = " + str(pen_values[0][j])]) # plotting value of y for a given penalty value
ax2.plot(al,prob_of_strB,colours[j],label = ["penalty = " + str(pen_values[1][j])]) # plotting value of x for a given penalty value
ax1.legend() # showing the legend
ax2.legend() # showing the legend
prob_of_strA = [] # emptying the vector for the next round
prob_of_strB = [] # emptying the vector for the next round
You can save a couple of lines by initializing your empty vectors inside the loop. You don't have to bother re-defining them at the end.
for j in range(0,len(pen_values[1])):
prob_of_strA = []
prob_of_strB = []
for i in range(0,len(al)): # choosing the value of beta
A = sym.Matrix([[10, 50], [int(al[i]), pen_values[0][j]]]) # defining matrix A
B = sym.Matrix([[pen_values[1][j], 50], [int(al[i]), 10]]) # defining matrix B
sigma_r = sym.Matrix([[x, 1-x]]) # defining the vector of probabilities
sigma_c = sym.Matrix([y, 1-y]) # defining the vector of probabilities
ts1 = A * sigma_c ; ts2 = sigma_r * B # defining our utilities
y_sol = sym.solvers.solve(ts1[0] - ts1[1],y,dict = True) # solving for y
x_sol = sym.solvers.solve(ts2[0] - ts2[1],x,dict = True) # solving for x
prob_of_strA.append(y_sol[0][y]) # adding the value of y to the vector
prob_of_strB.append(x_sol[0][x]) # adding the value of x to the vector
ax1.plot(al,prob_of_strA,colours[j],label = ["penalty = " + str(pen_values[0][j])]) # plotting value of y for a given penalty value
ax2.plot(al,prob_of_strB,colours[j],label = ["penalty = " + str(pen_values[1][j])]) # plotting value of x for a given penalty value
ax1.legend() # showing the legend
ax2.legend() # showing the legend
For a linear logistic regression model formulated as follows:
I was trying to code the likelihood and plot it to see what it looks like. This is how I've implemented it:
# Define likelihood function
def likelihood(beta):
# reshape correctly
beta = np.array(beta).reshape(-1, 1)
# X beta has x_i^T * \beta in every entry
Xbeta = np.matmul(X, beta).flatten()
exp_argument = np.multiply(newrows.y.values, Xbeta)
numerator = np.exp(exp_argument.sum())
denominator = np.prod((1 + np.exp(Xbeta)))
return numerator / denominator
# Prepare a grid
b1 = np.linspace(-10, -8.5, 100) # these values chosen by trial and error
b2 = np.linspace(4.5, 6.2, 100) # these values chosen by trial and error
B1, B2 = np.meshgrid(b1, b2)
# Evaluate function at the gridpoints
Zbeta = np.array([likelihood(thing) for thing in zip(B1.ravel(), B2.ravel())])
Zbeta = Zbeta.reshape(B1.shape)
# Surface plot
fig = plt.figure(figsize=(15, 6))
ax = fig.add_subplot(121, projection='3d')
ax.plot_surface(B1, B2, Zbeta)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax = fig.add_subplot(122)
ax.contour(B1, B2, Zbeta)
plt.show()
Here the matrix X is a matrix containing "fake" Bernoulli observations. It is a well known dataset called BeetleMortality, which looks like this and I've stored it in a Pandas Dataframe called data.
which are basically Binomial observations. I've created Bernoulli observations as follows:
newrows = np.zeros((data.NumberExposed.sum(), 2))
for index, row in data.iterrows():
obs = np.zeros(int(row.NumberExposed), dtype=int)
obs[:int(row.NumberKilled)] = 1
np.random.shuffle(obs)
obs = obs.reshape(-1, 1)
doses = np.repeat(row.Dose, len(obs)).reshape(-1, 1)
obs = np.hstack((doses, obs))
from_index = int(row.CumulativeN - row.NumberExposed)
to_index = int(row.CumulativeN)
newrows[from_index:to_index] = obs
# Save it as a dataframe
newrows = pd.DataFrame(newrows, columns=['x', 'y'])
# Notice that if you wanted to check that these calculations are correct use: newrows.groupby('x').sum()
newrows.head()
Everything seems to work fine, except that when I try to plot this I obtain the following plot:
Which makes absolutely no sense.. Any help? Maybe I'm implementing the likelihood function in the wrong way?
I'm creating a scatter plot from an xarray Dataset using
scat = ds.hvplot.scatter(x='a', y='b', groupby='c', height=900, width=900)
How can I add a regression line to this plot?
I'm also using this to set some of the properties in the plot and I could add the Slope within the hook function but I can't figure out how to access x and y from the plot.state. This also might be completely the wrong way of doing it.
scat = scat.opts(hooks=[hook])
def hook(plot, element):
print('plot.state: ', plot.state)
print('plot.handles: ', sorted(plot.handles.keys()))
par = np.polyfit(x, y, 1, full=True)
gradient=par[0][0]
y_intercept=par[0][1]
slope = Slope(gradient=gradient, y_intercept=y_intercept,
line_color='orange', line_dash='dashed', line_width=3.5)
plot.state.add_layout(slope)
scat = scat.opts(hooks=[hook])
HoloViews >= 1.13 now has support for adding a regression line to your plot, so you don't need hooks anymore.
1) You can either add the regression line yourself by specifying keywords slope and y_intercept:
gradient = 2
y_intercept = 15
# create random data
xpts = np.arange(0, 20)
ypts = gradient * xpts + y_intercept + np.random.normal(0, 4, 20)
scatter = hv.Scatter((xpts, ypts))
# create slope with hv.Slope()
slope = hv.Slope(gradient, y_intercept)
scatter.opts(size=10) * slope.opts(color='red', line_width=6)
2) Or you can have HoloViews calculate it for you with hv.Slope.from_scatter():
normal = hv.Scatter(np.random.randn(20, 2))
normal.opts(size=10) * hv.Slope.from_scatter(normal)
Resulting plot:
The plot hooks is given two arguments, the second of which is the element being displayed. Since the element contains the data being displayed we can write a callback to compute the slope using the dimension_values method to get the values of the 'a' and 'b' dimensions in your data. Additionally, in order to avoid the Slope glyph being added multiple times, we can cache it on the plot and update its attributes:
def hook(plot, element):
x, y = element.dimension_values('a'), element.dimension_values('b')
par = np.polyfit(x, y, 1, full=True)
gradient=par[0][0]
y_intercept=par[0][1]
if 'slope' in plot.handles:
slope = plot.handles['slope']
slope.gradient = gradient
slope.y_intercept = y_intercept
else:
slope = Slope(gradient=gradient, y_intercept=y_intercept,
line_color='orange', line_dash='dashed', line_width=3.5)
plot.handles['slope'] = slope
plot.state.add_layout(slope)
EDIT: I figured out that the Problem always occours if one tries to plot to two different lists of figures. Does that mean that one can not do plots to different figure-lists in the same loop? See latest code for much simpler sample of a problem.
I try to analyze a complex set of data which consists basically about measurements of electric devices under different conditions. Hence, the code is a bit more complex but I tried to strip it down to a working example - however it is still pretty long. Hence, let me explain what you see: You see 3 classes with Transistor representing an electronic device. It's attribute Y represents the measurement data - consisting of 2 sets of measurements. Each Transistor belongs to a group - 2 in this example. And some groups belong to the same series - one series where both groups are included in this example.
The aim is now to plot all measurement data for each Transistor (not shown), then to also plot all data belonging to the same group in one plot each and all data of the same series to one plot. In order to program it in an efficent way without having a lot of loops my idea was to use the object orientated nature of matplotlib - I will have figures and subplots for each level of plotting (initialized in initGrpPlt and initSeriesPlt) which are then filled with only one loop over all Transistors (in MainPlt: toGPlt and toSPlt). In the end it should only be printed / saved to a file / whatever (PltGrp and PltSeries).
The Problem: Even though I specify where to plot, python plots the series plots into the group plots. You can check this yourself by running the code with the line 'toSPlt(trans,j)' and without. I have no clue why python does this because in the function toSPlt I explicetly say that python should use the subplots from the series-subplot-list. Would anyone have an idea to why this is like this and how to solve this problem in an elegent way?
Read the code from the bottom to the top, that should help with understanding.
Kind regards
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
maxNrVdrain = 2
X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
A = [[1*np.cos(X),2*np.cos(X),3*np.cos(X),4*np.cos(X)],[1*np.tan(X),2*np.tan(X),3*np.tan(X),4*np.tan(X)]]
B = [[2* np.sin(X),4* np.sin(X),6* np.sin(X),8* np.sin(X)],[2*np.cos(X),4*np.cos(X),6*np.cos(X),8*np.cos(X)]]
class Transistor(object):
_TransRegistry = []
def __init__(self,y1,y2):
self._TransRegistry.append(self)
self.X = X
self.Y = [y1,y2]
self.group = ''
class Groups():
_GroupRegistry = []
def __init__(self,trans):
self._GroupRegistry.append(self)
self.transistors = [trans]
self.figlist = []
self.axlist = []
class Series():
_SeriesRegistry = []
def __init__(self,group):
self._SeriesRegistry.append(self)
self.groups = [group]
self.figlist = []
self.axlist = []
def initGrpPlt():
for group in Groups._GroupRegistry:
for j in range(maxNrVdrain):
group.figlist.append(plt.figure(j))
group.axlist.append(group.figlist[j].add_subplot(111))
return
def initSeriesPlt():
for series in Series._SeriesRegistry:
for j in range(maxNrVdrain):
series.figlist.append(plt.figure(j))
series.axlist.append(series.figlist[j].add_subplot(111))
return
def toGPlt(trans,j):
colour = cm.rainbow(np.linspace(0, 1, 4))
group = trans.group
group.axlist[j].plot(trans.X,trans.Y[j], color=colour[group.transistors.index(trans)], linewidth=1.5, linestyle="-")
return
def toSPlt(trans,j):
colour = cm.rainbow(np.linspace(0, 1, 2))
series = Series._SeriesRegistry[0]
group = trans.group
if group.transistors.index(trans) == 0:
series.axlist[j].plot(trans.X,trans.Y[j],color=colour[series.groups.index(group)], linewidth=1.5, linestyle="-", label = 'T = nan, RH = nan' )
else:
series.axlist[j].plot(trans.X,trans.Y[j],color=colour[series.groups.index(group)], linewidth=1.5, linestyle="-")
return
def PltGrp(group,j):
ax = group.axlist[j]
ax.set_title('Test Grp')
return
def PltSeries(series,j):
ax = series.axlist[j]
ax.legend(loc='upper right', frameon=False)
ax.set_title('Test Series')
return
def MainPlt():
initGrpPlt()
initSeriesPlt()
for trans in Transistor._TransRegistry:
for j in range(maxNrVdrain):
toGPlt(trans,j)
toSPlt(trans,j)#plots to group plot for some reason
for j in range(maxNrVdrain):
for group in Groups._GroupRegistry:
PltGrp(group,j)
plt.show()
return
def Init():
for j in range(4):
trans = Transistor(A[0][j],A[1][j])
if j == 0:
Groups(trans)
else:
Groups._GroupRegistry[0].transistors.append(trans)
trans.group = Groups._GroupRegistry[0]
Series(Groups._GroupRegistry[0])
for j in range(4):
trans = Transistor(B[0][j],B[1][j])
if j == 0:
Groups(trans)
else:
Groups._GroupRegistry[1].transistors.append(trans)
trans.group = Groups._GroupRegistry[1]
Series._SeriesRegistry[0].groups.append(Groups._GroupRegistry[1])
return
def main():
Init()
MainPlt()
return
main()
latest example that does not work:
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
Y1 = np.cos(X)
Y2 = np.sin(X)
figlist1 = []
figlist2 = []
axlist1 = []
axlist2 = []
for j in range(4):
figlist1.append(plt.figure(j))
axlist1.append(figlist1[j].add_subplot(111))
figlist2.append(plt.figure(j))#this should be a new set of figures!
axlist2.append(figlist2[j].add_subplot(111))
colour = cm.rainbow(np.linspace(0, 1, 4))
axlist1[j].plot(X,j*Y1, color=colour[j], linewidth=1.5, linestyle="-")
axlist1[j].set_title('Test Grp 1')
colour = cm.rainbow(np.linspace(0, 1, 4))
axlist2[j].plot(X,j*Y2, color=colour[int(j/2)], linewidth=1.5, linestyle="-")
axlist2[j].set_title('Test Grp 2')
plt.show()
Ok, stupid mistake if one thinks of the Background but maybe someone has a similar Problem and is unable to see the cause as I was first. So here is the solution:
The Problem is that the Name of the listobjects like figlist1[j] do not define the figure - they are just pointers to the actual figure object. and if such an object is created by plt.figure(j) one has to make sure that j is different for each figure - hence, in a Loop where multiple figures shall be initialized one Needs to somehow Change the number of the figure or the first object will be overwritten. Hope that helps! Cheers.
I would like to plot parallel lines with different colors. E.g. rather than a single red line of thickness 6, I would like to have two parallel lines of thickness 3, with one red and one blue.
Any thoughts would be appreciated.
Merci
Even with the smart offsetting (s. below), there is still an issue in a view that has sharp angles between consecutive points.
Zoomed view of smart offsetting:
Overlaying lines of varying thickness:
Plotting parallel lines is not an easy task. Using a simple uniform offset will of course not show the desired result. This is shown in the left picture below.
Such a simple offset can be produced in matplotlib as shown in the transformation tutorial.
Method1
A better solution may be to use the idea sketched on the right side. To calculate the offset of the nth point we can use the normal vector to the line between the n-1st and the n+1st point and use the same distance along this normal vector to calculate the offset point.
The advantage of this method is that we have the same number of points in the original line as in the offset line. The disadvantage is that it is not completely accurate, as can be see in the picture.
This method is implemented in the function offset in the code below.
In order to make this useful for a matplotlib plot, we need to consider that the linewidth should be independent of the data units. Linewidth is usually given in units of points, and the offset would best be given in the same unit, such that e.g. the requirement from the question ("two parallel lines of width 3") can be met.
The idea is therefore to transform the coordinates from data to display coordinates, using ax.transData.transform. Also the offset in points o can be transformed to the same units: Using the dpi and the standard of ppi=72, the offset in display coordinates is o*dpi/ppi. After the offset in display coordinates has been applied, the inverse transform (ax.transData.inverted().transform) allows a backtransformation.
Now there is another dimension of the problem: How to assure that the offset remains the same independent of the zoom and size of the figure?
This last point can be addressed by recalculating the offset each time a zooming of resizing event has taken place.
Here is how a rainbow curve would look like produced by this method.
And here is the code to produce the image.
import numpy as np
import matplotlib.pyplot as plt
dpi = 100
def offset(x,y, o):
""" Offset coordinates given by array x,y by o """
X = np.c_[x,y].T
m = np.array([[0,-1],[1,0]])
R = np.zeros_like(X)
S = X[:,2:]-X[:,:-2]
R[:,1:-1] = np.dot(m, S)
R[:,0] = np.dot(m, X[:,1]-X[:,0])
R[:,-1] = np.dot(m, X[:,-1]-X[:,-2])
On = R/np.sqrt(R[0,:]**2+R[1,:]**2)*o
Out = On+X
return Out[0,:], Out[1,:]
def offset_curve(ax, x,y, o):
""" Offset array x,y in data coordinates
by o in points """
trans = ax.transData.transform
inv = ax.transData.inverted().transform
X = np.c_[x,y]
Xt = trans(X)
xto, yto = offset(Xt[:,0],Xt[:,1],o*dpi/72. )
Xto = np.c_[xto, yto]
Xo = inv(Xto)
return Xo[:,0], Xo[:,1]
# some single points
y = np.array([1,2,2,3,3,0])
x = np.arange(len(y))
#or try a sinus
x = np.linspace(0,9)
y=np.sin(x)*x/3.
fig, ax=plt.subplots(figsize=(4,2.5), dpi=dpi)
cols = ["#fff40b", "#00e103", "#ff9921", "#3a00ef", "#ff2121", "#af00e7"]
lw = 2.
lines = []
for i in range(len(cols)):
l, = plt.plot(x,y, lw=lw, color=cols[i])
lines.append(l)
def plot_rainbow(event=None):
xr = range(6); yr = range(6);
xr[0],yr[0] = offset_curve(ax, x,y, lw/2.)
xr[1],yr[1] = offset_curve(ax, x,y, -lw/2.)
xr[2],yr[2] = offset_curve(ax, xr[0],yr[0], lw)
xr[3],yr[3] = offset_curve(ax, xr[1],yr[1], -lw)
xr[4],yr[4] = offset_curve(ax, xr[2],yr[2], lw)
xr[5],yr[5] = offset_curve(ax, xr[3],yr[3], -lw)
for i in range(6):
lines[i].set_data(xr[i], yr[i])
plot_rainbow()
fig.canvas.mpl_connect("resize_event", plot_rainbow)
fig.canvas.mpl_connect("button_release_event", plot_rainbow)
plt.savefig(__file__+".png", dpi=dpi)
plt.show()
Method2
To avoid overlapping lines, one has to use a more complicated solution.
One could first offset every point normal to the two line segments it is part of (green points in the picture below). Then calculate the line through those offset points and find their intersection.
A particular case would be when the slopes of two subsequent line segments equal. This has to be taken care of (eps in the code below).
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
dpi = 100
def intersect(p1, p2, q1, q2, eps=1.e-10):
""" given two lines, first through points pn, second through qn,
find the intersection """
x1 = p1[0]; y1 = p1[1]; x2 = p2[0]; y2 = p2[1]
x3 = q1[0]; y3 = q1[1]; x4 = q2[0]; y4 = q2[1]
nomX = ((x1*y2-y1*x2)*(x3-x4)- (x1-x2)*(x3*y4-y3*x4))
denom = float( (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4) )
nomY = (x1*y2-y1*x2)*(y3-y4) - (y1-y2)*(x3*y4-y3*x4)
if np.abs(denom) < eps:
#print "intersection undefined", p1
return np.array( p1 )
else:
return np.array( [ nomX/denom , nomY/denom ])
def offset(x,y, o, eps=1.e-10):
""" Offset coordinates given by array x,y by o """
X = np.c_[x,y].T
m = np.array([[0,-1],[1,0]])
S = X[:,1:]-X[:,:-1]
R = np.dot(m, S)
norm = np.sqrt(R[0,:]**2+R[1,:]**2) / o
On = R/norm
Outa = On+X[:,1:]
Outb = On+X[:,:-1]
G = np.zeros_like(X)
for i in xrange(0, len(X[0,:])-2):
p = intersect(Outa[:,i], Outb[:,i], Outa[:,i+1], Outb[:,i+1], eps=eps)
G[:,i+1] = p
G[:,0] = Outb[:,0]
G[:,-1] = Outa[:,-1]
return G[0,:], G[1,:]
def offset_curve(ax, x,y, o, eps=1.e-10):
""" Offset array x,y in data coordinates
by o in points """
trans = ax.transData.transform
inv = ax.transData.inverted().transform
X = np.c_[x,y]
Xt = trans(X)
xto, yto = offset(Xt[:,0],Xt[:,1],o*dpi/72., eps=eps )
Xto = np.c_[xto, yto]
Xo = inv(Xto)
return Xo[:,0], Xo[:,1]
# some single points
y = np.array([1,1,2,0,3,2,1.,4,3]) *1.e9
x = np.arange(len(y))
x[3]=x[4]
#or try a sinus
#x = np.linspace(0,9)
#y=np.sin(x)*x/3.
fig, ax=plt.subplots(figsize=(4,2.5), dpi=dpi)
cols = ["r", "b"]
lw = 11.
lines = []
for i in range(len(cols)):
l, = plt.plot(x,y, lw=lw, color=cols[i], solid_joinstyle="miter")
lines.append(l)
def plot_rainbow(event=None):
xr = range(2); yr = range(2);
xr[0],yr[0] = offset_curve(ax, x,y, lw/2.)
xr[1],yr[1] = offset_curve(ax, x,y, -lw/2.)
for i in range(2):
lines[i].set_data(xr[i], yr[i])
plot_rainbow()
fig.canvas.mpl_connect("resize_event", plot_rainbow)
fig.canvas.mpl_connect("button_release_event", plot_rainbow)
plt.show()
Note that this method should work well as long as the offset between the lines is smaller then the distance between subsequent points on the line. Otherwise method 1 may be better suited.
The best that I can think of is to take your data, generate a series of small offsets, and use fill_between to make bands of whatever color you like.
I wrote a function to do this. I don't know what shape you're trying to plot, so this may or may not work for you. I tested it on a parabola and got decent results. You can also play around with the list of colors.
def rainbow_plot(x, y, spacing=0.1):
fig, ax = plt.subplots()
colors = ['red', 'yellow', 'green', 'cyan','blue']
top = max(y)
lines = []
for i in range(len(colors)+1):
newline_data = y - top*spacing*i
lines.append(newline_data)
for i, c in enumerate(colors):
ax.fill_between(x, lines[i], lines[i+1], facecolor=c)
return fig, ax
x = np.linspace(0,1,51)
y = 1-(x-0.5)**2
rainbow_plot(x,y)