Find longest adjacent repeating non-overlapping substring - python

(This question isn't about music but I'm using music as an example of
a use case.)
In music a common way to structure phrases is as a sequence of notes
where the middle part is repeated one or more times. Thus, the phrase
consists of an introduction, a looping part and an outro. Here is one
example:
[ E E E F G A F F G A F F G A F C D ]
We can "see" that the intro is [ E E E] the repeating part is [ F G A
F ] and the outro is [ C D ]. So the way to split the list would be
[ [ E E E ] 3 [ F G A F ] [ C D ] ]
where the first item is the intro, the second number of times the
repeating part is repeated and the third part the outro.
I need an algorithm to perform such a split.
But there is one caveat which is that there may be multiple way to
split the list. For example, the above list could be split into:
[ [ E E E F G A ] 2 [ F F G A ] [ F C D ] ]
But this is a worse split because the intro and outro is longer. So
the criteria for the algorithm is to find the split that maximizes the
length of the looping part and minimizes the combined length of the
intro and outro. That means that the correct split for
[ A C C C C C C C C C A ]
is
[ [ A ] 9 [ C ] [ A ] ]
because the combined length of the intro and outro is 2 and the length
of the looping part is 9.
Also, while the intro and outro can be empty, only "true" repeats are
allowed. So the following split would be disallowed:
[ [ ] 1 [ E E E F G A F F G A F F G A F C D ] [ ] ]
Think of it as finding the optimal "compression" for the
sequence. Note that there may not be any repeats in some sequences:
[ A B C D ]
For these degenerate cases, any sensible result is allowed.
Here is my implementation of the algorithm:
def find_longest_repeating_non_overlapping_subseq(seq):
candidates = []
for i in range(len(seq)):
candidate_max = len(seq[i + 1:]) // 2
for j in range(1, candidate_max + 1):
candidate, remaining = seq[i:i + j], seq[i + j:]
n_reps = 1
len_candidate = len(candidate)
while remaining[:len_candidate] == candidate:
n_reps += 1
remaining = remaining[len_candidate:]
if n_reps > 1:
candidates.append((seq[:i], n_reps,
candidate, remaining))
if not candidates:
return (type(seq)(), 1, seq, type(seq)())
def score_candidate(candidate):
intro, reps, loop, outro = candidate
return reps - len(intro) - len(outro)
return sorted(candidates, key = score_candidate)[-1]
I'm not sure it is correct, but it passes the simple tests I've
described. The problem with it is that it is way to slow. I've looked
at suffix trees but they don't seem to fit my use case because the
substrings I'm after should be non-overlapping and adjacent.

Here's a way that's clearly quadratic-time, but with a relatively low constant factor because it doesn't build any substring objects apart from those of length 1. The result is a 2-tuple,
bestlen, list_of_results
where bestlen is the length of the longest substring of repeated adjacent blocks, and each result is a 3-tuple,
start_index, width, numreps
meaning that the substring being repeated is
the_string[start_index : start_index + width]
and there are numreps of those adjacent. It will always be that
bestlen == width * numreps
The problem description leaves ambiguities. For example, consider this output:
>>> crunch2("aaaaaabababa")
(6, [(0, 1, 6), (0, 2, 3), (5, 2, 3), (6, 2, 3), (0, 3, 2)])
So it found 5 ways to view "the longest" stretch as being of length 6:
The initial "a" repeated 6 times.
The initial "aa" repeated 3 times.
The leftmost instance of "ab" repeated 3 times.
The leftmost instance of "ba" repeated 3 times.
The initial "aaa" repeated 2 times.
It doesn't return the intro or outro because those are trivial to deduce from what it does return:
The intro is the_string[: start_index].
The outro is the_string[start_index + bestlen :].
If there are no repeated adjacent blocks, it returns
(0, [])
Other examples (from your post):
>>> crunch2("EEEFGAFFGAFFGAFCD")
(12, [(3, 4, 3)])
>>> crunch2("ACCCCCCCCCA")
(9, [(1, 1, 9), (1, 3, 3)])
>>> crunch2("ABCD")
(0, [])
The key to how it works: suppose you have adjacent repeated blocks of width W each. Then consider what happens when you compare the original string to the string shifted left by W:
... block1 block2 ... blockN-1 blockN ...
... block2 block3 ... blockN ... ...
Then you get (N-1)*W consecutive equal characters at the same positions. But that also works in the other direction: if you shift left by W and find (N-1)*W consecutive equal characters, then you can deduce:
block1 == block2
block2 == block3
...
blockN-1 == blockN
so all N blocks must be repetitions of block1.
So the code repeatedly shifts (a copy of) the original string left by one character, then marches left to right over both identifying the longest stretches of equal characters. That only requires comparing a pair of characters at a time. To make "shift left" efficient (constant time), the copy of the string is stored in a collections.deque.
EDIT: update() did far too much futile work in many cases; replaced it.
def crunch2(s):
from collections import deque
# There are zcount equal characters starting
# at index starti.
def update(starti, zcount):
nonlocal bestlen
while zcount >= width:
numreps = 1 + zcount // width
count = width * numreps
if count >= bestlen:
if count > bestlen:
results.clear()
results.append((starti, width, numreps))
bestlen = count
else:
break
zcount -= 1
starti += 1
bestlen, results = 0, []
t = deque(s)
for width in range(1, len(s) // 2 + 1):
t.popleft()
zcount = 0
for i, (a, b) in enumerate(zip(s, t)):
if a == b:
if not zcount: # new run starts here
starti = i
zcount += 1
# else a != b, so equal run (if any) ended
elif zcount:
update(starti, zcount)
zcount = 0
if zcount:
update(starti, zcount)
return bestlen, results
Using regexps
[removed this due to size limit]
Using a suffix array
This is the fastest I've found so far, although can still be provoked into quadratic-time behavior.
Note that it doesn't much matter whether overlapping strings are found. As explained for the crunch2() program above (here elaborated on in minor ways):
Given string s with length n = len(s).
Given ints i and j with 0 <= i < j < n.
Then if w = j-i, and c is the number of leading characters in common between s[i:] and s[j:], the block s[i:j] (of length w) is repeated, starting at s[i], a total of 1 + c // w times.
The program below follows that directly to find all repeated adjacent blocks, and remembers those of maximal total length. Returns the same results as crunch2(), but sometimes in a different order.
A suffix array eases the search, but hardly eliminates it. A suffix array directly finds <i, j> pairs with maximal c, but only limits the search to maximize w * (1 + c // w). Worst cases are strings of the form letter * number, like "a" * 10000.
I'm not giving the code for the sa module below. It's long-winded and any implementation of suffix arrays will compute the same things. The outputs of suffix_array():
sa is the suffix array, the unique permutation of range(n) such that for all i in range(1, n), s[sa[i-1]:] < s[sa[i]:].
rank isn't used here.
For i in range(1, n), lcp[i] gives the length of the longest common prefix between the suffixes starting at sa[i-1] and sa[i].
Why does it win? In part because it never has to search for suffixes that start with the same letter (the suffix array, by construction, makes them adjacent), and checking for a repeated block, and for whether it's a new best, takes small constant time regardless of how large the block or how many times it's repeated. As above, that's just trivial arithmetic on c and w.
Disclaimer: suffix arrays/trees are like continued fractions for me: I can use them when I have to, and can marvel at the results, but they give me a headache. Touchy, touchy, touchy.
def crunch4(s):
from sa import suffix_array
sa, rank, lcp = suffix_array(s)
bestlen, results = 0, []
n = len(s)
for sai in range(n-1):
i = sa[sai]
c = n
for saj in range(sai + 1, n):
c = min(c, lcp[saj])
if not c:
break
j = sa[saj]
w = abs(i - j)
if c < w:
continue
numreps = 1 + c // w
assert numreps > 1
total = w * numreps
if total >= bestlen:
if total > bestlen:
results.clear()
bestlen = total
results.append((min(i, j), w, numreps))
return bestlen, results
Some timings
I read a modest file of English words into a string, xs. One word per line:
>>> len(xs)
209755
>>> xs.count('\n')
25481
So about 25K words in about 210K bytes. These are quadratic-time algorithms, so I didn't expect it to go fast, but crunch2() was still running after hours - and still running when I let it go overnight.
Which caused me to realize its update() function could do an enormous amount of futile work, making the algorithm more like cubic-time overall. So I repaired that. Then:
>>> crunch2(xs)
(44, [(63750, 22, 2)])
>>> xs[63750 : 63750+50]
'\nelectroencephalograph\nelectroencephalography\nelec'
That took about 38 minutes, which was in the ballpark of what I expected.
The regexp version crunch3() took less than a tenth of a second!
>>> crunch3(xs)
(8, [(19308, 4, 2), (47240, 4, 2)])
>>> xs[19308 : 19308+10]
'beriberi\nB'
>>> xs[47240 : 47240+10]
'couscous\nc'
As explained before, the regexp version may not find the best answer, but something else is at work here: by default, "." doesn't match a newline, so the code was actually doing many tiny searches. Each of the ~25K newlines in the file effectively ends the local search range. Compiling the regexp with the re.DOTALL flag instead (so newlines aren't treated specially):
>>> crunch3(xs) # with DOTALL
(44, [(63750, 22, 2)])
in a bit over 14 minutes.
Finally,
>>> crunch4(xs)
(44, [(63750, 22, 2)])
in a bit under 9 minutes. The time to build the suffix array was an insignificant part of that (less than a second). That's actually pretty impressive, since the not-always-right brute force regexp version is slower despite running almost entirely "at C speed".
But that's in a relative sense. In an absolute sense, all of these are still pig slow :-(
NOTE: the version in the next section cuts this to under 5 seconds(!).
Enormously faster
This one takes a completely different approach. For the largish dictionary example above, it gets the right answer in less than 5 seconds.
I'm rather proud of this ;-) It was unexpected, and I haven't seen this approach before. It doesn't do any string searching, just integer arithmetic on sets of indices.
It remains dreadfully slow for inputs of the form letter * largish_integer. As is, it keeps going up by 1 so long as at least two (not necessarily adjacent, or even non-overlapping!) copies of a substring (of the current length being considered) exist. So, for example, in
'x' * 1000000
it will try all substring sizes from 1 through 999999.
However, looks like that could be greatly improved by doubling the current size (instead of just adding 1) repeatedly, saving the classes as it goes along, doing a mixed form of binary search to locate the largest substring size for which a repetition exists.
Which I'll leave as a doubtless tedious exercise for the reader. My work here is done ;-)
def crunch5(text):
from collections import namedtuple, defaultdict
# For all integers i and j in IxSet x.s,
# text[i : i + x.w] == text[j : j + x.w].
# That is, it's the set of all indices at which a specific
# substring of length x.w is found.
# In general, we only care about repeated substrings here,
# so weed out those that would otherwise have len(x.s) == 1.
IxSet = namedtuple("IxSet", "s w")
bestlen, results = 0, []
# Compute sets of indices for repeated (not necessarily
# adjacent!) substrings of length xs[0].w + ys[0].w, by looking
# at the cross product of the index sets in xs and ys.
def combine(xs, ys):
xw, yw = xs[0].w, ys[0].w
neww = xw + yw
result = []
for y in ys:
shifted = set(i - xw for i in y.s if i >= xw)
for x in xs:
ok = shifted & x.s
if len(ok) > 1:
result.append(IxSet(ok, neww))
return result
# Check an index set for _adjacent_ repeated substrings.
def check(s):
nonlocal bestlen
x, w = s.s.copy(), s.w
while x:
current = start = x.pop()
count = 1
while current + w in x:
count += 1
current += w
x.remove(current)
while start - w in x:
count += 1
start -= w
x.remove(start)
if count > 1:
total = count * w
if total >= bestlen:
if total > bestlen:
results.clear()
bestlen = total
results.append((start, w, count))
ch2ixs = defaultdict(set)
for i, ch in enumerate(text):
ch2ixs[ch].add(i)
size1 = [IxSet(s, 1)
for s in ch2ixs.values()
if len(s) > 1]
del ch2ixs
for x in size1:
check(x)
current_class = size1
# Repeatedly increase size by 1 until current_class becomes
# empty. At that point, there are no repeated substrings at all
# (adjacent or not) of the then-current size (or larger).
while current_class:
current_class = combine(current_class, size1)
for x in current_class:
check(x)
return bestlen, results
And faster still
crunch6() drops the largish dictionary example to under 2 seconds on my box. It combines ideas from crunch4() (suffix and lcp arrays) and crunch5() (find all arithmetic progressions with a given stride in a set of indices).
Like crunch5(), this also loops around a number of times equal to one more than the length of the repeated longest substring (overlapping or not). For if there are no repeats of length n, there are none for any size greater than n either. That makes finding repeats without regard to overlap easier, because it's an exploitable limitation. When constraining "wins" to adjacent repeats, that breaks down. For example, there are no adjacent repeats of even length 1 in "abcabc", but there is one of length 3. That appears to make any form of direct binary search futile (the presence or absence of adjacent repeats of size n says nothing about the existence of adjacent repeats of any other size).
Inputs of the form 'x' * n remain miserable. There are repeats of all lengths from 1 through n-1.
Observation: all the programs I've given generate all possible ways of breaking up repeated adjacent chunks of maximal length. For example, for a string of 9 "x", it says it can be gotten by repeating "x" 9 times or by repeating "xxx" 3 times. So, surprisingly, they can all be used as factoring algorithms too ;-)
def crunch6(text):
from sa import suffix_array
sa, rank, lcp = suffix_array(text)
bestlen, results = 0, []
n = len(text)
# Generate maximal sets of indices s such that for all i and j
# in s the suffixes starting at s[i] and s[j] start with a
# common prefix of at least len minc.
def genixs(minc, sa=sa, lcp=lcp, n=n):
i = 1
while i < n:
c = lcp[i]
if c < minc:
i += 1
continue
ixs = {sa[i-1], sa[i]}
i += 1
while i < n:
c = min(c, lcp[i])
if c < minc:
yield ixs
i += 1
break
else:
ixs.add(sa[i])
i += 1
else: # ran off the end of lcp
yield ixs
# Check an index set for _adjacent_ repeated substrings
# w apart. CAUTION: this empties s.
def check(s, w):
nonlocal bestlen
while s:
current = start = s.pop()
count = 1
while current + w in s:
count += 1
current += w
s.remove(current)
while start - w in s:
count += 1
start -= w
s.remove(start)
if count > 1:
total = count * w
if total >= bestlen:
if total > bestlen:
results.clear()
bestlen = total
results.append((start, w, count))
c = 0
found = True
while found:
c += 1
found = False
for s in genixs(c):
found = True
check(s, c)
return bestlen, results
Always fast, and published, but sometimes wrong
In bioinformatics, turns out this is studied under the names "tandem repeats", "tandem arrays", and "simple sequence repeats" (SSR). You can search for those terms to find quite a few academic papers, some claiming worst-case linear-time algorithms.
But those seem to fall into two camps:
Linear-time algorithms of the kind to be described, which are actually wrong :-(
Algorithms so complicated it would take dedication to even try to turn them into functioning code :-(
In the first camp, there are several papers that boil down to crunch4() above, but without its inner loop. I'll follow this with code for that, crunch4a(). Here's an example:
"SA-SSR: a suffix array-based algorithm for exhaustive and efficient SSR discovery in large genetic sequences."
Pickett et alia
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013907/
crunch4a() is always fast, but sometimes wrong. In fact it finds at least one maximal repeated stretch for every example that appeared here, solves the largish dictionary example in a fraction of a second, and has no problem with strings of the form 'x' * 1000000. The bulk of the time is spent building the suffix and lcp arrays. But it can fail:
>>> x = "bcdabcdbcd"
>>> crunch4(x) # finds repeated bcd at end
(6, [(4, 3, 2)])
>>> crunch4a(x) # finds nothing
(0, [])
The problem is that there's no guarantee that the relevant suffixes are adjacent in the suffix array. The suffixes that start with "b" are ordered like so:
bcd
bcdabcdbcd
bcdbcd
To find the trailing repeated block by this approach requires comparing the first with the third. That's why crunch4() has an inner loop, to try all pairs starting with a common letter. The relevant pair can be separated by an arbitrary number of other suffixes in a suffix array. But that also makes the algorithm quadratic time.
# only look at adjacent entries - fast, but sometimes wrong
def crunch4a(s):
from sa import suffix_array
sa, rank, lcp = suffix_array(s)
bestlen, results = 0, []
n = len(s)
for sai in range(1, n):
i, j = sa[sai - 1], sa[sai]
c = lcp[sai]
w = abs(i - j)
if c >= w:
numreps = 1 + c // w
total = w * numreps
if total >= bestlen:
if total > bestlen:
results.clear()
bestlen = total
results.append((min(i, j), w, numreps))
return bestlen, results
O(n log n)
This paper looks right to me, although I haven't coded it:
"Simple and Flexible Detection of Contiguous Repeats Using a Suffix Tree"
Jens Stoye, Dan Gusfield
https://csiflabs.cs.ucdavis.edu/~gusfield/tcs.pdf
Getting to a sub-quadratic algorithm requires making some compromises, though. For example, "x" * n has n-1 substrings of the form "x"*2, n-2 of the form "x"*3, ..., so there are O(n**2) of those alone. So any algorithm that finds all of them is necessarily also at best quadratic time.
Read the paper for details ;-) One concept you're looking for is "primitive": I believe you only want repeats of the form S*n where S cannot itself be expressed as a repetition of shorter strings. So, e.g., "x" * 10 is primitive, but "xx" * 5 is not.
One step on the way to O(n log n)
crunch9() is an implementation of the "brute force" algorithm I mentioned in the comments, from:
"The enhanced suffix array and its applications to genome analysis"
Ibrahim et alia
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.2217&rep=rep1&type=pdf
The implementation sketch there only finds "branching tandem" repeats, and I added code here to deduce repeats of any number of repetitions, and to include non-branching repeats too. While it's still O(n**2) worst case, it's much faster than anything else here for the seq string you pointed to in the comments. As is, it reproduces (except for order) the same exhaustive account as most of the other programs here.
The paper goes on to fight hard to cut the worst case to O(n log n), but that slows it down a lot. So then it fights harder. I confess I lost interest ;-)
# Generate lcp intervals from the lcp array.
def genlcpi(lcp):
lcp.append(0)
stack = [(0, 0)]
for i in range(1, len(lcp)):
c = lcp[i]
lb = i - 1
while c < stack[-1][0]:
i_c, lb = stack.pop()
interval = i_c, lb, i - 1
yield interval
if c > stack[-1][0]:
stack.append((c, lb))
lcp.pop()
def crunch9(text):
from sa import suffix_array
sa, rank, lcp = suffix_array(text)
bestlen, results = 0, []
n = len(text)
# generate branching tandem repeats
def gen_btr(text=text, n=n, sa=sa):
for c, lb, rb in genlcpi(lcp):
i = sa[lb]
basic = text[i : i + c]
# Binary searches to find subrange beginning with
# basic+basic. A more gonzo implementation would do this
# character by character, never materialzing the common
# prefix in `basic`.
rb += 1
hi = rb
while lb < hi: # like bisect.bisect_left
mid = (lb + hi) // 2
i = sa[mid] + c
if text[i : i + c] < basic:
lb = mid + 1
else:
hi = mid
lo = lb
while lo < rb: # like bisect.bisect_right
mid = (lo + rb) // 2
i = sa[mid] + c
if basic < text[i : i + c]:
rb = mid
else:
lo = mid + 1
lead = basic[0]
for sai in range(lb, rb):
i = sa[sai]
j = i + 2*c
assert j <= n
if j < n and text[j] == lead:
continue # it's non-branching
yield (i, c, 2)
for start, c, _ in gen_btr():
# extend left
numreps = 2
for i in range(start - c, -1, -c):
if all(text[i+k] == text[start+k] for k in range(c)):
start = i
numreps += 1
else:
break
totallen = c * numreps
if totallen < bestlen:
continue
if totallen > bestlen:
bestlen = totallen
results.clear()
results.append((start, c, numreps))
# add non-branches
while start:
if text[start - 1] == text[start + c - 1]:
start -= 1
results.append((start, c, numreps))
else:
break
return bestlen, results
Earning the bonus points ;-)
For some technical meaning ;-) crunch11() is worst-case O(n log n). Besides the suffix and lcp arrays, this also needs the rank array, sa's inverse:
assert all(rank[sa[i]] == sa[rank[i]] == i for i in range(len(sa)))
As code comments note, it also relies on Python 3 for speed (range() behavior). That's shallow but would be tedious to rewrite.
Papers describing this have several errors, so don't flip out if this code doesn't exactly match what you read about. Implement exactly what they say instead, and it will fail.
That said, the code is getting uncomfortably complex, and I can't guarantee there aren't bugs. It works on everything I've tried.
Inputs of the form 'x' * 1000000 still aren't speedy, but clearly no longer quadratic-time. For example, a string repeating the same letter a million times completes in close to 30 seconds. Most other programs here would never end ;-)
EDIT: changed genlcpi() to use semi-open Python ranges; made mostly cosmetic changes to crunch11(); added "early out" that saves about a third the time in worst (like 'x' * 1000000) cases.
# Generate lcp intervals from the lcp array.
def genlcpi(lcp):
lcp.append(0)
stack = [(0, 0)]
for i in range(1, len(lcp)):
c = lcp[i]
lb = i - 1
while c < stack[-1][0]:
i_c, lb = stack.pop()
yield (i_c, lb, i)
if c > stack[-1][0]:
stack.append((c, lb))
lcp.pop()
def crunch11(text):
from sa import suffix_array
sa, rank, lcp = suffix_array(text)
bestlen, results = 0, []
n = len(text)
# Generate branching tandem repeats.
# (i, c, 2) is branching tandem iff
# i+c in interval with prefix text[i : i+c], and
# i+c not in subinterval with prefix text[i : i+c + 1]
# Caution: this pragmatically relies on that, in Python 3,
# `range()` returns a tiny object with O(1) membership testing.
# In Python 2 it returns a list - ahould still work, but very
# much slower.
def gen_btr(text=text, n=n, sa=sa, rank=rank):
from itertools import chain
for c, lb, rb in genlcpi(lcp):
origlb, origrb = lb, rb
origrange = range(lb, rb)
i = sa[lb]
lead = text[i]
# Binary searches to find subrange beginning with
# text[i : i+c+1]. Note we take slices of length 1
# rather than just index to avoid special-casing for
# i >= n.
# A more elaborate traversal of the lcp array could also
# give us a list of child intervals, and then we'd just
# need to pick the right one. But that would be even
# more hairy code, and unclear to me it would actually
# help the worst cases (yes, the interval can be large,
# but so can a list of child intervals).
hi = rb
while lb < hi: # like bisect.bisect_left
mid = (lb + hi) // 2
i = sa[mid] + c
if text[i : i+1] < lead:
lb = mid + 1
else:
hi = mid
lo = lb
while lo < rb: # like bisect.bisect_right
mid = (lo + rb) // 2
i = sa[mid] + c
if lead < text[i : i+1]:
rb = mid
else:
lo = mid + 1
subrange = range(lb, rb)
if 2 * len(subrange) <= len(origrange):
# Subrange is at most half the size.
# Iterate over it to find candidates i, starting
# with wa. If i+c is also in origrange, but not
# in subrange, good: then i is of the form wwx.
for sai in subrange:
i = sa[sai]
ic = i + c
if ic < n:
r = rank[ic]
if r in origrange and r not in subrange:
yield (i, c, 2, subrange)
else:
# Iterate over the parts outside subrange instead.
# Candidates i are then the trailing wx in the
# hoped-for wwx. We win if i-c is in subrange too
# (or, for that matter, if it's in origrange).
for sai in chain(range(origlb, lb),
range(rb, origrb)):
ic = sa[sai] - c
if ic >= 0 and rank[ic] in subrange:
yield (ic, c, 2, subrange)
for start, c, numreps, irange in gen_btr():
# extend left
crange = range(start - c, -1, -c)
if (numreps + len(crange)) * c < bestlen:
continue
for i in crange:
if rank[i] in irange:
start = i
numreps += 1
else:
break
# check for best
totallen = c * numreps
if totallen < bestlen:
continue
if totallen > bestlen:
bestlen = totallen
results.clear()
results.append((start, c, numreps))
# add non-branches
while start and text[start - 1] == text[start + c - 1]:
start -= 1
results.append((start, c, numreps))
return bestlen, results

Here's my implementation of what you're talking about. It's pretty similar to yours, but it skips over substrings which have been checked as repetitions of previous substrings.
from collections import namedtuple
SubSequence = namedtuple('SubSequence', ['start', 'length', 'reps'])
def longest_repeating_subseq(original: str):
winner = SubSequence(start=0, length=0, reps=0)
checked = set()
subsequences = ( # Evaluates lazily during iteration
SubSequence(start=start, length=length, reps=1)
for start in range(len(original))
for length in range(1, len(original) - start)
if (start, length) not in checked)
for s in subsequences:
subseq = original[s.start : s.start + s.length]
for reps, next_start in enumerate(
range(s.start + s.length, len(original), s.length),
start=1):
if subseq != original[next_start : next_start + s.length]:
break
else:
checked.add((next_start, s.length))
s = s._replace(reps=reps)
if s.reps > 1 and (
(s.length * s.reps > winner.length * winner.reps)
or ( # When total lengths are equal, prefer the shorter substring
s.length * s.reps == winner.length * winner.reps
and s.reps > winner.reps)):
winner = s
# Check for default case with no repetitions
if winner.reps == 0:
winner = SubSequence(start=0, length=len(original), reps=1)
return (
original[ : winner.start],
winner.reps,
original[winner.start : winner.start + winner.length],
original[winner.start + winner.length * winner.reps : ])
def test(seq, *, expect):
print(f'Testing longest_repeating_subseq for {seq}')
result = longest_repeating_subseq(seq)
print(f'Expected {expect}, got {result}')
print(f'Test {"passed" if result == expect else "failed"}')
print()
if __name__ == '__main__':
test('EEEFGAFFGAFFGAFCD', expect=('EEE', 3, 'FGAF', 'CD'))
test('ACCCCCCCCCA', expect=('A', 9, 'C', 'A'))
test('ABCD', expect=('', 1, 'ABCD', ''))
Passes all three of your examples for me. This seems like the sort of thing that could have a lot of weird edge cases, but given that it's an optimized brute force, it would probably be more a matter of updating the spec rather than fixing a bug in the code itself.

It looks like what you are trying to do is pretty much the LZ77 compression algorithm. You can check your code against the reference implementation in the Wikipedia article I linked to.

Related

Longest common substring with rolling hash

I am implementing in Python3 an algorithm to find the longest substring of two strings s and t. Given s and t, I need to return (a,b,l) where l is the length of the longest common substring, a is the position in s where the longest substring starts, and b is the position in t where the longest substring starts. I have a working version of the algorithm but it is quite slow and I am not sure why; it is frustrating because I have found other implementations in python using pretty much the same logic that are many times faster. I am self-learning so any help would be greatly appreciated.
The approach is based on comparing hash values rather than directly comparing substrings and using binary search to find maximal length of common substrings. Here is the code for my hash function (m is a big prime and x is just some constant):
def polynomial_hash(my_string, m, x):
str_len = len(my_string)
result = 0
for i in range(str_len):
result = (result + ord(my_string[i]) * power_mod_p(x, i, m)) % m
return result
Given two strings s and t, I first find which string is shorter, without loss of generality, let s be the shorter string. First I need to find the hash values of substrings of a string. I use the following function, implemented as a generator:
def all_length_k_hashes(my_string, k, m, x):
current_position = len(my_string) - k
x_to_the_k = power_mod_p(x, k, m)
hash_value = polynomial_hash(my_string[current_position:], m, x)
yield (hash_value, current_position)
while current_position > 0:
current_position = current_position - 1
hash_value = ((hash_value * x) + ord(my_string[current_position]) - x_to_the_k*ord(my_string[current_position + k])) % m
yield (hash_value, current_position)
This function is simple, its first yield is the hash value of the final length k substring of the string, after that each of its iteration is the hash value of the next length k substring to its left (we move left by one position, for example for k=3 from abcdefghi to abcdefghi then from abcdefghi to abcdefghi). This should be able to calculate all the hash values of all length k substrings of my_string in O(|my_string|).
Now I find out if s and t has a length k substring in common, I use the following function:
def common_sub_string_length_k(shorter_str, longer_str, k, m, x):
short_str_dict = dict()
for hash_and_index in all_length_k_hashes(shorter_str, k, m, x):
short_str_dict.update({hash_and_index[0]: hash_and_index[1]})
hash_generator_longer_str = all_length_k_hashes(longer_str, k, m, x)
for hash_and_index in hash_generator_longer_str:
if hash_and_index[0] in short_str_dict:
return (short_str_dict[hash_and_index[0]], hash_and_index[1])
return False
What is happening in this function is: I create a Python empty dictionary and fill it with (key:values) such that each key is the hash value of a length k substring of the shorter string and its value is that substring's starting index, I call this 'short_str_dict'
Then, using all_length_k_hashes, I create a generator of hash values of substrings of length k of the longer string, then I iterate through this generator to check if there is a hash value that's in the 'short_str_dict', if there is, then the two strings have a substring of length k in common (assuming no hash collisions). This whole process should take time O(|shorter_string| + |longer_string|)
Finally, the following function repeatedly uses the previous process to find the maximal k, using a binary search technique:
def longest_common_substring(str_1, str_2):
m_1 = 309000599
m_2 = 988017827
x = randint(1, 10 ** 6)
len_str_1 = len(str_1)
len_str_2 = len(str_2)
if len_str_1 <= len_str_2:
short_str = str_1
long_str = str_2
switched = False
else:
short_str = str_2
long_str = str_1
switched = True
len_short_str = len(short_str)
len_long_str = len(long_str)
low = 0
high = len_short_str
mid = 0
longest_so_far = 0
longest_indices = (0,0)
while low <= high:
mid = (high + low) // 2
m1_result = common_sub_string_length_k(short_str, long_str, mid, m_1, x)
m2_result = common_sub_string_length_k(short_str, long_str, mid, m_2, x)
if m1_result is False or m2_result is False:
high = mid - 1
else:
longest_so_far = mid
longest_indices = m1_result
low = mid + 1
if switched:
return (longest_indices[1], longest_indices[0], longest_so_far)
else:
return (longest_indices[0], longest_indices[1], longest_so_far)
Two different hashes are used to reduce the probability of a collision. So in total, assuming no collisions, this whole process should take
O(log|shorter_string|) * O(|shorter_string| + |longer_string|).
Have I made any error? Is it slow because of the use of Python dictionaries? I really want to understand my mistake. Any help is greatly appreciated.

Longest subset of five-positions five-elements permutations, only one-element-position in common

I am trying to get the longest list of a set of five ordered position, 1 to 5 each, satisfying the condition that any two members of the list cannot share more than one identical position (index). I.e., 11111 and 12222 is permitted (only the 1 at index 0 is shared), but 11111 and 11222 is not permitted (same value at index 0 and 1).
I have tried a brute-force attack, starting with the complete list of permutations, 3125 members, and walking through the list element by element, rejecting the ones that do not match the criteria, in several steps:
step one: testing elements 2 to 3125 against element 1, getting a new shorter list L'
step one: testing elements 3 to N' against element 2', getting a shorter list yet L'',
and so on.
I get a 17 members solution, perfectly valid. The problem is that:
I know there are, at least, two 25-member valid solution found by a matter of good luck,
The solution by this brute-force method depends strongly on the initial order of the 3125 members list, so I have been able to find from 12- to 21-member solutions, shuffling the L0 list, but I have never hit the 25-member solutions.
Could anyone please put light on the problem? Thank you.
This is my approach so far
import csv, random
maxv = 0
soln=0
for p in range(0,1): #Intended to run multiple times
z = -1
while True:
z = z + 1
file1 = 'Step' + "%02d" % (z+0) + '.csv'
file2 = 'Step' + "%02d" % (z+1) + '.csv'
nextdata=[]
with open(file1, 'r') as csv_file:
data = list(csv.reader(csv_file))
#if file1 == 'Step00.csv': # related to p loop
# random.shuffle(data)
i = 0
while i <= z:
nextdata.append(data[i])
i = i + 1
for j in range(z, len(data)):
sum=0
for k in range(0,5):
if (data[z][k] == data[j][k]):
sum = sum + 1
if sum < 2:
nextdata.append(data[j])
ofile = open(file2, 'wb')
writer = csv.writer(ofile)
writer.writerows(nextdata)
ofile.close()
if (len(nextdata) < z + 1 + 1):
if (z+1)>= maxv:
maxv = z+1
print maxv
ofile = open("Solution"+"%02d" % soln + '.csv', 'wb')
writer = csv.writer(ofile)
writer.writerows(nextdata)
ofile.close()
soln = soln + 1
break
Here is a Picat model for the problem (as I understand it): http://hakank.org/picat/longest_subset_of_five_positions.pi It use constraint modelling and SAT solver.
Edit: Here is a MiniZinc model: http://hakank.org/minizinc/longest_subset_of_five_positions.mzn
The model (predicate go/0) check lengths of 2 to 100. All lengths between 2 and 25 has at least one solution (probably at lot more). So 25 is the longest sub sequence. Here is one 25 length solution:
{1,1,1,3,4}
{1,2,5,1,5}
{1,3,4,4,1}
{1,4,2,2,2}
{1,5,3,5,3}
{2,1,3,2,1}
{2,2,4,5,4}
{2,3,2,1,3}
{2,4,1,4,5}
{2,5,5,3,2}
{3,1,2,5,5}
{3,2,3,4,2}
{3,3,5,2,4}
{3,4,4,3,3}
{3,5,1,1,1}
{4,1,4,1,2}
{4,2,1,2,3}
{4,3,3,3,5}
{4,4,5,5,1}
{4,5,2,4,4}
{5,1,5,4,3}
{5,2,2,3,1}
{5,3,1,5,2}
{5,4,3,1,4}
{5,5,4,2,5}
There is a lot of different 25 lengths solutions (the predicate go2/0 checks that).
Here is the complete model (edited from the file above):
import sat.
main => go.
%
% Test all lengths from 2..100.
% 25 is the longest.
%
go ?=>
nolog,
foreach(M in 2..100)
println(check=M),
if once(check(M,_X)) then
println(M=ok)
else
println(M=not_ok)
end,
nl
end,
nl.
go => true.
%
% Check if there is a solution with M numbers
%
check(M, X) =>
N = 5,
X = new_array(M,N),
X :: 1..5,
foreach(I in 1..M, J in I+1..M)
% at most 1 same number in the same position
sum([X[I,K] #= X[J,K] : K in 1..N]) #<= 1,
% symmetry breaking: sort the sub sequence
lex_lt(X[I],X[J])
end,
solve([ff,split],X),
foreach(Row in X)
println(Row)
end,
nl.

Among 1 million items preceding A[i], how many of them are smaller than A[i]?

Let A be a numpy 1D array of size 5 to 20 millions.
I'd like to determine, for each i, how many items among A[i-1000000], A[i-999999], ..., A[i-2], A[i-1] are smaller than A[i].
Said in another way: I'm looking for the proportion of items smaller than A[i] in a 1-million-item window preceding A[i].
I've tested various approaches and a few answers were given in Rolling comparison between a value and a past window, with percentile/quantile:
import numpy as np
A = np.random.random(5*1000*1000)
n = 1000*1000
B = (np.lib.stride_tricks.as_strided(A, shape=(n,A.size-n), strides=(A.itemsize,A.itemsize)) <= A[n:]).sum(0)
#or similar version with "view_as_windows(A, n)"
Finally the fastest solution was some naive code + numba:
from numba import jit, prange
#jit(parallel=True)
def doit(A, n):
Q = np.zeros(len(A))
for i in prange(n, len(Q)):
Q[i] = np.sum(A[i-n:i] <= A[i])
return(Q)
C = doit(A, n)
But even with this code, it's too slow for me with A of length 5 millions, and n=1 million: about 30 minutes to do this computation!
Is there a more clever idea to use, that avoids to re-compare 1 million items for each element of the output?
Note: having an approximative proportion with a 10^(-3) precision, like "~34.3% of the 1-million-previous-items are smaller than A[i]" would be enough.
Here is an "exact" approach. It solves the 5,000,000 / 1,000,000 sized problem (with floats) in under 20 seconds on rather pedestrian hardware.
I apologize for the rather technical code. I'm not sure it can be made much more readable.
The basic idea is to partition the array into a binary-ish tree-like thing (sorry, no formal scicomp training).
For example, if we have a chunks of size half a million then we can sort each of those at linlog cost and afterwards find the contribution of any block to each element of the next block at amortized constant cost.
The tricky bit is how to piece chunks of different sizes together in such a way that in the end we've counted everything and exactly once.
My approach is to start with small blocks and then keep fusing pairs of those. In principle that should keep the cost of sorting linear at each iteration because in theory (but not in numpy) we could fully exploit the sortedness of the smaller chunks.
As mentioned above the code is tricky mostly because we need to compare the right elements to any given block. It basically comes down to two rules: 1) The block must be fully contained in the element's lookback. 2) the block must not be contained in a larger block that is fully contained in the element's lookback.
Anyway, here is a sample run
size 5_000_000, lookback 1_000_000 -- took 14.593 seconds
seems correct -- 10_000 samples checked
and the code:
UPDATE: simplified the code a bit, also runs faster
UPDATE 2: added a version that does "<=" instead of "<"
"<":
import numpy as np
from numpy.lib.stride_tricks import as_strided
def add_along_axis(a, indices, values, axis):
if axis<0:
axis += a.ndim
I = np.ogrid[(*map(slice, a.shape),)]
I = *I[:axis], indices, *I[axis+1:]
a[I] += values
aaa, taa, paa = add_along_axis, np.take_along_axis, np.put_along_axis
m2f, f2m = np.ravel_multi_index, np.unravel_index
def inv_perm(p):
i = np.empty_like(p)
paa(i, p, np.arange(p.shape[-1]), -1)
return i
def rolling_count_smaller(data, n):
N = len(data)
b = n.bit_length()
NN = (((N-1)>>b)+2)<<b
d0 = np.empty(NN, data.dtype)
d0[NN-N:] = data[::-1]
d0[:NN-N] = data.max() + 1
dt, it, r0 = d0.copy(), np.zeros(NN, int), np.zeros(NN, int)
ch, ch2 = 1, 2
for i in range(b-1):
d0.shape = dt.shape = it.shape = r0.shape = -1, 2, ch
sh = dt.shape
(il, ir), (jl, jr), (k, _) = f2m(m2f(np.add(sh, (-1, -2, -1)), sh) - (n, n-ch), sh)
I = min(il, ir) + 1
bab = np.empty((I, ch2), dt.dtype)
bab[:, ch:] = dt[sh[0]-I:, 0]
IL, IR = np.s_[il-I+1:il+1, ir-I+1:ir+1]
bab[:, k:ch] = d0[IL, jl, k:]
bab[:, :k] = d0[IR, jr, :k]
o = bab.argsort(1, kind='stable')
ns, io = (o>=ch).cumsum(1), inv_perm(o)
r0[IL, jl, k:] += taa(ns, io[:, k:ch], 1)
r0[IR, jr, :k] += taa(ns, io[:, :k], 1)
it[:, 1, :] += ch
dt.shape = it.shape = r0.shape = -1, ch2
o = dt.argsort(1, kind='stable')
ns, io = (o>=ch).cumsum(1), inv_perm(o)
aaa(r0, it[:, :ch], taa(ns, io[:, :ch], 1), 1)
dt, it = taa(dt, o, 1), taa(it, o, 1)
ch, ch2 = ch2, ch2<<1
si, sj = dt.shape
o = as_strided(dt, (si-1, sj<<1), dt.strides).argsort(1, kind='stable')
ns, io = (o>=ch).cumsum(1), inv_perm(o)
r0[:-1, ch2-n-1:] += taa(ns, taa(io, inv_perm(it)[:-1, ch2-n-1:], 1), 1)
return r0.ravel()[:NN-N-1:-1]
l = 1000
data = np.random.randint(-99, 100, (5*l,))
from time import perf_counter as pc
t = pc()
x = rolling_count_smaller(data, l)
t = pc() - t
print(f'size {data.size:_d}, lookback {l:_d} -- took {t:.3f} seconds')
check = 1000
sample = np.random.randint(0, len(x), check)
y = np.array([np.count_nonzero(data[max(0, i-l):i]<data[i]) for i in sample])
assert np.all(y==x[sample])
print(f'seems correct -- {check:_d} samples checked')
"<=":
import numpy as np
from numpy.lib.stride_tricks import as_strided
def add_along_axis(a, indices, values, axis):
if axis<0:
axis += a.ndim
I = np.ogrid[(*map(slice, a.shape),)]
I = *I[:axis], indices, *I[axis+1:]
a[I] += values
aaa, taa, paa = add_along_axis, np.take_along_axis, np.put_along_axis
m2f, f2m = np.ravel_multi_index, np.unravel_index
def inv_perm(p):
i = np.empty_like(p)
paa(i, p, np.arange(p.shape[-1]), -1)
return i
def rolling_count_smaller(data, n):
N = len(data)
b = n.bit_length()
NN = (((N-1)>>b)+2)<<b
d0 = np.empty(NN, data.dtype)
d0[:N] = data
d0[N:] = data.max() + 1
dt, it, r0 = d0.copy(), np.zeros(NN, int), np.zeros(NN, int)
ch, ch2 = 1, 2
for i in range(b-1):
d0.shape = dt.shape = it.shape = r0.shape = -1, 2, ch
sh = dt.shape
(il, ir), (jl, jr), (k, _) = f2m(m2f((0, 1, 0), sh) + (n-ch+1, n+1), sh)
I = sh[0] - max(il, ir)
bab = np.empty((I, ch2), dt.dtype)
bab[:, :ch] = dt[:I, 1]
IL, IR = np.s_[il:il+I, ir:ir+I]
bab[:, ch+k:] = d0[IL, jl, k:]
bab[:, ch:ch+k] = d0[IR, jr, :k]
o = bab.argsort(1, kind='stable')
ns, io = (o<ch).cumsum(1), inv_perm(o)
r0[IL, jl, k:] += taa(ns, io[:, ch+k:], 1)
r0[IR, jr, :k] += taa(ns, io[:, ch:ch+k], 1)
it[:, 1, :] += ch
dt.shape = it.shape = r0.shape = -1, ch2
o = dt.argsort(1, kind='stable')
ns, io = (o<ch).cumsum(1), inv_perm(o)
aaa(r0, it[:, ch:], taa(ns, io[:, ch:], 1), 1)
dt, it = taa(dt, o, 1), taa(it, o, 1)
ch, ch2 = ch2, ch2<<1
si, sj = dt.shape
o = as_strided(dt, (si-1, sj<<1), dt.strides).argsort(1, kind='stable')
ns, io = (o<ch).cumsum(1), inv_perm(o)
r0[1:, :n+1-ch] += taa(ns, taa(io, ch+inv_perm(it)[1:, :n+1-ch], 1), 1)
return r0.ravel()[:N]
l = 1000
data = np.random.randint(-99, 100, (5*l,))
from time import perf_counter as pc
t = pc()
x = rolling_count_smaller(data, l)
t = pc() - t
print(f'size {data.size:_d}, lookback {l:_d} -- took {t:.3f} seconds')
check = 1000
sample = np.random.randint(0, len(x), check)
y = np.array([np.count_nonzero(data[max(0, i-l):i]<=data[i]) for i in sample])
assert np.all(y==x[sample])
print(f'seems correct -- {check:_d} samples checked')
First attempt of an answer, based on the assumption (from the comments)
we could as well use 16-bits integers by pre-multiplying A by 32768
and rounding. The precision would be enough with int16
Assuming we're working with int16 numbers: I would try to maintain a relatively small array of size 2**16 counting how many times each number appeared in the last 1m window. Maintaining the array is O(1) as with each index increment you just reduce 1 count of the number the window just "left", and increment the "new" number.
Then counting how many numbers in the window are smaller than the current number reduces to summing the array over all indices up to (excluding) the current number.
Assuming A[i] is in the range [-32768, 32768]:
B = np.zeros(2 * 32768 + 1)
Q = np.zeros(len(A))
n = 1000 * 1000
def adjust_index(i):
return int(i) + 32768
for i in range(len(Q)):
if i >= n + 1:
B[adjust_index(A[i - n - 1])] -= 1
if i > 0:
B[adjust_index(A[i - 1])] += 1
Q[i] = B[:adjust_index(A[i])].sum() / float(n)
This ran on my machine in about one minute.
You can trade-off space and some speed for accuracy by using a larger (or smaller) range of integers (e.g. multiplying by 2**17 instead of 2**16 to get more accurate at the cost of some speed; multiplying by 2**15 to get results faster but less accurately).
Sorry in advance for not implementing my idea for you; I don’t quite have the time right now. But I hope it helps!
Notation
I'll use n as the array size, and k as the window size.
The Concept
For each element A[i], build a splay tree
ordering all elements a in A[max(0, i-k): i+1], and then use the splay tree to count the number of elements a < A[i]. The advantage here is that the splay trees for adjacent elements A[i] & A[i+1] will differ only by one node insertion and (for i > k) one node removal, which reduces the time needed to build the splay trees.
The required operations have the following complexities:
for each i: O(n * ?)
adding A[i] as a node to the splay tree: amortized O(log k)
counting a < A[i]: since adding A[i] puts it in the root position, you need only check the left branch’s size counter -> O(1)
removing A[i-k-1] node: amortized O(log k)
Overall complexity: amortized O(n log(k))
Reposting the contents of my comment at #Basj's request:
The Thought
Suppose for a window size k, you use the window A[i-k: i] not for the element A[i], but one of its neighbors A[i+1] (or A[i-1]).
The contents of this window A[i-k:i] are almost identical to that of the "true window for A[i+1]", A[i-k+1: i+1]; k-1 of their elements are the same, with only 1 (potentially) non-matching element. This would affect the lessers count for A[i+1] by at most 1; either the changed element is counted when the real one would not be, or vice-versa. Thus at the most, the lessers count for A[i+1] will deviate from "the true count for A[i+1]" by at most 1.
By the same logic, doing the same for A[i+2] (or A[i-2]) would give you a max deviation of 2, and more generally, doing the same for A[i+j] would give you a max deviation of abs(j).
So if your target precision is 1e-3, meaning that your acceptable error is half of that, 5e-4, then you could instead approximate results for the whole set of values A[i+j] for j in range(int(-k * 5e-4), int(k * 5e-4)), by simply reusing the same window A[i-k: i] for each A[i+j].
...Now what?
You can simply adjust your code to count the lessers in this adjusted window for each A[i+j], and increment i by k*1e-3 chunks.
...but this doesn't save you any time. You're still taking a chunk of k numbers, and counting the number of values less than some reference value a, and doing so for 5 million a's. That's exactly what you did before.
So the question is: how can you abuse the repetition to save time?
#Basj I'll leave the rest of this thought to you. It is Finals season, after all ;]
Here is a pythranized version of my solution. It is roughly twice as fast and I think more readable even if is longer. Obvious downside is the added pythran dependency.
The main work horse is _mergsorted3 this scales well with increasing blocksize but is comparatively slow at small blocksize.
I've written one specialist for blocksize 1 to demonstrate how much more speed one could potentially gain.
import numpy as np
from _mergesorted2 import _mergesorted_1
from _mergesorted3 import _mergesorted3
from time import perf_counter as pc
USE_SPEC_1 = True
def rolling_count_smaller(D, n, countequal=True):
N = len(D)
B = n.bit_length() - 1
# now: 2^(B+1) >= n > 2^B
# result and sorter
R, S = np.zeros(N, int), np.empty(N, int) if USE_SPEC_1 else np.arange(N)
FL, FH, SL, SH = (np.zeros(3, dt) for dt in 'llll')
T = pc()
if USE_SPEC_1:
_mergesorted_1(D, R, S, n, countequal)
for b in range(USE_SPEC_1, B):
print(b, pc()-T)
T = pc()
# for each odd block first treat the elements that are so far to its
# right that they can see that block in full but not the block
# containing it
# most of the time (whenever 2^b does not divide n+1) these will span
# two blocks, hence fall into two ordered subgroups
# thus do a threeway merge, but only a "dry run":
# update the counts R but not the sorter S
L, BB = n+1, ((n>>b)+1)<<b
if L == BB:
Kref = int(countequal)
SL[1-countequal] = BB
SH[1-countequal] = BB+(1<<b)
FL[1-countequal] = BB
FH[1-countequal] = n+1+(1<<b)
SL[2] = SH[2] = FL[2] = FH[2] = 0
else:
Kref = countequal<<1
SL[1-countequal:3-countequal] = BB-(1<<b), BB
SH[1-countequal:3-countequal] = BB, BB+(1<<b)
FL[1-countequal:3-countequal] = L, BB
FH[1-countequal:3-countequal] = BB, n+1+(1<<b)
SL[Kref] = FL[Kref] = 1<<b
SH[Kref] = FH[Kref] = 1<<(b+1)
_mergesorted3(D, R, S, SL, SH, FL, FH, N, 1<<(b+1), Kref, False, True)
# merge pairs of adjacent blocks
SL[...] = 0
SL[1-countequal] = 1<<b
SH[2] = 0
SH[:2] = SL[:2] + (1<<b)
_mergesorted3(D, R, S, SL, SH, FL, FH, N, 1<<(b+1), int(countequal), True, False)
# in this last step even and odd blocks are treated the same because
# neither can be contained in larger valid block
SL[...] = 0
SL[1-countequal] = 1<<B
SH[2] = 0
SH[int(countequal)] = 1<<B
SH[1-countequal] = 1<<(B+1)
FL[...] = 0
FL[1-countequal] = 1<<B
FH[2] = 0
FH[int(countequal)] = 1<<B
FH[1-countequal] = n+1
_mergesorted3(D, R, S, SL, SH, FL, FH, N, 1<<B, int(countequal), False, True)
return R
countequal=True
l = 1_000_000
np.random.seed(0)
data = np.random.randint(-99, 100, (5*l,))
from time import perf_counter as pc
t = pc()
x = rolling_count_smaller(data, l, countequal)
t = pc() - t
print(f'size {data.size:_d}, lookback {l:_d} -- took {t:.3f} seconds')
check = 10
sample = np.random.randint(0, len(x), check)
if countequal:
y = np.array([np.count_nonzero(data[max(0, i-l):i]<=data[i]) for i in sample])
else:
y = np.array([np.count_nonzero(data[max(0, i-l):i]<data[i]) for i in sample])
assert np.all(y==x[sample])
print(f'seems correct -- {check:_d} samples checked')
The main worker _mergesorted3.py. Compile: pythran _mergesorted3.py
import numpy as np
#pythran export _mergesorted3(float[:], int[:], int[:], int[3], int[3], int[3], int[3], int, int, int, bool, bool)
#pythran export _mergesorted3(int[:], int[:], int[:], int[3], int[3], int[3], int[3], int, int, int, bool, bool)
# DB, RB, SB are the data, result and sorter arrays; here they are treated a
# bit like base pointers, hence the B in the names
# SL, SH are the low and high ends of the current rows of the three queues
# the next rows are assumed to be at offset N
# FL, FH are low and high ends of ranges in non sorted order used to filter
# each queue. they are ignored if 'filter' is False
# ST is the top index this can fall in the middle of a row which will then be
# processed partially
# Kref is the index of the referenve queue (the one whose elements are counted)
def _mergesorted3(DB, RB, SB, SL, SH, FL, FH, ST, N, Kref, writeback, filter):
if writeback: # set up row buffer for writing back of merged sort order
SLbuf = min(SL[0], SL[1]) # low end of row
SHbuf = max(SH[0], SH[1]) # high end of row
Sbuf = np.empty(SHbuf-SLbuf, int) # buffer
Ibuf = 0 # index
D = np.empty(3, DB.dtype) # heads of the three queues. values
S = np.empty(3, int) # heads the three queues. sorters
while True: # loop over rows
C = 0 # count of elements in the reference block seen so far
I = SL.copy() # heads of the three queses. indices
S[:2] = SB[I[:2]] # the inner loop expects the heads of the two non
# active (i.e. not incremented just now) queues
# to be in descending order
if filter: # skip elements that are not within a contiguous range.
# this requires filtering because everything is referenced
# in sorted order. so we cannot directly select ranges in
# the original order
# it is the caller's responsibility that for all except
# possibly the last row the filtered queues are not empty
for KK in range(2):
while S[KK] < FL[KK] or S[KK] >= FH[KK]:
I[KK] += 1
S[KK] = SB[I[KK]]
D[:2] = DB[S[:2]] # fetch the first two queue head values
# and set the inter queue sorter accordingly
K = np.array([1, 0, 2], int) if D[1] > D[0] else np.array([0, 1, 2], int)
while I[K[2]] < SH[K[2]]: # loop to merge three rows
# get a valid new elment from the active queue at sorter level
S[K[2]] = SB[I[K[2]]]
if filter and (S[K[2]] < FL[K[2]] or S[K[2]] >= FH[K[2]]):
I[K[2]] += 1
continue
# fetch the corresponding value
D[K[2]] = DB[S[K[2]]]
# re-establish inter-queue sort order
if D[K[2]] > D[K[1]] or (D[K[2]] == D[K[1]] and K[2] < K[1]):
K[2], K[1] = K[1], K[2]
if D[K[1]] > D[K[0]] or (D[K[1]] == D[K[0]] and K[1] < K[0]):
K[1], K[0] = K[0], K[1]
# do the book keeping depending on which queue has become active
if K[2] == Kref: # reference queue: adjust counter
C += 1
else: # other: add current ref element count to head of result queue
RB[S[K[2]]] += C
I[K[2]] += 1 # advance active queue
# one queue has been exhausted, which one?
if K[2] == Kref: # reference queue: no need to sort what's left just
# add the current ref element count to all leftovers
# subject to filtering if applicable
if filter:
KK = SB[I[K[1]]:SH[K[1]]]
RB[KK[(KK >= FL[K[1]]) & (KK < FH[K[1]])]] += C
KK = SB[I[K[0]]:SH[K[0]]]
RB[KK[(KK >= FL[K[0]]) & (KK < FH[K[0]])]] += C
else:
RB[SB[I[K[1]]:SH[K[1]]]] += C
RB[SB[I[K[0]]:SH[K[0]]]] += C
else: # one of the other queues: we are left with a two-way merge
# this is in a separate loop because it also supports writing
# back the new sort order which we do not need in the three way
# situation
while I[K[1]] < SH[K[1]]:
S[K[1]] = SB[I[K[1]]]
if filter and (S[K[1]] < FL[K[1]] or S[K[1]] >= FH[K[1]]):
I[K[1]] += 1
continue
D[K[1]] = DB[S[K[1]]]
if D[K[1]] > D[K[0]] or (D[K[1]] == D[K[0]] and K[1] < K[0]):
K[1], K[0] = K[0], K[1]
if K[1] == Kref:
C += 1
else:
RB[S[K[1]]] += C
if writeback: # we cannot directly write back without messing
# things up. instead we buffer one row at a time
Sbuf[Ibuf] = S[K[1]]
Ibuf += 1
I[K[1]] += 1
# a second queue has been exhausted. which one?
if K[1] == Kref: # the reference queue: must update results in
# the remainder of the other queue
if filter:
KK = SB[I[K[0]]:SH[K[0]]]
RB[KK[(KK >= FL[K[0]]) & (KK < FH[K[0]])]] += C
else:
RB[SB[I[K[0]]:SH[K[0]]]] += C
if writeback: # write back updated order
# the leftovers of the last remaining queue have not been
# buffered but being contiguous can be written back directly
# the way this is used by the main script actually gives a
# fifty-fifty chance of copying something exactly onto itself
SB[SLbuf+Ibuf:SHbuf] = SB[I[K[0]]:SH[K[0]]]
# now copy the buffer
SB[SLbuf:SLbuf+Ibuf] = Sbuf[:Ibuf]
SLbuf += N; SHbuf += N
Ibuf = 0
SL += N; SH += N
if filter:
FL += N; FH += N
# this is ugly:
# going to the next row we must check whether one or more queues
# have fully or partially hit the ceiling ST.
# if two and fully we are done
# if one fully we must alter the queue indices to make sure the
# empty queue is at index 2, because of the requirement of having
# at least one valid element in queues 0 and 1
done = -1
for II in range(3):
if SH[II] == SL[II]:
if done >= 0:
done = -2
break
done = II
elif SH[II] > ST:
if SL[II] >= ST or (filter and FL[II] >= ST):
if done >= 0:
done = -2
break
done = II
if writeback:
SHbuf -= SH[II] - SL[II]
SH[II] = SL[II] = 0
else:
if writeback:
SHbuf -= SH[II] - ST
SH[II] = ST
if filter and FH[II] > ST:
FH[II] = ST
if done == Kref or done == -2:
break
elif done == 0:
SL[:2], SH[:2] = SL[1:], SH[1:]
if filter:
FL[:2], FH[:2] = FL[1:], FH[1:]
SH[2] = SL[2]
Kref -= 1
elif done == 1:
SL[1], SH[1] = SL[2], SH[2]
if filter:
FL[1], FH[1] = FL[2], FH[2]
SH[2] = SL[2]
Kref >>= 1
And the special case _mergesorted2.py - pythran _mergesorted2.py
import numpy as np
#pythran export _mergesorted_1(float[:], int[:], int[:], int, bool)
#pythran export _mergesorted_1(int[:], int[:], int[:], int, bool)
def _mergesorted_1(DB, RB, SB, n, countequal):
N = len(DB)
K = ((N-n-1)>>1)<<1
for i in range(0, K, 2):
if DB[i] < DB[i+1] or (countequal and DB[i] == DB[i+1]):
SB[i] = i
SB[i+1] = i+1
RB[i+1] += 1
else:
SB[i] = i+1
SB[i+1] = i
if DB[i+1] < DB[i+1+n] or (countequal and DB[i+1] == DB[i+1+n]):
RB[i+1+n] += 1
for i in range(K, (N>>1)<<1, 2):
if DB[i] < DB[i+1] or (countequal and DB[i] == DB[i+1]):
SB[i] = i
SB[i+1] = i+1
RB[i+1] += 1
else:
SB[i] = i+1
SB[i+1] = i
if N & 1:
SB[N-1] = N-1
Here is an approximate approach that is simple to implement and responds in O(n) time: (21 seconds for 5M values on my laptop). It should work well for data sets with values that vary by more than 1/1000th of the largest difference.
from collections import deque,Counter
def lessCount(A,window):
precision = 1000 # 1/1000 th of value range
result = deque()
counts = [0]*(precision+1)
minVal = min(A)
chunkSize = (max(A)-minVal)/precision
keys = deque()
for i,a in enumerate(A):
key = int((a-minVal)/chunkSize)
keys.append(key)
counts[key] += 1
lowerCount = sum(counts[:key])
result.append(lowerCount)
if i < window: continue
counts[keys.popleft()] -= 1
return np.array(result)
It builds a rolling array of counts where the index is the relative position of the value divided in chunks. The chunk size is 1/1000th of the largest difference between values. For each element in A, there is only one addition and one subtraction to the array of counts. The number of values lower than the current one is the sum of counts up to the the position of that value in the counts array. You can increase the precision as you need but keep in mind that the time will be proportional to O(n)*precision

How to check if two permutations are symmetric?

Given two permutations A and B of L different elements, L is even, let's call these permutations "symmetric" (for a lack of a better term), if there exist n and m, m > n such as (in python notation):
- A[n:m] == B[L-m:L-n]
- B[n:m] == A[L-m:L-n]
- all other elements are in place
Informally, consider
A = 0 1 2 3 4 5 6 7
Take any slice of it, for example 1 2. It starts at the second index and its length is 2. Now take a slice symmetric to it: it ends at the penultimate index and is 2 chars long too, so it's 5 6. Swapping these slices gives
B = 0 5 6 3 4 1 2 7
Now, A and B are "symmetric" in the above sense (n=1, m=3). On the other hand
A = 0 1 2 3 4 5 6 7
B = 1 0 2 3 4 5 7 6
are not "symmetric" (no n,m with above properties exist).
How can I write an algorithm in python that finds if two given permutations (=lists) are "symmetric" and if yes, find the n and m? For simplicity, let's consider only even L (because the odd case can be trivially reduced to the even one by eliminating the middle fixed element) and assume correct inputs (set(A)==set(B), len(set(A))==len(A)).
(I have no problem bruteforcing all possible symmetries, but looking for something smarter and faster than that).
Fun fact: the number of symmetric permutations for the given L is a Triangular number.
I use this code to test out your answers.
Bounty update: many excellent answers here. #Jared Goguen's solution appears to be the fastest.
Final timings:
testing 0123456789 L= 10
test_alexis ok in 15.4252s
test_evgeny_kluev_A ok in 30.3875s
test_evgeny_kluev_B ok in 27.1382s
test_evgeny_kluev_C ok in 14.8131s
test_ian ok in 26.8318s
test_jared_goguen ok in 10.0999s
test_jason_herbburn ok in 21.3870s
test_tom_karzes ok in 27.9769s
Here is the working solution for the question:
def isSymmetric(A, B):
L = len(A) #assume equivalent to len(B), modifying this would be as simple as checking if len(A) != len(B), return []
la = L//2 # half-list length
Al = A[:la]
Ar = A[la:]
Bl = B[:la]
Br = B[la:]
for i in range(la):
lai = la - i #just to reduce the number of computation we need to perform
for j in range(1, lai + 1):
k = lai - j #same here, reduce computation
if Al[i] != Br[k] or Ar[k] != Bl[i]: #the key for efficient computation is here: do not proceed unnecessarily
continue
n = i #written only for the sake of clarity. i is n, and we can use i directly
m = i + j
if A[n:m] == B[L-m:L-n] and B[n:m] == A[L-m:L-n]: #possibly symmetric
if A[0:n] == B[0:n] and A[m:L-m] == B[m:L-m] and A[L-n:] == B[L-n:]:
return [n, m]
return []
As you have mentioned, though the idea looks simple, but it is actually quite a tricky one. Once we see the patterns, however, the implementation is straight-forward.
The central idea of the solution is this single line:
if Al[i] != Br[k] or Ar[k] != Bl[i]: #the key for efficient computation is here: do not proceed unnecessarily
All other lines are just either direct code translation from the problem statement or optimization made for more efficient computation.
There are few steps involved in order to find the solution:
Firstly, we need to split the each both list Aand list B into two half-lists (called Al, Ar, Bl, and Br). Each half-list would contain half of the members of the original lists:
Al = A[:la]
Ar = A[la:]
Bl = B[:la]
Br = B[la:]
Secondly, to make the evaluation efficient, the goal here is to find what I would call pivot index to decide whether a position in the list (index) is worth evaluated or not to check if the lists are symmetric. This pivot index is the central idea to find an efficient solution. So I would try to elaborate it quite a bit:
Consider the left half part of the A list, suppose you have a member like this:
Al = [al1, al2, al3, al4, al5, al6]
We can imagine that there is a corresponding index list for the mentioned list like this
Al = [al1, al2, al3, al4, al5, al6]
iAl = [0, 1, 2, 3, 4, 5 ] #corresponding index list, added for explanation purpose
(Note: the reason why I mention of imagining a corresponding index list is for ease of explanation purposes)
Likewise, we can imagine that the other three lists may have similar index lists. Let's name them iAr, iBl, and iBr respectively and they are all having identical members with iAl.
It is the index of the lists which would really matter for us to look into - in order to solve the problem.
Here is what I mean: suppose we have two parameters:
index (let's give a variable name i to it, and I would use symbol ^ for current i)
length (let's give a variable name j to it, and I would use symbol == to visually represent its length value)
for each evaluation of the index element in iAl - then each evaluation would mean:
Given an index value i and length value of j in iAl, do
something to determine if it is worth to check for symmetric
qualifications starting from that index and with that length
(Hence the name pivot index come).
Now, let's take example of one evaluation when i = 0 and j = 1. The evaluation can be illustrated as follow:
iAl = [0, 1, 2, 3, 4, 5]
^ <-- now evaluate this index (i) = 0
== <-- now this has length (j) of 1
In order for those index i and length j to be worth evaluated further, then the counterpart iBr must have the same item value with the same length but on different index (let's name it index k)
iBr = [0, 1, 2, 3, 4, 5]
^ <-- must compare the value in this index to what is pointed by iAl
== <-- must evaluate with the same length = 1
For example, for the above case, this is a possible "symmetric" permutation just for the two lists Al-Br (we will consider the other two lists Ar-Bl later):
Al = [0, x, x, x, x, x] #x means don't care for now
Br = [x, x, x, x, x, 0]
At this moment, it is good to note that
It won't worth evaluating further if even the above condition is not
true
And this is where you get the algorithm to be more efficient; that is, by selectively evaluating only the few possible cases among all possible cases. And how to find the few possible cases?
By trying to find relationship between indexes and lengths of the
four lists. That is, for a given index i and length j in a
list (say Al), what must be the index k in the counterpart
list (in the case is Br). Length for the counterpart list need not
be found because it is the same as in the list (that is j).
Having know that, let's now proceed further to see if we can see more patterns in the evaluation process.
Consider now the effect of length (j). For example, if we are to evaluate from index 0, but the length is 2 then the counterpart list would need to have different index k evaluated than when the length is 1
iAl = [0, 1, 2, 3, 4, 5]
^ <-- now evaluate this index (i) = 0
===== <-- now this has length (j) of 2
iBr = [0, 1, 2, 3, 4, 5]
^ <-- must compare the value in this index to what is pointed by iAl
===== <-- must evaluate with the same length = 2
Or, for the illustration above, what really matters fox i = 0 and y = 2 is something like this:
# when i = 0 and y = 2
Al = [0, y, x, x, x, x] #x means don't care for now
Br = [x, x, x, x, 0, y] #y means to be checked later
Take a look that the above pattern is a bit different from when i = 0 and y = 1 - the index position for 0 value in the example is shifted:
# when i = 0 and y = 1, k = 5
Al = [0, x, x, x, x, x] #x means don't care for now
Br = [x, x, x, x, x, 0]
# when i = 0 and y = 2, k = 4
Al = [0, y, x, x, x, x] #x means don't care for now
Br = [x, x, x, x, 0, y] #y means to be checked later
Thus, length shifts where the index of the counterpart list must be checked. In the first case, when i = 0 and y = 1, then the k = 5. But in the second case, when i = 0 and y = 1, then the k = 4. Thus we found the pivot indexes relationship when we change the length j for a fixed index i (in this case being 0) unto the counterpart list index k.
Now, consider the effects of index i with fixed length j for counterpart list index k. For example, let's fix the length as y = 4, then for index i = 0, we have:
iAl = [0, 1, 2, 3, 4, 5]
^ <-- now evaluate this index (i) = 0
========== <-- now this has length (j) of 4
iAl = [0, 1, 2, 3, 4, 5]
^ <-- now evaluate this index (i) = 1
========== <-- now this has length (j) of 4
iAl = [0, 1, 2, 3, 4, 5]
^ <-- now evaluate this index (i) = 2
========== <-- now this has length (j) of 4
#And no more needed
In the above example, it can be seen that we need to evaluate 3 possibilities for the given i and j, but if the index i is changed to 1 with the same length j = 4:
iAl = [0, 1, 2, 3, 4, 5]
^ <-- now evaluate this index (i) = 1
========== <-- now this has length (j) of 4
iAl = [0, 1, 2, 3, 4, 5]
^ <-- now evaluate this index (i) = 2
========== <-- now this has length (j) of 4
Note that we only need to evaluate 2 possibilities. Thus the increase of index i decreases the number of possible cases to be evaluated!
With all the above patterns found, we almost found all the basis we need to make the algorithm works. But to complete that, we need to find the relationship between indexes which appear in Al-Br pair for a given [i, j] => [k, j] with the indexes in Ar-Bl pair for the same [i, j].
Now, we can actually see that they are simply mirroring the relationship we found in Al-Br pair!
(IMHO, this is really beautiful! and thus I think term "symmetric" permutation is not far from truth)
For example, if we have the following Al-Br pair evaluated with i = 0 and y = 2
Al = [0, y, x, x, x, x] #x means don't care for now
Br = [x, x, x, x, 0, y] #y means to be checked later
Then, to make it symmetric, we must have the corresponding Ar-Bl:
Ar = [x, x, x, x, 3, y] #x means don't care for now
Bl = [3, y, x, x, x, x] #y means to be checked later
The indexing of Al-Br pair is mirroring (or, is symmetric to) the indexing of Ar-Bl pair!
Therefore, combining all the pattern we found above, we now could find the pivot indexes for evaluating Al, Ar, Bl, and Br.
We only need to check the values of the lists in the pivot index
first. If the values of the lists in the pivot indexes of Al, Ar, Bl, and Br
matches in the evaluation then and only then we need to check
for symmetric criteria (thus making the computation efficient!)
Putting up all the knowledge above into code, the following is the resulting for-loop Python code to check for symmetricity:
for i in range(len(Al)): #for every index in the list
lai = la - i #just simplification
for j in range(1, lai + 1): #get the length from 1 to la - i + 1
k = lai - j #get the mirror index
if Al[i] != Br[k] or Ar[k] != Bl[i]: #if the value in the pivot indexes do not match
continue #skip, no need to evaluate
#at this point onwards, then the values in the pivot indexes match
n = i #assign n
m = i + j #assign m
#test if the first two conditions for symmetric are passed
if A[n:m] == B[L-m:L-n] and B[n:m] == A[L-m:L-n]: #possibly symmetric
#if it passes, test the third condition for symmetric, the rests of the elements must stay in its place
if A[0:n] == B[0:n] and A[m:L-m] == B[m:L-m] and A[L-n:] == B[L-n:]:
return [n, m] #if all three conditions are passed, symmetric lists are found! return [n, m] immediately!
#passing this but not outside of the loop means
#any of the 3 conditions to find symmetry are failed
#though values in the pivot indexes match, simply continue
return [] #nothing can be found - asymmetric lists
And there go you with the symmetric test!
(OK, this is quite a challenge and it takes quite a while for me to figure out how.)
I rewrote the code without some of the complexity (and errors).
def test_o_o(a, b):
L = len(a)
H = L//2
n, m = 0, H-1
# find the first difference in the left-side
while n < H:
if a[n] != b[n]: break
n += 1
else: return
# find the last difference in the left-side
while m > -1:
if a[m] != b[m]: break
m -= 1
else: return
# for slicing, we want end_index+1
m += 1
# compare each slice for equality
# order: beginning, block 1, block 2, middle, end
if (a[0:n] == b[0:n] and \
a[n:m] == b[L-m:L-n] and \
b[n:m] == a[L-m:L-n] and \
a[m:L-m] == b[m:L-m] and \
a[L-n:L] == b[L-n:L]):
return n, m
The implementation is both elegant and efficient.
The break into else: return structures ensure that the function returns at the soonest possible point. They also validate that n and m have been set to valid values, but this does not appear to be necessary when explicitly checking the slices. These lines can be removed with no noticeable impact on the timing.
Explicitly comparing the slices will also short-circuit as soon as one evaluates to False.
Originally, I checked whether a permutation existed by transforming b into a:
b = b[:]
b[n:m], b[L-m:L-n] = b[L-m:L-n], b[n:m]
if a == b:
return n, m
But this is slower than explicitly comparing the slices. Let me know if the algorithm doesn't speak for itself and I can offer further explanation (maybe even proof) as to why it works and is minimal.
I tried to implement 3 different algorithms for this task. All of them have O(N) time complexity and require O(1) additional space. Interesting fact: all other answers (known so far) implement 2 of these algorithms (though they not always keep optimal asymptotic time/space complexity). Here is high-level description for each algorithm:
Algorithm A
Compare the lists, group "non-equal" intervals, make sure there are exactly two such intervals (with special case when intervals meet in the middle).
Check if "non-equal" intervals are positioned symmetrically, and their contents is also "symmetrical".
Algorithm B
Compare first halves of the lists to guess where are "intervals to be exchanged".
Check if contents of these intervals is "symmetrical". And make sure the lists are equal outside of these intervals.
Algorithm C
Compare first halves of the lists to find first mismatched element.
Find this mismatched element of first list in second one. This hints the position of "intervals to be exchanged".
Check if contents of these intervals is "symmetrical". And make sure the lists are equal outside of these intervals.
There are two alternative implementations for step 1 of each algorithm: (1) using itertools, and (2) using plain loops (or list comprehensions). itertools are efficient for long lists but relatively slow on short lists.
Here is algorithm C with first step implemented using itertools. It looks simpler than other two algorithms (at the end of this post). And it is pretty fast, even for short lists:
import itertools as it
import operator as op
def test_C(a, b):
length = len(a)
half = length // 2
mismatches = it.imap(op.ne, a, b[:half]) # compare half-lists
try:
n = next(it.compress(it.count(), mismatches))
nr = length - n
mr = a.index(b[n], half, nr)
m = length - mr
except StopIteration: return None
except ValueError: return None
if a[n:m] == b[mr:nr] and b[n:m] == a[mr:nr] \
and a[m:mr] == b[m:mr] and a[nr:] == b[nr:]:
return (n, m)
This could be done using mostly itertools:
def test_A(a, b):
equals = it.imap(op.eq, a, b) # compare lists
e1, e2 = it.tee(equals)
l = it.chain(e1, [True])
r = it.chain([True], e2)
borders = it.imap(op.ne, l, r) # delimit equal/non-equal intervals
ranges = list(it.islice(it.compress(it.count(), borders), 5))
if len(ranges) == 4:
n1, m1 = ranges[0], ranges[1]
n2, m2 = ranges[2], ranges[3]
elif len(ranges) == 2:
n1, m1 = ranges[0], len(a) // 2
n2, m2 = len(a) // 2, ranges[1]
else:
return None
if n1 == len(a) - m2 and m1 == len(a) - n2 \
and a[n1:m1] == b[n2:m2] and b[n1:m1] == a[n2:m2]:
return (n1, m1)
High-level description of this algorithm is already provided in OP comments by #j_random_hacker. Here are some details:
Start with comparing the lists:
A 0 1 2 3 4 5 6 7
B 0 5 6 3 4 1 2 7
= E N N E E N N E
Then find borders between equal/non-equal intervals:
= E N N E E N N E
B _ * _ * _ * _ *
Then determine ranges for non-equal elements:
B _ * _ * _ * _ *
[1 : 3] [5 : 7]
Then check if there are exactly 2 ranges (with special case when both ranges meet in the middle), the ranges themselves are symmetrical, and their contents too.
Other alternative is to use itertools to process only half of each list. This allows slightly simpler (and slightly faster) algorithm because there is no need to handle a special case:
def test_B(a, b):
equals = it.imap(op.eq, a, b[:len(a) // 2]) # compare half-lists
e1, e2 = it.tee(equals)
l = it.chain(e1, [True])
r = it.chain([True], e2)
borders = it.imap(op.ne, l, r) # delimit equal/non-equal intervals
ranges = list(it.islice(it.compress(it.count(), borders), 2))
if len(ranges) != 2:
return None
n, m = ranges[0], ranges[1]
nr, mr = len(a) - n, len(a) - m
if a[n:m] == b[mr:nr] and b[n:m] == a[mr:nr] \
and a[m:mr] == b[m:mr] and a[nr:] == b[nr:]:
return (n, m)
This does the right thing:
Br = B[L//2:]+B[:L//2]
same_full = [a==b for (a,b) in zip(A, Br)]
same_part = [a+b for (a,b) in zip(same_full[L//2:], same_full[:L//2])]
for n, vn in enumerate(same_part):
if vn != 2:
continue
m = n
for vm in same_part[n+1:]:
if vm != 2:
break
m+=1
if m>n:
print("n=", n, "m=", m+1)
I'm pretty sure you could do the counting a bit bettter, but... meh
I believe the following pseudocode should work:
Find the first element i for which A[i] != B[i], set n = i. If no such element, return success. If n >= L/2, return fail.
Find the first element i > n for which A[i] == B[i], set m = i. If no such element or m > L/2, set m = L/2.
Check so A[0:n] == B[0:n], A[n:m] == B[L-m:L-n], B[n:m] == A[L-m:L-n], A[m:L-m] == B[m:L-m] and A[L-n:L] == B[L-n:L]. If all are true, return success. Else, return fail.
Complexity is O(n) which should be the lowest possible as one always needs to compare all elements in the lists.
I build a map of where the characters are in list B, then use that to determine the implied subranges in list A. Once I have the subranges, I can sanity check some of the info, and compare the slices.
If A[i] == x, then where does x appear in B? Call that position p.
I know i, the start of the left subrange.
I know L (= len(A)), so I know L-i, the end of the right subrange.
If I know p, then I know the implied start of the right subrange, assuming that B[p] and A[i] are the start of a symmetric pair of ranges. Thus, the OP's L - m would be p if the lists were symmetric.
Setting L-m == p gives me m, so I have all four end points.
Sanity tests are:
n and m are in left half of list(s)
n <= m (note: OP did not prohibit n == m)
L-n is in right half of list (computed)
L-m is in right half (this is a good check for quick fail)
If all those check out, compare A[left] == B[right] and B[left] == A[right]. Return left if true.
def find_symmetry(a:list, b:list) -> slice or None:
assert len(a) == len(b)
assert set(a) == set(b)
assert len(set(a)) == len(a)
length = len(a)
assert length % 2 == 0
half = length // 2
b_loc = {bi:n for n,bi in enumerate(b)}
for n,ai in enumerate(a[:half]):
L_n = length - 1 - n # L - n
L_m = b_loc[ai] # L - m (speculative)
if L_m < half: # Sanity: bail if on wrong side
continue
m = b_loc[a[L_n]] # If A[n] starts range, A[m] ends it.
if m < n or m > half: # Sanity: bail if backwards or wrong side
continue
left = slice(n, m+1)
right = slice(L_m, L_n+1)
if a[left] == b[right] and \
b[left] == a[right]:
return left
return None
res = find_symmetry(
[ 10, 11, 12, 13, 14, 15, 16, 17, ],
[ 10, 15, 16, 13, 14, 11, 12, 17, ])
assert res == slice(1,3)
res = find_symmetry(
[ 0, 1, 2, 3, 4, 5, 6, 7, ],
[ 1, 0, 2, 3, 4, 5, 7, 6, ])
assert res is None
res = find_symmetry("abcdefghijklmn", "nbcdefghijklma")
assert res == slice(0,1)
res = find_symmetry("abcdefghijklmn", "abjklfghicdmen")
assert res == slice(3,4)
res = find_symmetry("abcdefghijklmn", "ancjkfghidelmb")
assert res == slice(3,5)
res = find_symmetry("abcdefghijklmn", "bcdefgaijklmnh")
assert res is None
res = find_symmetry("012345", "013245")
assert res == slice(2,3)
Here's an O(N) solution which passes the test code:
def sym_check(a, b):
cnt = len(a)
ml = [a[i] == b[i] for i in range(cnt)]
sl = [i for i in range(cnt) if (i == 0 or ml[i-1]) and not ml[i]]
el = [i+1 for i in range(cnt) if not ml[i] and (i == cnt-1 or ml[i+1])]
assert(len(sl) == len(el))
range_cnt = len(sl)
if range_cnt == 1:
start1 = sl[0]
end2 = el[0]
if (end2 - start1) % 2 != 0:
return None
end1 = (start1 + end2) // 2
start2 = end1
elif range_cnt == 2:
start1, start2 = sl
end1, end2 = el
else:
return None
if end1 - start1 != end2 - start2:
return None
if start1 != cnt - end2:
return None
if a[start1:end1] != b[start2:end2]:
return None
if b[start1:end1] != a[start2:end2]:
return None
return start1, end1
I only tested it with Python 2, but I believe it will also work with Python 3.
It identifies the ranges where the two lists differ. It looks for two such ranges (if there is only one such range, it tries to divide it in half). It then checks that both ranges are the same length and in the proper positions relative to each other. If so, then it checks that the elements in the ranges match.
Yet another version:
def compare(a, b):
i_zip = list(enumerate(zip(a, b)))
llen = len(a)
hp = llen // 2
def find_index(i_zip):
for i, (x, y) in i_zip:
if x != y:
return i
return i_zip[0][0]
# n and m are determined by the unmoved items:
n = find_index(i_zip[:hp])
p = find_index(i_zip[hp:])
m = llen - p
q = llen - n
# Symmetric?
if a[:n] + a[p:q] + a[m:p] + a[n:m] + a[q:] != b:
return None
return n, m
This solution is based on:
All validly permuted list pairs A, B adhering to the symmetry requirement will have the structure:
A = P1 + P2 + P3 + P4 + P5
B = P1 + P4 + P3 + P2 + P5
^n ^m ^hp ^p ^q <- indexes
,len(P1) == len(P5) and len(P2) == len(P4)
Therefore the 3 last lines of the above function will determine the correct solution provided the indexes n, m are correctly determined. (p & q are just mirror indexes of m & n)
Finding n is a matter of determining when items of A and B start to diverge. Next the same method is applied to finding p starting from midpoint hp. m is just mirror index of p. All involved indexes are found and the solution emerges.
Make a list (ds) of indices where the first halves of the two lists differ.
A possible n is the first such index, the last such index is m - 1.
Check if valid symmetry. len(ds) == m - n makes sure there aren't any gaps.
import itertools as it
import operator as op
def test(a, b):
sz = len(a)
ds = list(it.compress(it.count(), map(op.ne, a[:sz//2], b[:sz//2])))
n,m = ds[0], ds[-1]+1
if a[n:m] == b[sz-m:sz-n] and b[n:m] == a[sz-m:sz-n] and len(ds) == m - n:
return n,m
else:
return None
Here's a simple solution that passes my tests, and yours:
Compare the inputs, looking for a subsequence that does not match.
Transform A by transposing the mismatched subsequence according to the rules. Does the result match B?
The algorithm is O(N); there are no embedded loops, explicit or implicit.
In step 1, I need to detect the case where the swapped substrings are adjacent. This can only happen in the middle of the string, but I found it easier to just look out for the first element of the moved piece (firstval). Step 2 is simpler (and hence less error-prone) than explicitly checking all the constraints.
def compare(A, B):
same = True
for i, (a, b) in enumerate(zip(A,B)):
if same and a != b: # Found the start of a presumed transposition
same = False
n = i
firstval = a # First element of the transposed piece
elif (not same) and (a == b or b == firstval): # end of the transposition
m = i
break
# Construct the transposed string, compare it to B
origin = A[n:m]
if n == 0: # swap begins at the edge
dest = A[-m:]
B_expect = dest + A[m:-m] + origin
else:
dest = A[-m:-n]
B_expect = A[:n] + dest + A[m:-m] + origin + A[-n:]
return bool(B_expect == B)
Sample use:
>>> compare("01234567", "45670123")
True
Bonus: I believe the name for this relationship would be "symmetric block transposition". A block transposition swaps two subsequences, taking ABCDE to ADCBE. (See definition 4 here; I actually found this by googling "ADCBE"). I've added "symmetric" to the name to describe the length conditions.

Query long lists

I would like to query the value of an exponentially weighted moving average at particular points. An inefficient way to do this is as follows. l is the list of times of events and queries has the times at which I want the value of this average.
a=0.01
l = [3,7,10,20,200]
y = [0]*1000
for item in l:
y[int(item)]=1
s = [0]*1000
for i in xrange(1,1000):
s[i] = a*y[i-1]+(1-a)*s[i-1]
queries = [23,68,103]
for q in queries:
print s[q]
Outputs:
0.0355271185019
0.0226018371526
0.0158992102478
In practice l will be very large and the range of values in l will also be huge. How can you find the values at the times in queries more efficiently, and especially without computing the potentially huge lists y and s explicitly. I need it to be in pure python so I can use pypy.
Is it possible to solve the problem in time proportional to len(l)
and not max(l) (assuming len(queries) < len(l))?
Here is my code for doing this:
def ewma(l, queries, a=0.01):
def decay(t0, x, t1, a):
from math import pow
return pow((1-a), (t1-t0))*x
assert l == sorted(l)
assert queries == sorted(queries)
samples = []
try:
t0, x0 = (0.0, 0.0)
it = iter(queries)
q = it.next()-1.0
for t1 in l:
# new value is decayed previous value, plus a
x1 = decay(t0, x0, t1, a) + a
# take care of all queries between t0 and t1
while q < t1:
samples.append(decay(t0, x0, q, a))
q = it.next()-1.0
# take care of all queries equal to t1
while q == t1:
samples.append(x1)
q = it.next()-1.0
# update t0, x0
t0, x0 = t1, x1
# take care of any remaining queries
while True:
samples.append(decay(t0, x0, q, a))
q = it.next()-1.0
except StopIteration:
return samples
I've also uploaded a fuller version of this code with unit tests and some comments to pastebin: http://pastebin.com/shhaz710
EDIT: Note that this does the same thing as what Chris Pak suggests in his answer, which he must have posted as I was typing this. I haven't gone through the details of his code, but I think mine is a bit more general. This code supports non-integer values in l and queries. It also works for any kind of iterables, not just lists since I don't do any indexing.
I think you could do it in ln(l) time, if l is sorted. The basic idea is that the non recursive form of EMA is a*s_i + (1-a)^1 * s_(i-1) + (1-a)^2 * s_(i-2) ....
This means for query k, you find the greatest number in l less than k, and for a estimation limit, use the following, where v is the index in l, l[v] is the value
(1-a)^(k-v) *l[v] + ....
Then, you spend lg(len(l)) time in search + a constant multiple for the depth of your estimation. I'll provide a code sample in a little bit (after work) if you want it, just wanted to get my idea out there while I was thinking about it
here's the code -
v is the dictionary of values at a given time; replace with 1 if it's just a 1 every time...
import math
from bisect import bisect_right
a = .01
limit = 1000
l = [1,5,14,29...]
def find_nearest_lt(l, time):
i = bisect_right(a, x)
if i:
return i-1
raise ValueError
def find_ema(l, time):
i = find_nearest_lt(l, time)
if l[i] == time:
result = a * v[l[i]
i -= 1
else:
result = 0
while (time-l[i]) < limit:
result += math.pow(1-a, time-l[i]) * v[l[i]]
i -= 1
return result
if I'm thinking correctly, the find nearest is l(n), then the while loop is <= 1000 iterations, guaranteed, so it's technically a constant (though a kind of large one). find_nearest was stolen from the page on bisect - http://docs.python.org/2/library/bisect.html
It appears that y is a binary value -- either 0 or 1 -- depending on the values of l. Why not use y = set(int(item) for item in l)? That's the most efficient way to store and look up a list of numbers.
Your code will cause an error the first time through this loop:
s = [0]*1000
for i in xrange(1000):
s[i] = a*y[i-1]+(1-a)*s[i-1]
because i-1 is -1 when i=0 (first pass of loop) and both y[-1] and s[-1] are the last element of the list, not the previous. Maybe you want xrange(1,1000)?
How about this code:
a=0.01
l = [3.0,7.0,10.0,20.0,200.0]
y = set(int(item) for item in l)
queries = [23,68,103]
ewma = []
x = 1 if (0 in y) else 0
for i in xrange(1, queries[-1]):
x = (1-a)*x
if i in y:
x += a
if i == queries[0]:
ewma.append(x)
queries.pop(0)
When it's done, ewma should have the moving averages for each query point.
Edited to include SchighSchagh's improvements.

Categories

Resources