Based on the method plot_series in this notebook.
I would like to plot a timeseries in 3d where my points consist of x,y coordinates and time.
My problem is found when I go to plot the target point by raising the exception
18 if y_true is not None:
---> 19 ax.plot3D(n_steps+1, x_true, y_true, "bo", markersize=10, label="Target")
TypeError: object of type 'int' has no len()
my code is this, I have a 9 step timeseries and I would like to print the target point on the 10th step as well. How to do this?
from matplotlib.pyplot import figure
def plot_series(x_train, y_train, n_steps=10, x_true=None, y_true=None, x_pred=None, y_pred=None, x_label="$time$", y_label="$x$", z_label="$y$", legend=True):
figure(figsize=(8, 6), dpi=80)
ax = plt.axes(projection='3d')
time = np.arange(start=0, stop=len(x_train), step=1)
# base plot
ax.plot3D(time, x_train, y_train, ".-")
if y_true is not None:
ax.plot3D(n_steps+1, x_true, y_true, "bo", markersize=10, label="Target")
if y_pred is not None:
ax.plot3D(n_steps+1, x_pred, y_pred, "rx", markersize=10, label="Prediction")
ax.grid(True)
if x_label:
ax.set_xlabel(x_label, fontsize=16)
if y_label:
ax.set_ylabel(y_label, fontsize=16, rotation=0)
if z_label:
ax.set_zlabel(z_label, fontsize=16, rotation=0)
if legend and (y_true or y_pred):
ax.legend(fontsize=14, loc="upper left")
# single timseries on training set
x_r = [0.58114803 0.5591796 0.59348005 0.59550647 0.61035596 0.4759958 0.56246371 0.51623335 0.56018264]
y_r = [0.37528117 0.52601401 0.4105518 0.41212707 0.42236306 0.36568968 0.53288641 0.42619483 0.48411763]
# target point for that timeseries on training set
x_t = [0.60137904]
y_t = [0.37068267]
plot_series(x_r, y_r, 9, x_true=x_t, y_true=y_t)
When performing classification, we may want to predict the class label, and also to obtain a probability, certainty or confidence around the respective label. Probabilities can be much more informative than labels. To convey likelihood, we need calibrated probabilities. In calibrated probabilities, the probability reflects the true likelihood. For instance, if 10 observations obtain a probability of 0.8 and probability is calibrated, we expect around 8 of those to belong to the positive class. If the probability is calibrated, we should see a match between the number of positive cases and the predicted probability.
Only binary classification is supported by sklearn. How can we extend sklearn's calibration_curve module for multi-class classification problems and plot a Probability Calibration Curve when len(np.unique(y_true)) > 2 ? Here is my code that plots it for binary classifications.
from sklearn.calibration import calibration_curve
import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
import pathlib
from imblearn.pipeline import Pipeline
from sklearn.metrics import brier_score_loss
def __plot_calibration_curve_binary(clf, X_test, y_test, n_bins, strategy, **kwargs):
if 'probs' not in kwargs:
# score the test set
probs = clf.predict_proba(X_test)[:, 1]
fraction_of_positives, mean_predicted_value = calibration_curve(y_test, probs, n_bins=n_bins, strategy=strategy)
elif 'probs' in kwargs:
probs = kwargs['probs']
fraction_of_positives, mean_predicted_value = calibration_curve(y_test, probs, n_bins=n_bins, strategy=strategy)
else:
print("Please assign the probabilities(probs) or classifier to the function as shown in the example")
max_val = max(mean_predicted_value)
if 'fig_size' in kwargs and 'dpi' in kwargs:
fig, ax = plt.subplots(2, sharex=True, gridspec_kw={'height_ratios': [2, 1], 'hspace': 0.05}, figsize=kwargs['fig_size'], dpi=kwargs['dpi'], facecolor='white')
else:
fig, ax = plt.subplots(2, facecolor='white', sharex=True, gridspec_kw={'height_ratios': [2, 1], 'hspace': 0.05})
plt.rcParams["figure.facecolor"] = 'white'
plt.rcParams["axes.facecolor"] = 'white'
plt.rcParams["savefig.facecolor"] = 'white'
ax[0].xaxis.set_major_locator(MultipleLocator(0.1))
ax[1].xaxis.set_major_locator(MultipleLocator(0.1))
ax[0].xaxis.set_major_formatter('{x:.1f}')
ax[1].xaxis.set_major_formatter('{x:.1f}')
ax[0].yaxis.set_major_locator(MultipleLocator(0.1))
ax[0].yaxis.set_major_formatter('{x:.1f}')
ax[0].tick_params(which='both', width=1)
ax[0].tick_params(which='major', length=5)
ax[0].grid(True, zorder=0)
ax[1].grid(True, zorder=0)
if type(clf) == Pipeline:
estimator_name = type(clf['clf']).__name__
else:
estimator_name = type(clf).__name__
# print roc-auc
brier_score = ' (Brier Score : ' + str(round(brier_score_loss(y_test, probs), 4)) + ')'
#plot calibration curve
ax[0].plot(mean_predicted_value, fraction_of_positives, label = estimator_name + brier_score, zorder=2)
ax[0].scatter(mean_predicted_value, fraction_of_positives, zorder=3)
#plot perfect calibration line
ax[0].plot(np.linspace(0, max_val, n_bins), np.linspace(0, max_val, n_bins), linestyle='--', color='red', label='Perfect calibration', zorder=1)
#plot number of observation per prediction interval
ax[1].hist(probs, bins=n_bins, density=True, stacked=True, alpha=0.3, zorder=1)
#add labels and legends
ax[1].set_xlabel('Probability Predictions', fontsize=18)
ax[0].set_ylabel('Fraction of positive examples', fontsize=18)
ax[1].set_ylabel('Fraction of examples', fontsize=18)
if 'title' in kwargs:
ax[0].set_title(kwargs['title'], fontsize=18)
else:
ax[0].set_title('Probability Calibration Curve', fontsize=18)
ax[0].legend(loc='upper left')
ax[0].set_xlim([0.0, 1.0])
ax[1].set_xlim([0.0, 1.0])
ax[0].set_ylim([0.0, 1.0])
plt.show()
if 'save_fig_path' in kwargs:
path = pathlib.Path(kwargs['save_fig_path'])
path.parent.mkdir(parents=True, exist_ok=True)
if 'dpi' in kwargs:
fig.savefig(kwargs['save_fig_path'], dpi=kwargs['dpi'], facecolor=fig.get_facecolor(), edgecolor='none')
else:
fig.savefig(kwargs['save_fig_path'], facecolor=fig.get_facecolor(), edgecolor='none')
return fig, ax
def __plot_calibration_curve_multiclass(clf, X_test, y_test, n_bins, strategy, **kwargs):
print("Only binary classification is supported.")
def plot_calibration_curve(clf, X_test, y_test, n_bins=10, strategy='uniform', **kwargs):
"""
Plots probability calibration curve for the given model
Parameters
----------
clf : estimators to plot probability calibration curve
estimator instance (either sklearn.Pipeline, imblearn.Pipeline or a classifier)
PRE-FITTED classifier or a PRE-FITTED Pipeline in which the last estimator is a classifier.
X_test : pandas.DataFrame of shape (n_samples, n_features)
Test values.
y_test : pandas.Series of shape (n_samples,)
Target values.
n_bins: int, default=10
Number of bins to discretize the [0, 1] interval.
A bigger number requires more data.
Bins with no samples (i.e. without corresponding values in probs) will not be returned,
thus the returned arrays may have less than n_bins values.
strategy : {'uniform', 'quantile'}, default='uniform'
Strategy used to define the widths of the bins.
**kwargs : The following options are available with kwargs
probs: array-like of shape (n_samples,)
Probabilities of the positive class.
fig_size : tuple
Size (inches) of the plot.
dpi : int, default = 100
Image DPI.
title : str
The title of the plot.
save_fig_path : str
Full path where to save the plot. Will generate the folders if they don't exist already.
Returns
-------
fig : Matplotlib.pyplot.Figure
Figure from matplotlib
ax : Matplotlib.pyplot.Axe
Axe object from matplotlib
Example Syntax #1 : Plot calibration curve from estimator
-----------------
fig, ax = plot_calibration_curve(rf_pipe, X_test, y_test, n_bins=10, strategy='uniform',
fig_size=(12, 10), dpi=100,
save_fig_path="dir1/dir2/calibration_curve.png")
Example Syntax #2 : Plot the calibration curve using the calculated probabilities
-----------------
fig, ax = plot_calibration_curve(rf_pipe, X_test, y_test, n_bins=10, strategy='uniform',
probs=probs, fig_size=(12, 10), dpi=100,
save_fig_path="dir1/dir2/calibration_curve.png")
"""
if (len(y_test.unique()) == 2):
fig, ax = __plot_calibration_curve_binary(clf, X_test, y_test, n_bins=n_bins, strategy=strategy, **kwargs)
else:
fig, ax = __plot_calibration_curve_multiclass(clf, X_test, y_test, n_bins=n_bins, strategy=strategy, **kwargs)
return fig, ax
The output for the following syntax:
fig, ax = reporting.plot_calibration_curve(rf_pipe, X_test, y_test, n_bins=10, strategy='uniform',
probs=probs, fig_size=(12, 10), dpi=100,
save_fig_path="dir1/dir2/calibration_curve.png",
title='Probability Calibration Curve')
I'm hoping to use k-means clustering to plot and return the position of each cluster's centroid. The following groups two sets of xy scatter points into 6 clusters.
Using the df below, the coordinates in A and B and C and D are plotted as a scatter. I'm hoping to plot and return the centroid of each cluster.
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
df = pd.DataFrame(np.random.randint(-50,50,size=(100, 4)), columns=list('ABCD'))
fig, ax = plt.subplots()
Y_sklearn = df[['A','B','C','D']].values
model = KMeans(n_clusters = 4)
model.fit(Y_sklearn)
plt.scatter(Y_sklearn[:,0],Y_sklearn[:,1], c = model.labels_);
plt.scatter(Y_sklearn[:,2],Y_sklearn[:,3], c = model.labels_);
plt.show()
Solution
When you make a plot from KMeans prediction, if the number of features are more than two, you can only select two of the features (in your case, say, columns A and B) as the x and y coordinates on the 2D plane of the scatterplot. A better way to properly represent your higher-dimensional data on a 2D-plane would be some form of dimension-reduction: such as PCA. However, to keep the scope of this answer manageable I am only resorting to using the first two columns of the data X_train or X_test below and NOT using PCA to get the most important two dimensions.
I tried writing this answer so that anyone could start from zero experience and still follow along the code and run it to see what it does. Yes, it is long, and hence I have broken it down into multiple sections, so you could skip them if needed.
βFor your convenience you could get the entire code in this colab notebook:
π₯
βββ Jump to Section G to see the code used to make the plots.
π π π Section A gives a summary and is useful if you are just interested in the code to add the cluster-centers to your scatterplot.
List of Sections
A. Identification of Clusters in Data using KMeans Method
B. Import Libraries
C. Dummy Data
D. Custom Functions
E. Calculate True Cluster Centers
F. Define, Fit and Predict using KMeans Model
F.1. Predict for y_train using X_train
F.2. Predict for y_test using X_test
G. Make Figure with train, test and prediction data
References
A. Identification of Clusters in Data using KMeans Method
We will use sklearn.cluster.KMeans to identify the clusters. The attribute model.cluster_centers_ will give us the predicted cluster centers. Say, we want to find out 5 clusters in our training data, X_train with shape: (n_samples, n_features) and labels, y_train with shape: (n_samples,). The following code block fits the model to the data (X_train) and then predicts y and saves the prediction in y_pred_train variable.
# Define model
model = KMeans(n_clusters = 5)
# Fit model to training data
model.fit(X_train)
# Make prediction on training data
y_pred_train = model.predict(X_train)
# Get predicted cluster centers
model.cluster_centers_ # shape: (n_cluster, n_features)
## Displaying cluster centers on a plot
# if you just want to add cluster centers
# to your existing scatter-plot,
# just do this --->>
cluster_centers = model.cluster_centers_
plt.scatter(cluster_centers[:, 0], cluster_centers[:, 1],
marker='s', color='orange', s = 100,
alpha=0.5, label='pred')
This is the result βββ Jump to section G to see the code used to make the plots.
B. Import Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
import pprint
%matplotlib inline
%config InlineBackend.figure_format = 'svg' # 'svg', 'retina'
plt.style.use('seaborn-white')
C. Dummy Data
We will use data generated in the following code-block. By design we create a dataset with 5 clusters and the following specifications. And then split the data into train and test blocks using sklearn.model_selection.train_test_split.
## Creating data with
# n_samples = 2500
# n_features = 4
# Expected clusters = 5
# centers = 5
# cluster_std = [1.0, 2.5, 0.5, 1.5, 2.0]
NUM_SAMPLES = 2500
RANDOM_STATE = 42
NUM_FEATURES = 4
NUM_CLUSTERS = 5
CLUSTER_STD = [1.0, 2.5, 0.5, 1.5, 2.0]
TEST_SIZE = 0.20
def dummy_data():
## Creating data with
# n_samples = 2500
# n_features = 4
# Expected clusters = 5
# centers = 5
# cluster_std = [1.0, 2.5, 0.5, 1.5, 2.0]
X, y = make_blobs(
n_samples = NUM_SAMPLES,
random_state = RANDOM_STATE,
n_features = NUM_FEATURES,
centers = NUM_CLUSTERS,
cluster_std = CLUSTER_STD
)
return X, y
def test_dummy_data(X, y):
assert X.shape == (NUM_SAMPLES, NUM_FEATURES), "Shape mismatch for X"
assert set(y) == set(np.arange(NUM_CLUSTERS)), "NUM_CLUSTER mismatch for y"
## D. Create Dummy Data
X, y = dummy_data()
test_dummy_data(X, y)
## Create train-test-split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=TEST_SIZE, random_state=RANDOM_STATE)
D. Custom Functions
We will use the following 3 custom defined functions:
get_cluster_centers()
scatterplot()
add_cluster_centers()
def get_cluster_centers(X, y, num_clusters=None):
"""Returns the cluster-centers as numpy.array of
shape: (num_cluster, num_features).
"""
num_clusters = NUM_CLUSTERS if (num_clusters is None) else num_clusters
return np.stack([X[y==i].mean(axis=0) for i in range(NUM_CLUSTERS)])
def scatterplot(X, y,
cluster_centers=None,
alpha=0.5,
cmap='viridis',
legend_title="Classes",
legend_loc="upper left",
ax=None):
if ax is not None:
plt.sca(ax)
scatter = plt.scatter(X[:, 0], X[:, 1],
s=None, c=y, alpha=alpha, cmap=cmap)
legend = ax.legend(*scatter.legend_elements(),
loc=legend_loc, title=legend_title)
ax.add_artist(legend)
if cluster_centers is not None:
plt.scatter(cluster_centers[:, 0], cluster_centers[:, 1],
marker='o', color='red', alpha=1.0)
ax = plt.gca()
return ax
def add_cluster_centers(true_cluster_centers=None,
pred_cluster_centers=None,
markers=('o', 's'),
colors=('red, ''orange'),
s = (None, 200),
alphas = (1.0, 0.5),
center_labels = ('true', 'pred'),
legend_title = "Cluster Centers",
legend_loc = "upper right",
ax = None):
if ax is not None:
plt.sca(ax)
for idx, cluster_centers in enumerate([true_cluster_centers,
pred_cluster_centers]):
if cluster_centers is not None:
scatter = plt.scatter(
cluster_centers[:, 0], cluster_centers[:, 1],
marker = markers[idx],
color = colors[idx],
s = s[idx],
alpha = alphas[idx],
label = center_labels[idx]
)
legend = ax.legend(loc=legend_loc, title=legend_title)
ax.add_artist(legend)
return ax
E. Calculate True Cluster Centers
We will calculate the true cluster centers for train and test datasets and save the results to a dict: true_cluster_centers.
true_cluster_centers = {
'train': get_cluster_centers(X = X_train, y = y_train, num_clusters = NUM_CLUSTERS),
'test': get_cluster_centers(X = X_test, y = y_test, num_clusters = NUM_CLUSTERS)
}
# Show result
pprint.pprint(true_cluster_centers, indent=2)
Output:
{ 'test': array([[-2.44425795, 9.06004013, 4.7765817 , 2.02559904],
[-6.68967507, -7.09292101, -8.90860337, 7.16545582],
[ 1.99527271, 4.11374524, -9.62610383, 9.32625443],
[ 6.46362854, -5.90122349, -6.2972843 , -6.04963714],
[-4.07799392, 0.61599582, -1.82653858, -4.34758032]]),
'train': array([[-2.49685525, 9.08826 , 4.64928719, 2.01326914],
[-6.82913109, -6.86790673, -8.99780554, 7.39449295],
[ 2.04443863, 4.12623661, -9.64146529, 9.39444917],
[ 6.74707792, -5.83405806, -6.3480674 , -6.37184345],
[-3.98420601, 0.45335025, -1.23919526, -3.98642807]])}
F. Define, Fit and Predict using KMeans Model
model = KMeans(n_clusters = NUM_CLUSTERS, random_state = RANDOM_STATE)
model.fit(X_train)
## Output
# KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
# n_clusters=5, n_init=10, n_jobs=None, precompute_distances='auto',
# random_state=42, tol=0.0001, verbose=0)
F.1. Predict for y_train using X_train
## Process Prediction: train data
y_pred_train = model.predict(X_train)
# get model predicted cluster-centers
pred_train_cluster_centers = model.cluster_centers_ # shape: (n_cluster, n_features)
# sanity check
assert all([
y_pred_train.shape == (NUM_SAMPLES * (1 - TEST_SIZE),),
set(y_pred_train) == set(y_train)
])
F.2. Predict for y_test using X_test
## Process Prediction: test data
y_pred_test = model.predict(X_test)
# get model predicted cluster-centers
pred_test_cluster_centers = model.cluster_centers_ # shape: (n_cluster, n_features)
# sanity check
assert all([
y_pred_test.shape == (NUM_SAMPLES * TEST_SIZE,),
set(y_pred_test) == set(y_test)
])
G. Make Figure with train, test and prediction data
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(15, 6))
FONTSIZE = {'title': 16, 'suptitle': 20}
TITLE = {
'train': 'Train Data Clusters',
'test': 'Test Data Clusters',
'suptitle': 'Cluster Identification using KMeans Method',
}
CENTER_LEGEND_LABELS = ('true', 'pred')
LAGEND_PARAMS = {
'data': {'title': "Classes", 'loc': "upper left"},
'cluster_centers': {'title': "Cluster Centers", 'loc': "upper right"}
}
SCATTER_ALPHA = 0.4
CMAP = 'viridis'
CLUSTER_CENTER_PLOT_PARAMS = dict(
markers = ('o', 's'),
colors = ('red', 'orange'),
s = (None, 200),
alphas = (1.0, 0.5),
center_labels = CENTER_LEGEND_LABELS,
legend_title = LAGEND_PARAMS['cluster_centers']['title'],
legend_loc = LAGEND_PARAMS['cluster_centers']['loc']
)
SCATTER_PLOT_PARAMS = dict(
alpha = SCATTER_ALPHA,
cmap = CMAP,
legend_title = LAGEND_PARAMS['data']['title'],
legend_loc = LAGEND_PARAMS['data']['loc'],
)
## plot train data
data_label = 'train'
ax = axs[0]
plt.sca(ax)
ax = scatterplot(X = X_train, y = y_train,
cluster_centers = None,
ax = ax, **SCATTER_PLOT_PARAMS)
ax = add_cluster_centers(
true_cluster_centers = true_cluster_centers[data_label],
pred_cluster_centers = pred_train_cluster_centers,
ax = ax, **CLUSTER_CENTER_PLOT_PARAMS)
plt.title(TITLE[data_label], fontsize = FONTSIZE['title'])
## plot test data
data_label = 'test'
ax = axs[1]
plt.sca(ax)
ax = scatterplot(X = X_test, y = y_test,
cluster_centers = None,
ax = ax, **SCATTER_PLOT_PARAMS)
ax = add_cluster_centers(
true_cluster_centers = true_cluster_centers[data_label],
pred_cluster_centers = pred_test_cluster_centers,
ax = ax, **CLUSTER_CENTER_PLOT_PARAMS)
plt.title(TITLE[data_label], fontsize = FONTSIZE['title'])
plt.suptitle(TITLE['suptitle'],
fontsize = FONTSIZE['suptitle'])
plt.show()
# save figure
fig.savefig("kmeans_fit_result.png", dpi=300)
Result:
References
Documentation: sklearn.cluster.KMeans
Documnetation: sklearn.model_selection.train_test_split
Documentation: matplotlib.pyplot.legend
Documentation: sklearn.decomposition.PCA
Managing legend in scatterplot using matplotlib
Demo of KMeans Assumptions
Based on how you make the scatter plot, I guess A and B correspond to the xy coordinates of the first set of points, while C and D correspond to the xy coordinates of the second set of points. If so, you cannot apply Kmeans to the dataframe directly, since there are only two features, i.e., x and y coordinates. Finding the centroids is actually quite simple, all you need is model_zero.cluster_centers_.
Let's first construct a dataframe that will be better for visualization
import numpy as np
# set the seed for reproducible datasets
np.random.seed(365)
# cov matrix of a 2d gaussian
stds = np.eye(2)
# four cluster means
means_zero = np.random.randint(10,20,(4,2))
sizes_zero = np.array([20,30,15,35])
# four cluster means
means_one = np.random.randint(0,10,(4,2))
sizes_one = np.array([20,20,25,35])
points_zero = np.vstack([np.random.multivariate_normal(mean,stds,size=(size)) for mean,size in zip(means_zero,sizes_zero)])
points_one = np.vstack([np.random.multivariate_normal(mean,stds,size=(size)) for mean,size in zip(means_one,sizes_one)])
all_points = np.hstack((points_zero,points_one))
As you can see, the four clusters are constructed by sampling points from four Gaussians with different means. With this dataframe, here is how you can plot it
import matplotlib.patheffects as PathEffects
from sklearn.cluster import KMeans
df = pd.DataFrame(all_points, columns=list('ABCD'))
fig, ax = plt.subplots(figsize=(10,8))
scatter_zero = df[['A','B']].values
scatter_one = df[['C','D']].values
model_zero = KMeans(n_clusters=4)
model_zero.fit(scatter_zero)
model_one = KMeans(n_clusters=4)
model_one.fit(scatter_one)
plt.scatter(scatter_zero[:,0],scatter_zero[:,1],c=model_zero.labels_,cmap='bwr');
plt.scatter(scatter_one[:,0],scatter_one[:,1],c=model_one.labels_,cmap='bwr');
# plot the cluster centers
txts = []
for ind,pos in enumerate(model_zero.cluster_centers_):
txt = ax.text(pos[0],pos[1],
'cluster %i \n (%.1f,%.1f)' % (ind,pos[0],pos[1]),
fontsize=12,zorder=100)
txt.set_path_effects([PathEffects.Stroke(linewidth=5, foreground="aquamarine"),PathEffects.Normal()])
txts.append(txt)
for ind,pos in enumerate(model_one.cluster_centers_):
txt = ax.text(pos[0],pos[1],
'cluster %i \n (%.1f,%.1f)' % (ind,pos[0],pos[1]),
fontsize=12,zorder=100)
txt.set_path_effects([PathEffects.Stroke(linewidth=5, foreground="lime"),PathEffects.Normal()])
txts.append(txt)
zero_mean = np.mean(model_zero.cluster_centers_,axis=0)
one_mean = np.mean(model_one.cluster_centers_,axis=0)
txt = ax.text(zero_mean[0],zero_mean[1],
'point set zero',
fontsize=15)
txt.set_path_effects([PathEffects.Stroke(linewidth=5, foreground="violet"),PathEffects.Normal()])
txts.append(txt)
txt = ax.text(one_mean[0],one_mean[1],
'point set one',
fontsize=15)
txt.set_path_effects([PathEffects.Stroke(linewidth=5, foreground="violet"),PathEffects.Normal()])
txts.append(txt)
plt.show()
Running this code, you will get
so I have been attempting to view the decision boundary for my network and for some reason when i run it it doesn't give me any output.
i took the function from here
it doesn't give any error, it just ends the run.
# Fit the model also history to map the model
history = model.fit(X, Y,validation_split=0.30, epochs=10, batch_size=1000, verbose= 1)
# evaluate the model
scores = model.evaluate(X, Y)
def plot_decision_boundary(X, y, model, steps=1000, cmap='Paired'):
"""
Function to plot the decision boundary and data points of a model.
Data points are colored based on their actual label.
"""
cmap = plt.get_cmap(cmap)
# Define region of interest by data limits
xmin, xmax = X[:,0].min() - 1, X[:,0].max() + 1
ymin, ymax = X[:,1].min() - 1, X[:,1].max() + 1
steps = 1000
x_span = np.linspace(xmin, xmax, steps)
y_span = np.linspace(ymin, ymax, steps)
xx, yy = np.meshgrid(x_span, y_span)
# Make predictions across region of interest
labels = model.predict(np.c_[xx.ravel(), yy.ravel()])
# Plot decision boundary in region of interest
z = labels.reshape(xx.shape)
fig, ax = plt.subplots()
ax.contourf(xx, yy, z, cmap=cmap, alpha=0.5)
# Get predicted labels on training data and plot
train_labels = model.predict(X)
ax.scatter(X[:,0], X[:,1], c=y, cmap=cmap, lw=0)
return fig, ax
plot_decision_boundary(X, Y, model, cmap='RdBu')
i havn't really done many changes to the function.
what am i missing here?
Your function plot_decision_boundary() constructs a fig and an ax object which are returned at the end. In your code there is nothing to take up these objects when they are returned. Just because a function returns fig and ax that does not mean, they are automatically drawn.
Solution is simple, just call
plt.show()
after calling the decision boundary function.
This part is often omitted in example codes. I believe it is because there are several ways to generate the window and show the plot (you could also want to save it directly to file in which case you wouldn't need the show() statement).
I am trying to plot a decision plot boundary of model prediction by Keras. However, the boundary that is generated seems incorrect.
Here's my model
def base():
model = Sequential()
model.add(Dense(5,activation = 'relu', input_dim = 2))
model.add(Dense(2,activation = 'relu'))
model.add(Dense(1,activation = 'sigmoid'))
model.compile(optimizer = optimizers.SGD(lr=0.0007, momentum=0.0, decay=0.0), loss = 'binary_crossentropy', metrics= ['accuracy'])
return model
model = base()
history = model.fit(train_X,train_Y, epochs = 10000, batch_size =64, verbose = 2)
And here's my plot function (taken from here)
def plot_decision_boundary(X, y, model, steps=1000, cmap='Paired'):
"""
Function to plot the decision boundary and data points of a model.
Data points are colored based on their actual label.
"""
cmap = get_cmap(cmap)
# Define region of interest by data limits
xmin, xmax = X[:,0].min() - 1, X[:,0].max() + 1
ymin, ymax = X[:,1].min() - 1, X[:,1].max() + 1
steps = 1000
x_span = linspace(xmin, xmax, steps)
y_span = linspace(ymin, ymax, steps)
xx, yy = meshgrid(x_span, y_span)
# Make predictions across region of interest
labels = model.predict(c_[xx.ravel(), yy.ravel()])
# Plot decision boundary in region of interest
z = labels.reshape(xx.shape)
fig, ax = subplots()
ax.contourf(xx, yy, z, cmap=cmap, alpha=0.5)
# Get predicted labels on training data and plot
train_labels = model.predict(X)
ax.scatter(X[:,0], X[:,1], c=y.ravel(), cmap=cmap, lw=0)
return fig, ax
plot_decision_boundary(train_X,train_Y, model, cmap = 'RdBu')
And I get a plot like this
Which is obviously a very flawed depiction of a plot decision boundary (not informative at all due to the presence of so many boundaries). Can somebody point the error in my case?
Since probability is a continuous value from 0 to 1, we are getting many contours.
If your visualization is restricted to 2 classes (output is 2D softmax vector) you can use this simple code
def plot_model_out(x,y,model):
"""
x,y: 2D MeshGrid input
model: Keras Model API Object
"""
grid = np.stack((x,y))
grid = grid.T.reshape(-1,2)
outs = model.predict(grid)
y1 = outs.T[0].reshape(x.shape[0],x.shape[0])
plt.contourf(x,y,y1)
plt.show()
This will give contours (more than one), if you want a single contour line you can do the following
You can threshold the probability output from model.predict and display a single contour line.
For Example,
import numpy as np
from matplotlib import pyplot as plt
a = np.linspace(-5, 5, 100)
xx, yy = np.meshgrid(a,a)
z = xx**2 + yy**2
# z = z > 5 (Threshold value)
plt.contourf(xx, yy, z,)
plt.show()
With threshold value commented and not commented we get 2 images
Multiple contours due to continuous values
Single contour as the z is thresholded (z = z > 5)
A similar method can be used on the output softmax vector like this
label = label > 0.5
For more information regarding visualization codes refer IITM CVI Blog