I have 4 known points that I am trying to run a smooth curve through.
gg_xy=np.array([[-2.612,0],[0,1.6969999999999996],[0.5870000000000001,0],[0,-2.605]])
plt.plot(gg_xy[:,0],gg_xy[:,1],'ro')
ggx,ggy=splprep(gg_xy.T,u=None,s=0.0,per=1)
gg_xspline=np.linspace(ggy.min(),ggy.max(),300)
ggxnew,ggynew=splev(gg_xspline,ggx,der=0)
plt.plot(ggxnew,ggynew)
plt.show()
This is my ouput:
It is missing a point when interpolating. Could someone help me force it through this point? Is there a better way to do this other than using spline interpolation? Edit: the curve must be a single connected loop.
Thanks!
from scipy.interpolate import splprep, splev
import matplotlib.pyplot as plt
import numpy as np
gg_xy=np.array([[-2.612,0],[0,1.6969999999999996],
[0.5870000000000001,0],[0,-2.605], [0,-2.605]])
plt.plot(gg_xy[:,0],gg_xy[:,1],'ro')
ggx,ggy=splprep(gg_xy.T,u=None,s=0.0,per=1)
gg_xspline=np.linspace(ggy.min(),ggy.max(),300)
ggxnew,ggynew=splev(gg_xspline,ggx,der=0)
plt.plot(ggxnew,ggynew)
plt.show()
Docs:
per: int, optional
If non-zero, data points are considered periodic with
period x[m-1] - x[0] and a smooth periodic spline approximation is
returned. Values of y[m-1] and w[m-1] are not used.
Looks like it ignores the last point, so I just repeated the last point.
Related
I want to find the derivatives of some scattered data. I have tried two different methods:
projecting the scattered data on a regular grid using scipy.interpolate.griddata, then computing the gradients with numpy.gradients, and then projecting values back to the scattered locations.
creating a CloughTocher2DInterpolater (but I have the same issue with others) and getting the gradients out of it
The second one is an order of magnitude faster than the first one but unfortunately, it also goes crazy quite quickly when data are a bit complex. For instance starting with this signal (called F and which is a simple addition of tanh stepwise functions along x and y):
When I process F using the two methods, I get:
Method 1 gives a good approximation. Method 2 is also good but I need force the colormap because of the existence of some extreme values.
Now, if I add a small noise (i.e. of amplitude 0.1 while the signal has amplitudes between -3 and 3), the interpolator just goes crazy giving very large extreme values:
I don't know how to deal with this. I understand the interpolator won't like irregular function or noise, but I was not expecting such discrepancy. My first idea was to smooth data first but strangely I can't find any method that would help me on this. Another idea would be to make a 2d fit of F to try to remove noise but I'm dry here too...any idea ?
Here is the corresponding python example (working on python3.6.9):
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
plt.interactive(True)
# scattered data
N = 200
coordu = np.random.rand(N**2,2)
Xu=coordu[:,0]
Yu=coordu[:,1]
noise = 0.
noise = np.random.rand(Xu.shape[0])*0.1
Zu=np.tanh((Xu-0.25)/0.01+(Yu-0.25)/0.001)+np.tanh((Xu-0.5)/0.01+(Yu-0.5)/0.001)+np.tanh((Xu-0.75)/0.001+(Yu-0.75)/0.001)+noise
plt.figure();plt.scatter(Xu,Yu,1,Zu)
plt.title('Data signal F')
#plt.savefig('signalF_noisy.png')
### get the gradient
# using griddata np.gradients
Xs,Ys=np.meshgrid(np.linspace(0,1,N),np.linspace(0,1,N))
coords = np.array([Xs,Ys]).T
Zs = interpolate.griddata(coordu,Zu,coords)
nearest = interpolate.griddata(coordu,Zu,coords,method='nearest')
znan = np.isnan(Zs)
Zs[znan] = nearest[znan]
dZs = np.gradient(Zs,np.min(np.diff(Xs[0,:])))
dZus = interpolate.griddata(coords.reshape(N*N,2),dZs[0].reshape(N*N),coordu)
hist_dzus = np.histogram(dZus,100)
plt.figure();plt.scatter(Xu,Yu,1,dZus)
plt.colorbar()
plt.clim([0 ,10])
plt.title('dF/dx using griddata and np.gradients')
#plt.savefig('dxF_griddata_noisy.png')
# using interpolation method Clough
interp = interpolate.CloughTocher2DInterpolator(coordu,Zu)
dZuCT = interp.grad
hist_dzct = np.histogram(dZuCT[:,0,0],100)
plt.figure();plt.scatter(Xu,Yu,1,dZuCT[:,0,0])
plt.colorbar()
plt.clim([0 ,10])
plt.title('dF/dx using CloughTocher2DInterpolator')
#plt.savefig('dxF_CT2D_noisy.png')
# histograms
plt.figure()
plt.semilogy(hist_dzus[1][:-1],hist_dzus[0],'.-')
plt.semilogy(hist_dzct[1][:-1],hist_dzct[0],'.-')
plt.title('histogram of dF/dx')
plt.legend(('griddata','ClouhTocher'))
#plt.savefig('dxF_hist_noisy.png')
This is my code. I want to get a typical sine graph but somehow am not getting it.
import matplotlib.pyplot as plt
import numpy as np
x=np.arange(0,2*(np.pi),(np.pi)/2)
y=np.sin(x)
plt.plot(x,y,color='b')
plt.show()
I am getting this graph.
1
Also, what would I need to modify to the axes so that it would look like this ?
2
Look at the step size in your range:
x=np.arange(0,2*(np.pi),(np.pi)/2)
You're evaluating sin every pi/2 ... in other words, only at -1, 0 and 1.
You need a much smaller step size ... say, np.pi / 100
For future problems, see this lovely reference for debugging help. Simply printing x would have shown your problem.
Given 2000 random points in a unit circle (using numpy.random.normal(0,1)), I want to normalize them such that the output is a circle, how do I do that?
I was requested to show my efforts. This is part of a larger question: Write a program that samples 2000 points uniformly from the circumference of a unit circle. Plot and show it is indeed picked from the circumference. To generate a point (x,y) from the circumference, sample (x,y) from std normal distribution and normalise them.
I'm almost certain my code isn't correct, but this is where I am up to. Any advice would be helpful.
This is the new updated code, but it still doesn't seem to be working.
import numpy as np
import matplotlib.pyplot as plot
def plot():
xy = np.random.normal(0,1,(2000,2))
for i in range(2000):
s=np.linalg.norm(xy[i,])
xy[i,]=xy[i,]/s
plot.plot(xy)
plot.show()
I think the problem is in
plot.plot(xy)
even if I use
plot.plot(xy[:,0],xy[:,1])
it doesn't work.
Connected lines are not a good visualization here. You essentially connect random points on the circle. Since you do this quite often, you will get a filled circle. Try drawing points instead.
Also avoid name space mangling. You import matplotlib.pyplot as plot and also name your function plot. This will lead to name conflicts.
import numpy as np
import matplotlib.pyplot as plt
def plot():
xy = np.random.normal(0,1,(2000,2))
for i in range(2000):
s=np.linalg.norm(xy[i,])
xy[i,]=xy[i,]/s
fig, ax = plt.subplots(figsize=(5,5))
# scatter draws dots instead of lines
ax.scatter(xy[:,0], xy[:,1])
If you use dots instead, you will see that your points indeed lie on the unit circle.
Your code has many problems:
Why using np.random.normal (a gaussian distribution) when the problem text is about uniform (flat) sampling?
To pick points on a circle you need to correlate x and y; i.e. randomly sampling x and y will not give a point on the circle as x**2+y**2 must be 1 (for example for the unit circle centered in (x=0, y=0)).
A couple of ways to get the second point is to either "project" a random point from [-1...1]x[-1...1] on the unit circle or to pick instead uniformly the angle and compute a point on that angle on the circle.
First of all, if you look at the documentation for numpy.random.normal (and, by the way, you could just use numpy.random.randn), it takes an optional size parameter, which lets you create as large of an array as you'd like. You can use this to get a large number of values at once. For example: xy = numpy.random.normal(0,1,(2000,2)) will give you all the values that you need.
At that point, you need to normalize them such that xy[:,0]**2 + xy[:,1]**2 == 1. This should be relatively trivial after computing what xy[:,0]**2 + xy[:,1]**2 is. Simply using norm on each dimension separately isn't going to work.
Usual boilerplate
import numpy as np
import matplotlib.pyplot as plt
generate the random sample with two rows, so that it's more convenient to refer to x's and y's
xy = np.random.normal(0,1,(2,2000))
normalize the random sample using a library function to compute the norm, axis=0 means consider the subarrays obtained varying the first array index, the result is a (2000) shaped array that can be broadcasted to xy /= to have points with unit norm, hence lying on the unit circle
xy /= np.linalg.norm(xy, axis=0)
Eventually, the plot... here the key is the add_subplot() method, and in particular the keyword argument aspect='equal' that requires that the scale from user units to output units it's the same for both axes
plt.figure().add_subplot(111, aspect='equal').scatter(xy[0], xy[1])
pt.show()
to have
I'm making a demonstration of a different types of regression in numpy with ipython, and so far, I've been able to plot a simple linear regression without difficulty. Now, when I go on to make a quadratic fit to my data and go to plot it, I don't get a quadratic curve but instead get many lines. Here's the code I'm running that generates the problem:
import numpy
from numpy import random
from matplotlib import pyplot as plt
import math
# Generate random data
X = random.random((100,1))
epsilon=random.randn(100,1)
f = 3+5*X+epsilon
# least squares system
A =numpy.array([numpy.ones((100,1)),X,X**2])
A = numpy.squeeze(A)
A = A.T
quadfit = numpy.linalg.solve(numpy.dot(A.transpose(),A),numpy.dot(A.transpose(),f))
# plot the data and the fitted parabola
qdbeta0,qdbeta1,qdbeta2 = quadfit[0][0],quadfit[1][0],quadfit[2][0]
plt.scatter(X,f)
plt.plot(X,qdbeta0+qdbeta1*X+qdbeta2*X**2)
plt.show()
What I get is this picture (zoomed in to show the problem):
You can see that rather than having a single parabola that fits the data, I have a huge number of individual lines doing something that I'm not sure of. Any help would be greatly appreciated.
Your X is ordered randomly, so it's not a good set of x values to use to draw one continuous line, because it has to double back on itself. You could sort it, I guess, but TBH I'd just make a new array of x coordinates and use those:
plt.scatter(X,f)
x = np.linspace(0, 1, 1000)
plt.plot(x,qdbeta0+qdbeta1*x+qdbeta2*x**2)
gives me
I'm trying to get a nice upsampler using Python when I have non-uniform spaced inputs. Any suggestions would be helpful. I've tried a number of interp functions. Here's an example:
from scipy.interpolate import InterpolatedUnivariateSpline
from numpy import linspace, arange, append
from matplotlib.pyplot import plot
F=[0, 1000,1500,2000,2500,3000,3500,4000,4500,5000,5500,22050]
M=[0.,2.85,2.49,1.65,1.55,1.81,1.35,1.00,1.13,1.58,1.21,0.]
ff=linspace(F[0],F[1],10)
for i in arange(2, len(F)):
ff=append(ff,linspace(F[i-1],F[i], 10))
aa=InterpolatedUnivariateSpline(x=F,y=M,k=2);
mm=aa(ff)
plot(F,M,'r-o'); plot(ff,mm,'bo'); show()
This is the plot I get:
I need to get interpolated values that don't go below 0. Note that the blue dots go below zero. The red line represents the original F vs. M data. If I use k=1 (piece-wise linear interp) then I get good values as shown here:
aa=InterpolatedUnivariateSpline(x=F,y=M,k=1)
mm=aa(ff); plot(F,M,'r-o');plot(ff,mm,'bo'); show()
The problem is that I need to have a "smooth" interpolation and not the piece-wise value. Does anyone know if the bbox argument in InterpolatedUnivarientSpline helps to fix that? I cant find any documentation on what bbox does. Is there another easier way to accomplish this?
Thanks in advance for any help.
Positivity-preserving interpolation is hard (if it wasn't, there wouldn't be a bunch of papers written about it). The splines of low degree (2, 3) usually do pretty well in this regard, but your data has that large gap in it, and it happens to be at the end of data range, making things worse.
One solution is to do interpolation in two steps: first upsample the data by piecewise linear interpolation, then interpolate new data with a smooth spline (I'll use cubic spline below, though quadratic also works).
The gap_size array records how large each gap is, relative to the smallest one. In subsequent loop, uniformly spaced points are replaced in large gaps (those that are at least twice the size of smallest one). The result is F_new, a nearly-uniform better grid that still includes the original points. The corresponding M values for it are generated by a piecewise linear spline.
Subsequent cubic interpolation produces a smooth curve that stays positive.
F = [0, 1000,1500,2000,2500,3000,3500,4000,4500,5000,5500,22050]
M = [0.,2.85,2.49,1.65,1.55,1.81,1.35,1.00,1.13,1.58,1.21,0.]
gap_size = np.diff(F) // np.diff(F).min()
F_new = []
for i in range(len(F)-1):
F_new.extend(np.linspace(F[i], F[i+1], gap_size[i], endpoint=False))
F_new.append(F[-1])
pl_spline = InterpolatedUnivariateSpline(F, M, k=1);
M_new = pl_spline(F_new)
smooth_spline = InterpolatedUnivariateSpline(F_new, M_new, k=3)
ff = np.linspace(F[0], F[-1], 100)
plt.plot(F, M, 'ro')
plt.plot(ff, smooth_spline(ff), 'b')
plt.show()
Of course, no tricks can hide the truth that we don't know what happens between 5500 and 22050 (Hz, I presume), the nearly-linear part is just a placeholder.