Constructing a ContinuousRV from an implemented_function or rv_continuous - python

I would like to construct a ContinuousRV given a python-implemented probability density function (pdf). The following is a minimal working example whose last statement yields a ValueError
import numpy as np
from scipy.stats import gaussian_kde, norm
from sympy import Interval, oo, symbols
from sympy.stats import ContinuousRV
from sympy.utilities.lambdify import implemented_function
# Example Data
measures = np.concatenate([norm.rvs(loc=-2, size=64), norm.rvs(loc=3, size=32)])
# Definition of the PDF
pdf_kde = gaussian_kde(measures)
pdf_sym = implemented_function("pdf", pdf_kde)
# Create the symbolic variable
XName, x = symbols('X x')
X = ContinuousRV(XName, pdf_sym(x), set=Interval(-oo, oo))
The example fails with the following error:
.../lib/python3.8/site-packages/sympy/stats/crv_types.py in check(pdf, set)
149 x = Dummy('x')
150 val = integrate(pdf(x), (x, set))
--> 151 _value_check(val == S.One, "The pdf on the given set is incorrect.")
152
153
.../lib/python3.8/site-packages/sympy/stats/rv.py in _value_check(condition, message)
1450 truth = fuzzy_and(condition)
1451 if truth == False:
-> 1452 raise ValueError(message)
1453 return truth == True
1454
ValueError: The pdf on the given set is incorrect.
I have confirmed that the pdf is a good approximation.
from scipy import integrate
value, err = integrate.quad(pdf_kde, -np.inf, np.inf)
print(value, err)
>>> 0.9999999999999996 2.318795975521764e-09
I am currently using Python 3.8.0, Sympy 1.6, Scipy 1.4.1, and Numpy 1.18.5 if that is relevant.

The ContinuousRV method constructs an instance of ContinuousDistributionHandmade and, in doing so, invokes a check method that fails because Sympy does not automatically perform numeric computation. It is possible to construct a wrapper that yields the desired distribution and performs said check numerically.
from sympy.stats.crv import SingleContinuousDistribution
def _check_dist(pdf, set):
from sympy import Dummy, integrate, N
x = Dummy('x')
integrand = pdf(x)
integral = integrate(integrand, (x, set.start, set.end))
v = float(N(integral))
assert np.isclose(float(v), 1.0)
def EmpiricalRV(name: str, m: np.ndarray) -> SingleContinuousDistribution:
from scipy.stats import gaussian_kde
from sympy import Interval, oo
from sympy.stats import ContinuousDistributionHandmade
from sympy.stats.crv import SingleContinuousPSpace
from sympy.utilities.lambdify import implemented_function
pdf_kde = gaussian_kde(m)
pdf_sym = implemented_function(f"f_{name}", lambda y: pdf_kde(float(y)))
domain = Interval(-oo, oo)
_check_dist(pdf_sym, domain)
dist = ContinuousDistributionHandmade(pdf_sym, domain)
pspace = SingleContinuousPSpace(name, dist)
return pspace.value
The following test code demonstrates the random variable in action.
from scipy.stats import norm
data = np.concatenate([norm.rvs(loc=-2, size=64), norm.rvs(loc=3, size=32)])
from sympy import N
from sympy.stats import density, Normal, E, P, median
Y = EmpiricalRV('Y',data)
ev = E(Y)
evfloat = float(N(ev))
print("Y :", Y)
print("density(Y) :", density(Y))
print("E(Y) :", ev)
print(f"N(E(Y)) : {evfloat:.4f}")
print(f"data.mean(): {data.mean():.4f}")
>>> Y : Y
>>> density(Y) : ContinuousDistributionHandmade(f_Y, Interval(-oo, oo))
>>> E(Y) : Integral(Y*f_Y(Y), (Y, -oo, oo))
>>> N(E(Y)) : -0.3882
>>> data.mean(): -0.3882
There may be further value in subclassing ContinuousDistributionHandmade or SingleContinuousDistribution

Related

Is there a multiple integrator in Python providing both variable integration limits (like scipy) and high precision (like mpmath)?

I can use scipy quad and nquad for a quadruple integration involving variable integration limits. The problem is that the default precision used raises an Error when the tolerance requested cannot be achieved. With mpmath integrator, I can define any arbitrary precision with setting mp.dps = arbitrary, but I can't see if and how the limits can become variable like with nquad. Mpmath also provides a very fast execution with Gauss-Legendre method in quadgl, which is highly desirable, because my function is smooth, but takes an exorbitant amount of time with scipy to complete four integrations. Please help.
The below is only a simple function that fails my goal:
from datetime import datetime
import scipy
from scipy.special import jn, jn_zeros
import numpy as np
import matplotlib.pyplot as plt
from mpmath import *
from mpmath import mp
from numpy import *
from scipy.optimize import *
# Set the precision
mp.dps = 15#; mp.pretty = True
# Setup shortcuts, so we can just write exp() instead of mp.exp(), etc.
F = mp.mpf
exp = mp.exp
sin = mp.sin
cos = mp.cos
asin = mp.asin
acos = mp.acos
sqrt = mp.sqrt
pi = mp.pi
tan = mp.tan
start = datetime.now()
print(start)
#optionsy={'limit':100, 'epsabs':1.49e-1, 'epsrel':1.49e-01}
#optionsx={'limit':100, 'epsabs':1.49e-1, 'epsrel':1.49e-01}
def f(x,y,z):
return 2*sqrt(1-x**2) + y**2.0 + z
def rangex(y,z):
return [-1,1]
def rangey(z):
return [1,2]
def rangez():
return [2,3]
def result():
return quadgl(f, rangex, rangey, rangez)
"""
#The below works:
def result():
return quadgl(f, [-1,1], [1,2], [2,3])
"""
print(result())
end = datetime.now()
print(end-start)
Ok, let me put something in answer, hard to put code in the comments
Simple optimization with MP math is to follow simple rules:
y2.0 is VERY expensive (log, exp, ...), replace with y*y
y2 is still expensive, replace with y*y
multiplication is a lot more expensive than summation, replace x*y + y**2.0 with (x+y)*y
Division is more expensive than multiplication, replace y/4 with 0.25*y
Code, Win 10 x64, Python 3.8
def f3():
def f2(x):
def f1(x,y):
def f(x,y,z):
return 1.0 + (x+y)*y + 3.0*z
return mpmath.quadgl(f, [-1.0, 1], [1.2*x, 1.0], [0.25*y, x*x])
return mpmath.quadgl(f1, [-1, 1.0], [1.2*x, 1.0])
return mpmath.quadgl(f2, [-1.0, 1.0])
on my computer went from 12.9 sec to 10.6 sec, about 20% off
Below is a simple example of how I can do only triple integration with mpmath. This does not address high precision with four integrations. In any case, execution time is even a bigger problem. Any help welcome.
from datetime import datetime
import scipy
import numpy as np
from mpmath import *
from mpmath import mp
from numpy import *
# Set the precision
mp.dps = 20#; mp.pretty = True
# Setup shortcuts, so we can just write exp() instead of mp.exp(), etc.
F = mp.mpf
exp = mp.exp
sin = mp.sin
cos = mp.cos
asin = mp.asin
acos = mp.acos
sqrt = mp.sqrt
pi = mp.pi
tan = mp.tan
start = datetime.now()
print('start: ',start)
def f3():
def f2(x):
def f1(x,y):
def f(x,y,z):
return 1.0 + x*y + y**2.0 + 3.0*z
return quadgl(f, [-1.0, 1], [1.2*x, 1.0], [y/4, x**2.0])
return quadgl(f1, [-1, 1.0], [1.2*x, 1.0])
return quadgl(f2, [-1.0, 1.0])
print('result =', f3())
end = datetime.now()
print('duration in mins:',end-start)
#start: 2020-08-19 17:05:06.984375
#result = 5.0122222222222221749
#duration: 0:01:35.275956
Furthermore, an attempt to combine one (first) scipy integration followed by a triple mpmath integrator does not seem to produce any output for more than 24 hours even with a simplest function. What is wrong with the following code?
from datetime import datetime
import scipy
import numpy as np
from mpmath import *
from mpmath import mp
from numpy import *
from scipy import integrate
# Set the precision
mp.dps = 15#; mp.pretty = True
# Setup shortcuts, so we can just write exp() instead of mp.exp(), etc.
F = mp.mpf
exp = mp.exp
sin = mp.sin
cos = mp.cos
asin = mp.asin
acos = mp.acos
sqrt = mp.sqrt
pi = mp.pi
tan = mp.tan
start = datetime.now()
print('start: ',start)
#Function to be integrated
def f(x,y,z,w):
return 1.0 + x + y + z + w
#Scipy integration:FIRST INTEGRAL
def f0(x,y,z):
return integrate.quad(f, -20, 10, args=(x,y,z), epsabs=1.49e-12, epsrel=1.4e-8)[0]
#Mpmath integrator of function f0(x,y,z): THREE OUTER INTEGRALS
def f3():
def f2(x):
def f1(x,y):
return quadgl(f0, [-1.0, 1], [-2, x], [-10, y])
return quadgl(f1, [-1, 1.0], [-2, x])
return quadgl(f2, [-1.0, 1.0])
print('result =', f3())
end = datetime.now()
print('duration:', end-start)
Below is the full code, for which the original question was raised. It contains the use of scipy to carry out four integrations:
# Imports
from datetime import datetime
import scipy.integrate as si
import scipy
from scipy.special import jn, jn_zeros
from scipy.integrate import quad
from scipy.integrate import nquad
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import fixed_quad
from scipy.integrate import quadrature
from mpmath import mp
from numpy import *
from scipy.optimize import *
# Set the precision
mp.dps = 30
# Setup shortcuts, so we can just write exp() instead of mp.exp(), etc.
F = mp.mpf
exp = mp.exp
sin = mp.sin
cos = mp.cos
asin = mp.asin
acos = mp.acos
sqrt = mp.sqrt
pi = mp.pi
tan = mp.tan
start = datetime.now()
print(start)
R1 = F(6.37100000000000e6)
k1 = F(8.56677817058932e-8)
R2 = F(1.0)
k2 = F(5.45789437248245e-01)
r = F(12742000.0)
#Replace computed initial constants with values presuming is is faster, like below:
#a2 = R2/r
#print(a2)
a2 = F(0.0000000784806152880238581070475592529)
def u1(phi2):
return r*cos(phi2)-r*sqrt(a2**2.0-(sin(phi2))**2.0)
def u2(phi2):
return r*cos(phi2)+r*sqrt(a2**2.0-(sin(phi2))**2.0)
def om(u,phi2):
return u-r*cos(phi2)
def mp2(phi2):
return r*sin(phi2)
def a1(u):
return R1/u
optionsx={'limit':100, 'epsabs':1.49e-14, 'epsrel':1.49e-11}
optionsy={'limit':100, 'epsabs':1.49e-14, 'epsrel':1.49e-10}
#---- in direction u
def a1b1_u(x,y,u):
return 2.0*u*sqrt(a1(u)**2.0-(sin(y))**2.0)
def oa2_u(x,y,u,phi2):
return (mp2(phi2)*sin(y)*cos(x)+om(u,phi2)*cos(y)
- sqrt((mp2(phi2)*sin(y)*cos(x)+om(u,phi2)*(cos(y)))**2.0
+ R2**2.0-om(u,phi2)**2.0-mp2(phi2)**2.0))
def ob2_u(x,y,u,phi2):
return (mp2(phi2)*sin(y)*cos(x)+om(u,phi2)*cos(y)
+ sqrt((mp2(phi2)*sin(y)*cos(x)+om(u,phi2)*(cos(y)))**2.0
+ R2**2.0-om(u,phi2)**2.0-mp2(phi2)**2.0))
def func1_u(x,y,u,phi2):
return (-exp(-k1*a1b1_u(x,y,u)-k2*ob2_u(x,y,u,phi2))+exp(+k2*oa2_u(x,y,u,phi2)))*sin(y)*cos(y)
#--------joint_coaxial integration: u1
def fg_u1(u,phi2):
return nquad(func1_u, [[-pi, pi], [0, asin(a1(u))]], args=(u,phi2), opts=[optionsx,optionsy])[0]
#Constants to be used for normalization at the end or in the interim inegrals if this helps adjust values for speed of execution
piA1 = pi*(R1**2.0-1.0/(2.0*k1**2.0)+exp(-2.0*k1*R1)*(2.0*k1*R1+1.0)/(2.0*k1**2.0))
piA2 = pi*(R2**2.0-1.0/(2.0*k2**2.0)+exp(-2.0*k2*R2)*(2.0*k2*R2+1.0)/(2.0*k2**2.0))
#----THIRD integral of u1
def third_u1(u,phi2):
return fg_u1(u,phi2)*u**2.0
def third_u1_I(phi2):
return quad(third_u1, u1(phi2), u2(phi2), args = (phi2), epsabs=1.49e-20, epsrel=1.49e-09)[0]
#----FOURTH integral of u1
def fourth_u1(phi2):
return third_u1_I(phi2)*sin(phi2)*cos(phi2)
def force_u1():
return quad(fourth_u1, 0.0, asin(a2), args = (), epsabs=1.49e-20, epsrel=1.49e-08)[0]
force_u1 = force_u1()*r**2.0*2.0*pi*k2/piA1/piA2
print('r = ', r, 'force_u1 =', force_u1)
end = datetime.now()
print(end)
args = {
'p':r,
'q':force_u1,
'r':start,
's':end
}
#to txt file
f=open('Sphere-test-force-u-joint.txt', 'a')
f.write('\n{p},{q},{r},{s}'.format(**args))
#f.flush()
f.close()
I am interested in setting the epsrel sufficiently low, depending on the case. The epsabs is generally unknown apriori, so I understand that I should make it very low to avoid it taking hold of the output, in which case it introduces an computational articact. When I make it lower, an Error warning is raised that the round-off errors are significant and the total error may be underestimated for the desired tolerance to be achieved.
Whilst the question is not about speed, the latter is intimately connected with making practical the execution of a quadruple integration prior to the inquiry about precision and tolerance. To test the speed, I set (increased) all four epsrel=1e-02, which reduced the time of the original code down to 2:14 (hours). Then I simplified powers per Severin and implemented some memoization. These reduced the time cumulatively down to 1:29 (hours). The edited lines of the code are provided here:
from memoization import cached
#cached(ttl=10)
def u1(phi2):
return r*cos(phi2)-r*sqrt(a2*a2-sin(phi2)*sin(phi2))
#cached(ttl=10)
def u2(phi2):
return r*cos(phi2)+r*sqrt(a2*a2-sin(phi2)*sin(phi2))
#cached(ttl=10)
def om(u,phi2):
return u-r*cos(phi2)
#cached(ttl=10)
def mp2(phi2):
return r*sin(phi2)
#cached(ttl=10)
def a1(u):
return R1/u
optionsx={'limit':100, 'epsabs':1.49e-14, 'epsrel':1.49e-02}
optionsy={'limit':100, 'epsabs':1.49e-14, 'epsrel':1.49e-02}
def a1b1_u(x,y,u):
return 2.0*u*sqrt(a1(u)*a1(u)-sin(y)*sin(y))
def oa2_u(x,y,u,phi2):
return (mp2(phi2)*sin(y)*cos(x)+om(u,phi2)*cos(y)
- sqrt((mp2(phi2)*sin(y)*cos(x)+om(u,phi2)*(cos(y)))**2.0
+ 1.0-om(u,phi2)*om(u,phi2)-mp2(phi2)*mp2(phi2)))
def ob2_u(x,y,u,phi2):
return (mp2(phi2)*sin(y)*cos(x)+om(u,phi2)*cos(y)
+ sqrt((mp2(phi2)*sin(y)*cos(x)+om(u,phi2)*(cos(y)))**2.0
+ 1.0-om(u,phi2)*om(u,phi2)-mp2(phi2)*mp2(phi2)))
def third_u1(u,phi2):
return fg_u1(u,phi2)*u*u
def third_u1_I(phi2):
return quad(third_u1, u1(phi2), u2(phi2), args = (phi2), epsabs=1.49e-20, epsrel=1.49e-02)[0]
def force_u1():
return quad(fourth_u1, 0.0, asin(a2), args = (), epsabs=1.49e-20, epsrel=1.49e-02)[0]
However, the output is an artifact caused by the inadequate tolerance introduced. I can progressively set the epsrel to lower values and see if the result converges to a realistic value in realistic time with the available scipy precision. Hope this illustrates the original question much better.

Numba Parallize a ''for'' in a function called from lambda function (gradient evaluation)

I am quite new to Python and I writing to ask for some help!
I want to parallelize the ''for'' in the following function
def gfunc(Func,z,V,x):
xVz=x+V#z
f1=Func(xVz)
W=zeros_like(V)
m=V.shape[1]
h=np.finfo(x.dtype).eps ** (1./2)*(1+norm(f1))
for i in xrange(m):
W[:,i]=(Func(xVz+h*V[:,i])-f1)/h
f=0.5*norm(f1)**2
g=W.transpose()#f1
return f,g
where (z, V, x are numpy arrays) and after using the result of this function as
gf= lambda z: gfunc(Func,z,V,x)[0]
gr= lambda z: gfunc(Func,z,V,x)[1]
to be used in scipy's l_bfgs_b. Which is the best way to do this? I tryed something using numba as follows
#njit(parallel=True)
def par_diff(Func, xVz, h, f1, V):
W=zeros_like(V)
m=V.shape[1]
for i in prange(m):
W[:,i]=(Func(xVz+h*V[:,i])-f1)/h
return W
def gfunc(Func,z,V,x):
xVz=x+V#z
f1=Func(xVz)
h=np.finfo(x.dtype).eps ** (1./2)*(1+norm(f1))
W=par_diff(Func,xVz,h,f1,V)
end=time.time()
print(end-start)
f=0.5*norm(f1)**2
g=W.transpose()#f1
return f,g
but I receive the following error
raise value.with_traceback(tb)
TypingError: non-precise type pyobject
[1] During: typing of argument at
Any help is very much appreciated!
Best
Stefano
Edit: Following you find a MRE:
import numpy as np
from scipy.optimize import root
from numpy import cosh, zeros_like, mgrid, zeros
from scipy import optimize
from numpy import asarray
from scipy.linalg import norm
from scipy._lib.six import callable, exec_, xrange
from numba import njit, prange
import numba
# parameters
nx, ny = 75, 75
hx, hy = 1./(nx-1), 1./(ny-1)
P_left, P_right = 0, 0
P_top, P_bottom = 1, 0
def residual(P):
d2x = zeros_like(P)
d2y = zeros_like(P)
d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx
d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy
return d2x + d2y - 2*cosh(P).mean()**2
### Functions
def _as_inexact(x):
"""Return `x` as an array, of either floats or complex floats"""
x = asarray(x)
if not np.issubdtype(x.dtype, np.inexact):
return asarray(x, dtype=np.float_)
return x
def _array_like(x, x0):
"""Return ndarray `x` as same array subclass and shape as `x0`"""
x = np.reshape(x, np.shape(x0))
wrap = getattr(x0, '__array_wrap__', x.__array_wrap__)
return wrap(x)
## Functions to be parallelized
### Decomment from here to #1####1 to see working code
'''
def gfunc(Func,z,V,x):
xVz=x+V#z
f1=Func(xVz)
W=zeros_like(V)
m=V.shape[1]
#h=numdiffp(x0Vz.flatten(),f1)
h=np.finfo(x.dtype).eps ** (1./2)*(1+norm(f1))
#start=time.time()
for i in xrange(m):
W[:,i]=(Func(xVz+h*V[:,i])-f1)/h
#end=time.time()
#print(end-start)
f=0.5*norm(f1)**2
g=W.transpose()#f1
return f,g
#1####1
'''
## Comment From here to #2####2 to see working code
#njit(parallel=True)
def par_diff(Func, xVz, h, f1, V):
W=zeros_like(V)
m=V.shape[1]
for i in prange(m):
W[:,i]=(Func(xVz+h*V[:,i])-f1)/h
return W
def gfunc(Func,z,V,x):
xVz=x+V#z
f1=Func(xVz)
h=np.finfo(x.dtype).eps ** (1./2)*(1+norm(f1))
W=par_diff(Func,xVz,h,f1,V)
end=time.time()
print(end-start)
f=0.5*norm(f1)**2
g=W.transpose()#f1
return f,g
#2####2
# Using the machinery
guess = np.ones((nx, ny), float)
x0 = _as_inexact(guess)
Func = lambda z: _as_inexact(residual(_array_like(z, x0))).flatten()
x = x0.flatten()
ndim=x.shape[0]
V=np.random.rand(ndim,5)
gf= lambda z: gfunc(Func,z,V,x)[0]
gr= lambda z: gfunc(Func,z,V,x)[1]
result =optimize.fmin_l_bfgs_b(gf, np.zeros(5), fprime=gr, m=7,
factr= 1E-5,
pgtol= 1E-3)

Explicitly calculate convolution in Python

I want to calculate a convolution in Python by explicitly evaluating the integral
and comparing the result with what I get from fftconvolve. The integral would be calculated using quad:
import numpy as np
from scipy.integrate import quad
from scipy.signal import fftconvolve
import matplotlib.pyplot as plt
from sympy import symbols
def f(x,a,b):
return np.exp(-(x-a)**2/b)
def g(x,a,b):
return np.exp(-(x-np.pi*a)**2/(2.9*b))
x = symbols('x')
a = 1.2
b = 4.7
t = np.linspace(-100,100,int(1e4))
dt = t[1] - t[0]
h1 = fftconvolve(f(t,a,b),g(t,a,b),mode='same')*dt
h2,_ = quad(f(t,a,b)*g(x-t,a,b),-np.inf,np.inf,epsabs=0,epsrel=1e-6,args=(a,b))
x = np.linspace(-100,100,int(1e4))
plt.figure()
plt.plot(t,h1,label='fftconvolve')
plt.plot(x,h2,label='brute force')
plt.legend()
plt.show()
I keep getting the error AttributeError: 'Mul' object has no attribute 'exp' which refers to the line h2,_ = quad(... when it is called by quad.
What does this error mean and is this an appropriate way to use quad to evaluate the integral?

Jacobi Method & Basic Matrix Math using NUMPY

I'm getting an import error for "norm". What am I not doing correct??
I'm open to constructive feedback on improving the code, however I have to keep the parameters as they are!
Thanks!!!
Code is below:
import numpy as np
from numpy import norm, inalg, array, zeros, diag, diagflat, dot, linalg
"""Test Case Data"""
A = np.matrix([[4,-1,-1],[-2,6,1],[-1,1,7]])
b = np.matrix([[3],[9],[-6]])
x = np.matrix([[0],[0],[0]])
"""Main Function"""
def jacobi(A, b, x, Tolerance, Iterations):
V = np.diag(A)
D = np.diag(V)
R = D-A
D_I = D.I
D = np.asmatrix(D)
Counter_1 = 1
tol_gauge = 100
while Counter_1 <= Iterations:
# I considered using the "dot" function in NUMPY but I was wary of mixed results
iterative_approach_form = D_I * ((R*x)+b)
tol_gauge = np.linalg.norm(iterative_approach_form-x)
x = iterative_approach_form
if initial_tol <= Tolerance:
return("The Solution x = {},y={}, z={} ".format(x[0], x[1], x[2]))
return("The Solution was found in %s interation(s)" %(Counter_1))
else:
pass
Counter_1 +=1
return("The Solution was not found in {} iteration(s)".format(Iterations))
You need to specify which numpy module you are importing from. The following works if you want to use a function only by its name:
from numpy import linalg
from numpy.linalg import norm
from numpy import zeros, array, diag, diagflat, dot
Looking at you code however, you don't need the second import line, because in the rest of the code the numpy functions are specified according to the accepted norm. For example, norm is already present in your code as np.linalg.norm.
There are three more issues with your code: 1) initial_tol is not assigned a value; 2) tol_gauge is assigned but not used in the code; 3) the last return statement is not indented properly (perhaps only here) and the same is very likely for the block in your while loop.

Python 3: Sympy: Include list information to optimize lambdify

I use lambdify to compile an expression which is a function of certain parameters. Each parameter has N points. So I need to evaluate the expression N times. The following shows a simplified example on how this is done.
import numpy as np
from sympy.parsing.sympy_parser import parse_expr
from sympy.utilities.lambdify import lambdify, implemented_function
from sympy import S, Symbol
from sympy.utilities.autowrap import ufuncify
def CreateMagneticFieldsList(dataToSave,equationString,DSList):
expression = S(equationString)
numOfElements = len(dataToSave["MagneticFields"])
#initialize the magnetic field output array
magFieldsArray = np.empty(numOfElements)
magFieldsArray[:] = np.NaN
lam_f = lambdify(tuple(DSList),expression,modules='numpy')
try:
for i in range(numOfElements):
replacementList = np.zeros(len(DSList))
for j in range(len(DSList)):
replacementList[j] = dataToSave[DSList[j]][i]
try:
val = np.double(lam_f(*replacementList))
except:
val = np.nan
magFieldsArray[i] = val
except:
print("Error while evaluating the magnetic field expression")
return magFieldsArray
list={"MagneticFields":list(range(10000)), "Chx":list(range(10000))}
out=CreateMagneticFieldsList(list,"MagneticFields*5+Chx",["MagneticFields","Chx"])
print(out)
Is there a way to optimize this call further? Specifically, I mean is there a way to make lambdify include that I'm calculating for a list of points, so that the loop evalulation can be optimized?
Thanks to #asmeurer, he gave the idea on how to do it.
Since lambdify is compiled using numpy, then one could simply pass the lists as arguments! The following is a working example
#!/usr/bin/python3
import numpy as np
from sympy.parsing.sympy_parser import parse_expr
from sympy.utilities.lambdify import lambdify, implemented_function
from sympy import S, Symbol
from sympy.utilities.autowrap import ufuncify
def CreateMagneticFieldsListOpt(dataToSave,equationString,DSList):
expression = S(equationString)
numOfElements = len(dataToSave["MagneticFields"])
#initialize the magnetic field output array
magFieldsArray = np.empty(numOfElements)
magFieldsArray[:] = np.NaN
lam_f = lambdify(tuple(DSList),expression,modules='numpy')
replacementList = [None]*len(DSList)
for j in range(len(DSList)):
replacementList[j] = np.array(dataToSave[DSList[j]])
print(replacementList)
magFieldsArray = np.double(lam_f(*replacementList))
return magFieldsArray
list={"MagneticFields":[1,2,3,4,5],"ChX":[2,4,6,8,10]}
out=CreateMagneticFieldsListOpt(list,"MagneticFields*5+ChX",["MagneticFields","ChX"])
print(out)

Categories

Resources