Elegant way to shift multiple date columns - Pandas - python

I have a dataframe like as shown below
df = pd.DataFrame({'person_id': [11,11,11,21,21],
'offset' :['-131 days','29 days','142 days','20 days','-200 days'],
'date_1': ['05/29/2017', '01/21/1997', '7/27/1989','01/01/2013','12/31/2016'],
'dis_date': ['05/29/2017', '01/24/1999', '7/22/1999','01/01/2015','12/31/1991'],
'vis_date':['05/29/2018', '01/27/1994', '7/29/2011','01/01/2018','12/31/2014']})
df['date_1'] = pd.to_datetime(df['date_1'])
df['dis_date'] = pd.to_datetime(df['dis_date'])
df['vis_date'] = pd.to_datetime(df['vis_date'])
I would like to shift all the dates of each subject based on his offset
Though my code works (credit - SO), I am looking for an elegant approach. You can see am kind of repeating almost the same line thrice.
df['offset_to_shift'] = pd.to_timedelta(df['offset'],unit='d')
#am trying to make the below lines elegant/efficient
df['shifted_date_1'] = df['date_1'] + df['offset_to_shift']
df['shifted_dis_date'] = df['dis_date'] + df['offset_to_shift']
df['shifted_vis_date'] = df['vis_date'] + df['offset_to_shift']
I expect my output to be like as shown below

Use, DataFrame.add along with DataFrame.add_prefix and DataFrame.join:
cols = ['date_1', 'dis_date', 'vis_date']
df = df.join(df[cols].add(df['offset_to_shift'], 0).add_prefix('shifted_'))
OR, it is also possible to use pd.concat:
df = pd.concat([df, df[cols].add(df['offset_to_shift'], 0).add_prefix('shifted_')], axis=1)
OR, we can also directly assign the new shifted columns to the dataframe:
df[['shifted_' + col for col in cols]] = df[cols].add(df['offset_to_shift'], 0)
Result:
# print(df)
person_id offset date_1 dis_date vis_date offset_to_shift shifted_date_1 shifted_dis_date shifted_vis_date
0 11 -131 days 2017-05-29 2017-05-29 2018-05-29 -131 days 2017-01-18 2017-01-18 2018-01-18
1 11 29 days 1997-01-21 1999-01-24 1994-01-27 29 days 1997-02-19 1999-02-22 1994-02-25
2 11 142 days 1989-07-27 1999-07-22 2011-07-29 142 days 1989-12-16 1999-12-11 2011-12-18
3 21 20 days 2013-01-01 2015-01-01 2018-01-01 20 days 2013-01-21 2015-01-21 2018-01-21
4 21 -200 days 2016-12-31 1991-12-31 2014-12-31 -200 days 2016-06-14 1991-06-14 2014-06-14

Related

group datetime column by 5 minutes increment only for time of day (ignoring date) and count

I have a dataframe with one column timestamp (of type datetime) and some other columns but their content don't matter. I'm trying to group by 5 minutes interval and count but ignoring the date and only caring about the time of day.
One can generate an example dataframe using this code:
def get_random_dates_df(
n=10000,
start=pd.to_datetime('2015-01-01'),
period_duration_days=5,
seed=None
):
if not seed: # from piR's answer
np.random.seed(0)
end = start + pd.Timedelta(period_duration_days, 'd'),
n_seconds = int(period_duration_days * 3600 * 24)
random_dates = pd.to_timedelta(n_seconds * np.random.rand(n), unit='s') + start
return pd.DataFrame(data={"timestamp": random_dates}).reset_index()
df = get_random_dates_df()
it would look like this:
index
timestamp
0
0
2015-01-03 17:51:27.433696604
1
1
2015-01-04 13:49:21.806272885
2
2
2015-01-04 00:19:53.778462950
3
3
2015-01-03 17:23:09.535054659
4
4
2015-01-03 02:50:18.873314407
I think I have a working solution but it seems overly complicated:
gpd_df = df.groupby(pd.Grouper(key="timestamp", freq="5min")).agg(
count=("index", "count")
).reset_index()
gpd_df["time_of_day"] = gpd_df["timestamp"].dt.time
res_df= gpd_df.groupby("time_of_day").sum()
Output:
count
time_of_day
00:00:00 38
00:05:00 39
00:10:00 48
00:15:00 33
00:20:00 27
... ...
23:35:00 34
23:40:00 38
23:45:00 37
23:50:00 41
23:55:00 41
[288 rows x 1 columns]
Is there a better way to solve this?
You could groupby the floored 5Min datetime's time portion:
df2 = df.groupby(df['timestamp'].dt.floor('5Min').dt.time)['index'].count()
I'd suggest something like this, to avoid trying to merge the results of two groupbys together:
gpd_df = df.copy()
gpd_df["time_of_day"] = gpd_df["timestamp"].apply(lambda x: x.replace(year=2000, month=1, day=1))
gpd_df = gpd_df.set_index("time_of_day")
res_df = gpd_df.resample("5min").size()
It works by setting the year/month/day to fixed values and applying the built-in resampling function.
What about flooring the datetimes to 5min, extracting the time only and using value_counts:
out = (df['timestamp']
.dt.floor('5min')
.dt.time.value_counts(sort=False)
.sort_index()
)
Output:
00:00:00 38
00:05:00 39
00:10:00 48
00:15:00 33
00:20:00 27
..
23:35:00 34
23:40:00 38
23:45:00 37
23:50:00 41
23:55:00 41
Name: timestamp, Length: 288, dtype: int64

Reverse rows in time series dataframe

I have a time series that looks like this:
value date
63.85 2017-01-15
63.95 2017-01-22
63.88 2017-01-29
64.02 2017-02-05
63.84 2017-02-12
62.13 2017-03-05
65.36 2017-03-25
66.45 2017-04-25
And I would like to reverse the order of the rows so they look like this:
value date
66.45 2000-01-01
65.36 2000-02-01
62.13 2000-02-20
63.84 2000-03-12
64.02 2000-03-19
63.88 2000-03-26
63.95 2000-04-02
63.85 2000-04-09
As you can see, the "value" column requires to simply flip the row values, but for the date column what I would like to do is keep the same "difference in days" between dates. It doesn't really matter what the start date value is as long as the difference in days is flipped correctly too. In the second dataframe of the example, the start date value is 2000-01-01 and the second value is 2020-02-01, which is 31 days later than the first date. This "day difference" of 31 days is the same one as the last (2017-04-25) and penultimate date (2017-03-25) of the first dataframe. And, the same for the second (2000-02-01) and the third value (2000-02-20) of the second dataframe: the "difference in days" is 20 days, the same one between the penultimate date (2017-03-25) and the antepenultimate date (2017-03-05) of the first dataframe. And so on.
I believe that the steps needed to do this would require to first calculate this "day differences", but I would like to know how to do it efficiently. Thank you :)
NumPy has support for this via its datetime and timedelta data types.
First you reverse both columns in your time series as follows:
import pandas as pd
import numpy as np
df2 = df
df2 = df2.iloc[::-1]
df2
where df is your original time series data and df2 (shown below) is the reversed time series.
value date
7 66.45 2017-04-25
6 65.36 2017-03-25
5 62.13 2017-03-05
4 63.84 2017-02-12
3 64.02 2017-02-05
2 63.88 2017-01-29
1 63.95 2017-01-22
0 63.85 2017-01-15
Next you find the day differences and store them as timedelta objects:
dates_np = np.array(df2.date).astype(np.datetime64) # Convert dates to np.datetime64 ojects
timeDeltas = np.insert(abs(np.diff(dates_np)), 0, 0) # np.insert is to account for -1 length during np.diff call
d2 = {'value': df_reversed.value, 'day_diff': timeDeltas} # Create new dataframe (df3)
df3 = pd.DataFrame(data=d2)
df3
where df3 (the day differences table) looks like this:
value day_diff
7 66.45 0 days
6 65.36 31 days
5 62.13 20 days
4 63.84 21 days
3 64.02 7 days
2 63.88 7 days
1 63.95 7 days
0 63.85 7 days
Lastly, to get back to dates accumulating from a start data, you do the following:
startDate = np.datetime64('2000-01-01') # You can change this if you like
df4 = df2 # Copy coumn data from df2
df4.date = np.array(np.cumsum(df3.day_diff) + startDate # np.cumsum accumulates the day_diff sum
df4
where df4 (the start date accumulation) looks like this:
value date
7 66.45 2000-01-01
6 65.36 2000-02-01
5 62.13 2000-02-21
4 63.84 2000-03-13
3 64.02 2000-03-20
2 63.88 2000-03-27
1 63.95 2000-04-03
0 63.85 2000-04-10
I noticed there is a 1-day discrepancy with my final table, however this is most likely due to the implementation of timedelta inclusivity/exluclusivity.
Here's how I did it:
Creating the DataFrame:
value = [63.85, 63.95, 63.88, 64.02, 63.84, 62.13, 65.36, 66.45]
date = ["2017-01-15", "2017-01-22", "2017-01-29", "2017-02-05", "2017-02-12", "2017-03-05", "2017-03-25", "2017-04-25",]
df = pd.DataFrame({"value": value, "date": date})
Creating a second DataFrame with the values reversed and converting the date column to datetime
new_df = df.astype({'date': 'datetime64'})
new_df.sort_index(ascending=False, inplace=True, ignore_index=True)
new_df
value date
0 66.45 2017-04-25
1 65.36 2017-03-25
2 62.13 2017-03-05
3 63.84 2017-02-12
4 64.02 2017-02-05
5 63.88 2017-01-29
6 63.95 2017-01-22
7 63.85 2017-01-15
I then used pandas.Series.diff to calculate the time delta between each row and converted those values to absolute values.
time_delta_series = new_df['date'].diff().abs()
time_delta_series
0 NaT
1 31 days
2 20 days
3 21 days
4 7 days
5 7 days
6 7 days
7 7 days
Name: date, dtype: timedelta64[ns]
Then you need to convert those values to a cumulative time delta.
But to use the cumsum() method you need to first remove the missing values (NaT).
time_delta_series = time_delta_series.fillna(pd.Timedelta(seconds=0)).cumsum()
time_delta_series
0 0 days
1 31 days
2 51 days
3 72 days
4 79 days
5 86 days
6 93 days
7 100 days
Name: date, dtype: timedelta64[ns
Then you can create your starting date and create the date column for the second DataFrame we created before:
from datetime import date
start = date(2000, 1, 1)
new_df['date'] = start
new_df['date'] = new_df['date'] + time_delta_series
new_df
value date
0 66.45 2000-01-01
1 65.36 2000-02-01
2 62.13 2000-02-21
3 63.84 2000-03-13
4 64.02 2000-03-20
5 63.88 2000-03-27
6 63.95 2000-04-03
7 63.85 2000-04-10

Is there a Pandas function to highlight a week's 10 lowest values in a time series?

Rookie here so please excuse my question format:
I got an event time series dataset for two months (columns for "date/time" and "# of events", each row representing an hour).
I would like to highlight the 10 hours with the lowest numbers of events for each week. Is there a specific Pandas function for that? Thanks!
Let's say you have a dataframe df with column col as well as a datetime column.
You can simply sort the column with
import pandas as pd
df = pd.DataFrame({'col' : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],
'datetime' : ['2019-01-01 00:00:00','2015-02-01 00:00:00','2015-03-01 00:00:00','2015-04-01 00:00:00',
'2018-05-01 00:00:00','2016-06-01 00:00:00','2017-07-01 00:00:00','2013-08-01 00:00:00',
'2015-09-01 00:00:00','2015-10-01 00:00:00','2015-11-01 00:00:00','2015-12-01 00:00:00',
'2014-01-01 00:00:00','2020-01-01 00:00:00','2014-01-01 00:00:00']})
df = df.sort_values('col')
df = df.iloc[0:10,:]
df
Output:
col datetime
0 1 2019-01-01 00:00:00
1 2 2015-02-01 00:00:00
2 3 2015-03-01 00:00:00
3 4 2015-04-01 00:00:00
4 5 2018-05-01 00:00:00
5 6 2016-06-01 00:00:00
6 7 2017-07-01 00:00:00
7 8 2013-08-01 00:00:00
8 9 2015-09-01 00:00:00
9 10 2015-10-01 00:00:00
I know there's a function called nlargest. I guess there should be an nsmallest counterpart. pandas.DataFrame.nsmallest
df.nsmallest(n=10, columns=['col'])
My bad, so your DateTimeIndex is a Hourly sampling. And you need the hour(s) with least events weekly.
...
Date n_events
2020-06-06 08:00:00 3
2020-06-06 09:00:00 3
2020-06-06 10:00:00 2
...
Well I'd start by converting each hour into columns.
1. Create an Hour column that holds the hour of the day.
df['hour'] = df['date'].hour
Pivot the hour values into columns having values as n_events.
So you'll then have 1 datetime index, 24 hour columns, with values denoting #events. pandas.DataFrame.pivot_table
...
Date hour0 ... hour8 hour9 hour10 ... hour24
2020-06-06 0 3 3 2 0
...
Then you can resample it to weekly level aggregate using sum.
df.resample('w').sum()
The last part is a bit tricky to do on the dataframe. But fairly simple if you just need the output.
for row in df.itertuples():
print(sorted(row[1:]))

Add months to a date in Pandas

I'm trying to figure out how to add 3 months to a date in a Pandas dataframe, while keeping it in the date format, so I can use it to lookup a range.
This is what I've tried:
#create dataframe
df = pd.DataFrame([pd.Timestamp('20161011'),
pd.Timestamp('20161101') ], columns=['date'])
#create a future month period
plus_month_period = 3
#calculate date + future period
df['future_date'] = plus_month_period.astype("timedelta64[M]")
However, I get the following error:
AttributeError: 'int' object has no attribute 'astype'
You could use pd.DateOffset
In [1756]: df.date + pd.DateOffset(months=plus_month_period)
Out[1756]:
0 2017-01-11
1 2017-02-01
Name: date, dtype: datetime64[ns]
Details
In [1757]: df
Out[1757]:
date
0 2016-10-11
1 2016-11-01
In [1758]: plus_month_period
Out[1758]: 3
Suppose you have a dataframe of the following format, where you have to add integer months to a date column.
Start_Date
Months_to_add
2014-06-01
23
2014-06-01
4
2000-10-01
10
2016-07-01
3
2017-12-01
90
2019-01-01
2
In such a scenario, using Zero's code or mattblack's code won't be useful. You have to use lambda function over the rows where the function takes 2 arguments -
A date to which months need to be added to
A month value in integer format
You can use the following function:
# Importing required modules
from dateutil.relativedelta import relativedelta
# Defining the function
def add_months(start_date, delta_period):
end_date = start_date + relativedelta(months=delta_period)
return end_date
After this you can use the following code snippet to add months to the Start_Date column. Use progress_apply functionality of Pandas. Refer to this Stackoverflow answer on progress_apply : Progress indicator during pandas operations.
from tqdm import tqdm
tqdm.pandas()
df["End_Date"] = df.progress_apply(lambda row: add_months(row["Start_Date"], row["Months_to_add"]), axis = 1)
Here's the full code form dataset creation, for your reference:
import pandas as pd
from dateutil.relativedelta import relativedelta
from tqdm import tqdm
tqdm.pandas()
# Initilize a new dataframe
df = pd.DataFrame()
# Add Start Date column
df["Start_Date"] = ['2014-06-01T00:00:00.000000000',
'2014-06-01T00:00:00.000000000',
'2000-10-01T00:00:00.000000000',
'2016-07-01T00:00:00.000000000',
'2017-12-01T00:00:00.000000000',
'2019-01-01T00:00:00.000000000']
# To convert the date column to a datetime format
df["Start_Date"] = pd.to_datetime(df["Start_Date"])
# Add months column
df["Months_to_add"] = [23, 4, 10, 3, 90, 2]
# Defining the Add Months function
def add_months(start_date, delta_period):
end_date = start_date + relativedelta(months=delta_period)
return end_date
# Apply function on the dataframe using lambda operation.
df["End_Date"] = df.progress_apply(lambda row: add_months(row["Start_Date"], row["Months_to_add"]), axis = 1)
You will have the final output dataframe as follows.
Start_Date
Months_to_add
End_Date
2014-06-01
23
2016-05-01
2014-06-01
4
2014-10-01
2000-10-01
10
2001-08-01
2016-07-01
3
2016-10-01
2017-12-01
90
2025-06-01
2019-01-01
2
2019-03-01
Please add to comments if there are any issues with the above code.
All the best!
I believe that the simplest and most efficient (faster) way to solve this is to transform the date to monthly periods with to_period(M), add the result with the values of the Months_to_add column and then retrieve the data as datetime with the .dt.to_timestamp() command.
Using the sample data created by #Aruparna Maity
Start_Date
Months_to_add
2014-06-01
23
2014-06-20
4
2000-10-01
10
2016-07-05
3
2017-12-15
90
2019-01-01
2
df['End_Date'] = ((df['Start_Date'].dt.to_period('M')) + df['Months_to_add']).dt.to_timestamp()
df.head(6)
#output
Start_Date Months_to_add End_Date
0 2014-06-01 23 2016-05-01
1 2014-06-20 4 2014-10-01
2 2000-10-01 10 2001-08-01
3 2016-07-05 3 2016-10-01
4 2017-12-15 90 2025-06-01
5 2019-01-01 2 2019-03-01
If the exact day is needed, just repeat the process, but changing the periods to days
df['End_Date'] = ((df['End_Date'].dt.to_period('D')) + df['Start_Date'].dt.day -1).dt.to_timestamp()
#output:
Start_Date Months_to_add End_Date
0 2014-06-01 23 2016-05-01
1 2014-06-20 4 2014-10-20
2 2000-10-01 10 2001-08-01
3 2016-07-05 3 2016-10-05
4 2017-12-15 90 2025-06-15
5 2019-01-01 2 2019-03-01
Another way using numpy timedelta64
df['date'] + np.timedelta64(plus_month_period, 'M')
0 2017-01-10 07:27:18
1 2017-01-31 07:27:18
Name: date, dtype: datetime64[ns]

python - Fill in missing dates with respect to a specific attribute in pandas

My data looks like below:
id, date, target
1,2016-10-24,22
1,2016-10-25,31
1,2016-10-27,44
1,2016-10-28,12
2,2016-10-21,22
2,2016-10-22,31
2,2016-10-25,44
2,2016-10-27,12
I want to fill in missing dates among id.
For example, the date range of id=1 is 2016-10-24 ~ 2016-10-28, and 2016-10-26 is missing. Moreover, the date range of id=2 is 2016-10-21 ~ 2016-10-27, and 2016-10-23, 2016-10-24 and 2016-10-26 are missing.
I want to fill in the missing dates and fill in the target value as 0.
Therefore, I want my data to be as below:
id, date, target
1,2016-10-24,22
1,2016-10-25,31
1,2016-10-26,0
1,2016-10-27,44
1,2016-10-28,12
2,2016-10-21,22
2,2016-10-22,31
2,2016-10-23,0
2,2016-10-24,0
2,2016-10-25,44
2,2016-10-26,0
2,2016-10-27,12
Can somebody help me?
Thanks in advance.
You can use groupby with resample - then is problem fillna - so need asfreq first:
#if necessary convert to datetime
df.date = pd.to_datetime(df.date)
df = df.set_index('date')
df = df.groupby('id').resample('d')['target'].asfreq().fillna(0).astype(int).reset_index()
print (df)
id date target
0 1 2016-10-24 22
1 1 2016-10-25 31
2 1 2016-10-26 0
3 1 2016-10-27 44
4 1 2016-10-28 12
5 2 2016-10-21 22
6 2 2016-10-22 31
7 2 2016-10-23 0
8 2 2016-10-24 0
9 2 2016-10-25 44
10 2 2016-10-26 0
11 2 2016-10-27 12

Categories

Resources