Python concurrent.futures starvation - python

I'm using Python concurrent.futures, executes parent multi threads and each parent thread execute child threads.
When ThreadPoolExecutor is less than number of required parent threads I got starvation and program stuck.
What is the best approach to:
1. Use const ThreadPoolExecutor
2. Do not get into starvation
Please find below example code:
import time
import sys
import concurrent.futures
MAX_THREAD_EXECUTORS = 5
threadPool = concurrent.futures.ThreadPoolExecutor(MAX_THREAD_EXECUTORS)
threads = []
command_threads = []
def main():
start_tests()
join_threads()
def start_tests():
for i in range(1,14):
threads.append(threadPool.submit(start_test_flow, i))
def start_test_flow(test):
print(f"Start test flow for: {test}")
execute_commands()
join_command_threads()
def execute_commands():
for i in range(1,5):
command_threads.append(threadPool.submit(start_command, i))
def start_command(command):
print(f"Start command for: {command}")
time.sleep(120)
def join_threads():
for thread in threads:
result = thread.result()
print(f"test result={result}")
def join_command_threads():
for thread in command_threads:
result = thread.result()
print(f"command result={result}")
if __name__ == '__main__':
main()
sys.exit(0)
Best Regards, Moshe

The minimum number of threads you actually need is non-deterministic and depends on timing, although there is a number (13 + 1, i.e. one thread for each of the parent threads and at least one thread to run a child thread) that will guarantee that you will never stall. What is most likely happening is that you are quickly creating 5 parent threads and then waiting to create further parent threads and child threads because you only have 5 worker threads. But until you are able to create 4 child threads (in execute_commands) and run them to completion, a parent thread will not complete and thus you are stuck.
Now, for example, insert a call to time.sleep(1) in function start_tests as follows:
def start_tests():
for i in range(1,14):
threads.append(threadPool.submit(start_test_flow, i))
time.sleep(1)
This will allow the 4 child threads to be created and there will be some progress. But depending on timing, you may eventually stall. To guarantee that you never stall, you would have to sleep long enough to allow all 4 child threads to complete before attempting to start the next parent thread.
The bottom line is that you just don't have enough worker threads (13 + 1) to guarantee that you won't stall.

Related

How to kill a Threading pool from parent?

I have threading classing that has the following run function.
So when this class is set to run it keeps on checking a multiprocessing manager queue, if there is anything inside it, it starts the pool to run the job(track function). Upon completion of the job, pool closes automatically and the whole queue if not empty check starts.
def runQueue(self):
print("The current thread is", threading.currentThread().getName())
while True:
time.sleep(1)
self.pstate=False
if self.runStop: #this stops the whole threading by dropping main loop
break
while not self.tasks.empty():
self.pstate=True
task = self.tasks.get()
with ThreadPool(processes=1) as p: #<- want to kill this pool
ans = p.apply(self.track, args=(task,))
self.queueSend(ans)
self.tasks.task_done()
print("finished job")
I used the pool because the function returns a value which I need to map. What I am looking for is a way such that, upon some parent call, the pool closes by dropping the job, while keeping the primary class thread (run function [main loop] running).
Any kind of help is appreciated.
I found that for my case pool.terminate would work only I/O applications, I did find some solutions online which were not related to the pool but I could implement.
One solution is to run the thread as a multiprocessing process and then call process.terminate()
or using multiprocessing Pool and then call pool.terminate.
Note that multiprocessing is faster for CPU intensive tasks. If the tasks are I/O intensive threads are the best solution.
The only way I found a way to kill the thread is using win32 ctypes module.
If you start a thread and get it's tid
with
tid thread.ident
then you can put your in kill_thread(tid) function below
w32 = ctypes.windll.kernel32
THREAD_TERMINATE = 1
def kill_thread(tid):
handle = w32.OpenThread(THREAD_TERMINATE, False,tid)
result = w32.TerminateThread(handle, 0)
w32.CloseHandle(handle)
Hope this helps someone.

Stopping processes in ThreadPool in Python

I've been trying to write an interactive wrapper (for use in ipython) for a library that controls some hardware. Some calls are heavy on the IO so it makes sense to carry out the tasks in parallel. Using a ThreadPool (almost) works nicely:
from multiprocessing.pool import ThreadPool
class hardware():
def __init__(IPaddress):
connect_to_hardware(IPaddress)
def some_long_task_to_hardware(wtime):
wait(wtime)
result = 'blah'
return result
pool = ThreadPool(processes=4)
Threads=[]
h=[hardware(IP1),hardware(IP2),hardware(IP3),hardware(IP4)]
for tt in range(4):
task=pool.apply_async(h[tt].some_long_task_to_hardware,(1000))
threads.append(task)
alive = [True]*4
Try:
while any(alive) :
for tt in range(4): alive[tt] = not threads[tt].ready()
do_other_stuff_for_a_bit()
except:
#some command I cannot find that will stop the threads...
raise
for tt in range(4): print(threads[tt].get())
The problem comes if the user wants to stop the process or there is an IO error in do_other_stuff_for_a_bit(). Pressing Ctrl+C stops the main process but the worker threads carry on running until their current task is complete.
Is there some way to stop these threads without having to rewrite the library or have the user exit python? pool.terminate() and pool.join() that I have seen used in other examples do not seem to do the job.
The actual routine (instead of the simplified version above) uses logging and although all the worker threads are shut down at some point, I can see the processes that they started running carry on until complete (and being hardware I can see their effect by looking across the room).
This is in python 2.7.
UPDATE:
The solution seems to be to switch to using multiprocessing.Process instead of a thread pool. The test code I tried is to run foo_pulse:
class foo(object):
def foo_pulse(self,nPulse,name): #just one method of *many*
print('starting pulse for '+name)
result=[]
for ii in range(nPulse):
print('on for '+name)
time.sleep(2)
print('off for '+name)
time.sleep(2)
result.append(ii)
return result,name
If you try running this using ThreadPool then ctrl-C does not stop foo_pulse from running (even though it does kill the threads right away, the print statements keep on coming:
from multiprocessing.pool import ThreadPool
import time
def test(nPulse):
a=foo()
pool=ThreadPool(processes=4)
threads=[]
for rn in range(4) :
r=pool.apply_async(a.foo_pulse,(nPulse,'loop '+str(rn)))
threads.append(r)
alive=[True]*4
try:
while any(alive) : #wait until all threads complete
for rn in range(4):
alive[rn] = not threads[rn].ready()
time.sleep(1)
except : #stop threads if user presses ctrl-c
print('trying to stop threads')
pool.terminate()
print('stopped threads') # this line prints but output from foo_pulse carried on.
raise
else :
for t in threads : print(t.get())
However a version using multiprocessing.Process works as expected:
import multiprocessing as mp
import time
def test_pro(nPulse):
pros=[]
ans=[]
a=foo()
for rn in range(4) :
q=mp.Queue()
ans.append(q)
r=mp.Process(target=wrapper,args=(a,"foo_pulse",q),kwargs={'args':(nPulse,'loop '+str(rn))})
r.start()
pros.append(r)
try:
for p in pros : p.join()
print('all done')
except : #stop threads if user stops findRes
print('trying to stop threads')
for p in pros : p.terminate()
print('stopped threads')
else :
print('output here')
for q in ans :
print(q.get())
print('exit time')
Where I have defined a wrapper for the library foo (so that it did not need to be re-written). If the return value is not needed the neither is this wrapper :
def wrapper(a,target,q,args=(),kwargs={}):
'''Used when return value is wanted'''
q.put(getattr(a,target)(*args,**kwargs))
From the documentation I see no reason why a pool would not work (other than a bug).
This is a very interesting use of parallelism.
However, if you are using multiprocessing, the goal is to have many processes running in parallel, as opposed to one process running many threads.
Consider these few changes to implement it using multiprocessing:
You have these functions that will run in parallel:
import time
import multiprocessing as mp
def some_long_task_from_library(wtime):
time.sleep(wtime)
class MyException(Exception): pass
def do_other_stuff_for_a_bit():
time.sleep(5)
raise MyException("Something Happened...")
Let's create and start the processes, say 4:
procs = [] # this is not a Pool, it is just a way to handle the
# processes instead of calling them p1, p2, p3, p4...
for _ in range(4):
p = mp.Process(target=some_long_task_from_library, args=(1000,))
p.start()
procs.append(p)
mp.active_children() # this joins all the started processes, and runs them.
The processes are running in parallel, presumably in a separate cpu core, but that is to the OS to decide. You can check in your system monitor.
In the meantime you run a process that will break, and you want to stop the running processes, not leaving them orphan:
try:
do_other_stuff_for_a_bit()
except MyException as exc:
print(exc)
print("Now stopping all processes...")
for p in procs:
p.terminate()
print("The rest of the process will continue")
If it doesn't make sense to continue with the main process when one or all of the subprocesses have terminated, you should handle the exit of the main program.
Hope it helps, and you can adapt bits of this for your library.
In answer to the question of why pool did not work then this is due to (as quoted in the Documentation) then main needs to be importable by the child processes and due to the nature of this project interactive python is being used.
At the same time it was not clear why ThreadPool would - although the clue is right there in the name. ThreadPool creates its pool of worker processes using multiprocessing.dummy which as noted here is just a wrapper around the Threading module. Pool uses the multiprocessing.Process. This can be seen by this test:
p=ThreadPool(processes=3)
p._pool[0]
<DummyProcess(Thread23, started daemon 12345)> #no terminate() method
p=Pool(processes=3)
p._pool[0]
<Process(PoolWorker-1, started daemon)> #has handy terminate() method if needed
As threads do not have a terminate method the worker threads carry on running until they have completed their current task. Killing threads is messy (which is why I tried to use the multiprocessing module) but solutions are here.
The one warning about the solution using the above:
def wrapper(a,target,q,args=(),kwargs={}):
'''Used when return value is wanted'''
q.put(getattr(a,target)(*args,**kwargs))
is that changes to attributes inside the instance of the object are not passed back up to the main program. As an example the class foo above can also have methods such as:
def addIP(newIP):
self.hardwareIP=newIP
A call to r=mp.Process(target=a.addIP,args=(127.0.0.1)) does not update a.
The only way round this for a complex object seems to be shared memory using a custom manager which can give access to both the methods and attributes of object a For a very large complex object based on a library this may be best done using dir(foo) to populate the manager. If I can figure out how I'll update this answer with an example (for my future self as much as others).
If for some reasons using threads is preferable, we can use this.
We can send some siginal to the threads we want to terminate. The simplest siginal is global variable:
import time
from multiprocessing.pool import ThreadPool
_FINISH = False
def hang():
while True:
if _FINISH:
break
print 'hanging..'
time.sleep(10)
def main():
global _FINISH
pool = ThreadPool(processes=1)
pool.apply_async(hang)
time.sleep(10)
_FINISH = True
pool.terminate()
pool.join()
print 'main process exiting..'
if __name__ == '__main__':
main()

How to start a new thread when old one finishes?

I have a large dataset in a list that I need to do some work on.
I want to start x amounts of threads to work on the list at any given time, until everything in that list has been popped.
I know how to start x amounts of threads (lets say 20) at a given time (by using thread1....thread20.start())
but how do I make it start a new thread when one of the first 20 threads finish? so at any given time there are 20 threads running, until the list is empty.
what I have so far:
class queryData(threading.Thread):
def __init__(self,threadID):
threading.Thread.__init__(self)
self.threadID = threadID
def run(self):
global lst
#Get trade from list
trade = lst.pop()
tradeId=trade[0][1][:6]
print tradeId
thread1 = queryData(1)
thread1.start()
Update
I have something going with the following code:
for i in range(20):
threads.append(queryData(i))
for thread in threads:
thread.start()
while len(lst)>0:
for iter,thread in enumerate(threads):
thread.join()
lock.acquire()
threads[iter] = queryData(i)
threads[iter].start()
lock.release()
Now it starts 20 threads in the beginning...and then keeps starting a new thread when one finishes.
However, it is not efficient, as it waits for the first one in the list to finish, and then the second..and so on.
Is there a better way of doing this?
Basically I need:
-Start 20 threads:
-While list is not empty:
-wait for 1 of the 20 threads to finish
-reuse or start a new thread
As I suggested in a comment, I think using a multiprocessing.pool.ThreadPool would be appropriate — because it would handle much of the thread management you're manually doing in your code automatically. Once all the threads are queued-up for processing via ThreadPool's apply_async() method calls, the only thing that needs to be done is wait until they've all finished execution (unless there's something else your code could be doing, of course).
I've translated the code in my linked answer to another related question so it's more similar to what you appear to be doing to make it easier to understand in the current context.
from multiprocessing.pool import ThreadPool
from random import randint
import threading
import time
MAX_THREADS = 5
print_lock = threading.Lock() # Prevent overlapped printing from threads.
def query_data(trade):
trade_id = trade[0][1][:6]
time.sleep(randint(1, 3)) # Simulate variable working time for testing.
with print_lock:
print(trade_id)
def process_trades(trade_list):
pool = ThreadPool(processes=MAX_THREADS)
results = []
while(trade_list):
trade = trade_list.pop()
results.append(pool.apply_async(query_data, (trade,)))
pool.close() # Done adding tasks.
pool.join() # Wait for all tasks to complete.
def test():
trade_list = [[['abc', ('%06d' % id) + 'defghi']] for id in range(1, 101)]
process_trades(trade_list)
if __name__ == "__main__":
test()
You can wait for a thread to complete with : thread.join(). This call will block until that thread completes, at which point you can create a new one.
However, instead of respawning a Thread each time, why not recycle your existing threads ?
This can be done by the use of tasks for example. You keep a list of tasks in a shared collection, and when one of your threads finishes a task, it retrieves another one from that collection.

how to to terminate process using python's multiprocessing

I have some code that needs to run against several other systems that may hang or have problems not under my control. I would like to use python's multiprocessing to spawn child processes to run independent of the main program and then when they hang or have problems terminate them, but I am not sure of the best way to go about this.
When terminate is called it does kill the child process, but then it becomes a defunct zombie that is not released until the process object is gone. The example code below where the loop never ends works to kill it and allow a respawn when called again, but does not seem like a good way of going about this (ie multiprocessing.Process() would be better in the __init__()).
Anyone have a suggestion?
class Process(object):
def __init__(self):
self.thing = Thing()
self.running_flag = multiprocessing.Value("i", 1)
def run(self):
self.process = multiprocessing.Process(target=self.thing.worker, args=(self.running_flag,))
self.process.start()
print self.process.pid
def pause_resume(self):
self.running_flag.value = not self.running_flag.value
def terminate(self):
self.process.terminate()
class Thing(object):
def __init__(self):
self.count = 1
def worker(self,running_flag):
while True:
if running_flag.value:
self.do_work()
def do_work(self):
print "working {0} ...".format(self.count)
self.count += 1
time.sleep(1)
You might run the child processes as daemons in the background.
process.daemon = True
Any errors and hangs (or an infinite loop) in a daemon process will not affect the main process, and it will only be terminated once the main process exits.
This will work for simple problems until you run into a lot of child daemon processes which will keep reaping memories from the parent process without any explicit control.
Best way is to set up a Queue to have all the child processes communicate to the parent process so that we can join them and clean up nicely. Here is some simple code that will check if a child processing is hanging (aka time.sleep(1000)), and send a message to the queue for the main process to take action on it:
import multiprocessing as mp
import time
import queue
running_flag = mp.Value("i", 1)
def worker(running_flag, q):
count = 1
while True:
if running_flag.value:
print(f"working {count} ...")
count += 1
q.put(count)
time.sleep(1)
if count > 3:
# Simulate hanging with sleep
print("hanging...")
time.sleep(1000)
def watchdog(q):
"""
This check the queue for updates and send a signal to it
when the child process isn't sending anything for too long
"""
while True:
try:
msg = q.get(timeout=10.0)
except queue.Empty as e:
print("[WATCHDOG]: Maybe WORKER is slacking")
q.put("KILL WORKER")
def main():
"""The main process"""
q = mp.Queue()
workr = mp.Process(target=worker, args=(running_flag, q))
wdog = mp.Process(target=watchdog, args=(q,))
# run the watchdog as daemon so it terminates with the main process
wdog.daemon = True
workr.start()
print("[MAIN]: starting process P1")
wdog.start()
# Poll the queue
while True:
msg = q.get()
if msg == "KILL WORKER":
print("[MAIN]: Terminating slacking WORKER")
workr.terminate()
time.sleep(0.1)
if not workr.is_alive():
print("[MAIN]: WORKER is a goner")
workr.join(timeout=1.0)
print("[MAIN]: Joined WORKER successfully!")
q.close()
break # watchdog process daemon gets terminated
if __name__ == '__main__':
main()
Without terminating worker, attempt to join() it to the main process would have blocked forever since worker has never finished.
The way Python multiprocessing handles processes is a bit confusing.
From the multiprocessing guidelines:
Joining zombie processes
On Unix when a process finishes but has not been joined it becomes a zombie. There should never be very many because each time a new process starts (or active_children() is called) all completed processes which have not yet been joined will be joined. Also calling a finished process’s Process.is_alive will join the process. Even so it is probably good practice to explicitly join all the processes that you start.
In order to avoid a process to become a zombie, you need to call it's join() method once you kill it.
If you want a simpler way to deal with the hanging calls in your system you can take a look at pebble.

Asynchronous multiprocessing with a worker pool in Python: how to keep going after timeout?

I would like to run a number of jobs using a pool of processes and apply a given timeout after which a job should be killed and replaced by another working on the next task.
I have tried to use the multiprocessing module which offers a method to run of pool of workers asynchronously (e.g. using map_async), but there I can only set a "global" timeout after which all processes would be killed.
Is it possible to have an individual timeout after which only a single process that takes too long is killed and a new worker is added to the pool again instead (processing the next task and skipping the one that timed out)?
Here's a simple example to illustrate my problem:
def Check(n):
import time
if n % 2 == 0: # select some (arbitrary) subset of processes
print "%d timeout" % n
while 1:
# loop forever to simulate some process getting stuck
pass
print "%d done" % n
return 0
from multiprocessing import Pool
pool = Pool(processes=4)
result = pool.map_async(Check, range(10))
print result.get(timeout=1)
After the timeout all workers are killed and the program exits. I would like instead that it continues with the next subtask. Do I have to implement this behavior myself or are there existing solutions?
Update
It is possible to kill the hanging workers and they are automatically replaced. So I came up with this code:
jobs = pool.map_async(Check, range(10))
while 1:
try:
print "Waiting for result"
result = jobs.get(timeout=1)
break # all clear
except multiprocessing.TimeoutError:
# kill all processes
for c in multiprocessing.active_children():
c.terminate()
print result
The problem now is that the loop never exits; even after all tasks have been processed, calling get yields a timeout exception.
The pebble Pool module has been built for solving these types of issue. It supports timeout on given tasks allowing to detect them and easily recover.
from pebble import ProcessPool
from concurrent.futures import TimeoutError
with ProcessPool() as pool:
future = pool.schedule(function, args=[1,2], timeout=5)
try:
result = future.result()
except TimeoutError:
print "Function took longer than %d seconds" % error.args[1]
For your specific example:
from pebble import ProcessPool
from concurrent.futures import TimeoutError
results = []
with ProcessPool(max_workers=4) as pool:
future = pool.map(Check, range(10), timeout=5)
iterator = future.result()
# iterate over all results, if a computation timed out
# print it and continue to the next result
while True:
try:
result = next(iterator)
results.append(result)
except StopIteration:
break
except TimeoutError as error:
print "function took longer than %d seconds" % error.args[1]
print results
Currently the Python does not provide native means to the control execution time of each distinct task in the pool outside the worker itself.
So the easy way is to use wait_procs in the psutil module and implement the tasks as subprocesses.
If nonstandard libraries are not desirable, then you have to implement own Pool on base of subprocess module having the working cycle in the main process, poll() - ing the execution of each worker and performing required actions.
As for the updated problem, the pool becomes corrupted if you directly terminate one of the workers (it is the bug in the interpreter implementation, because such behavior should not be allowed): the worker is recreated, but the task is lost and the pool becomes nonjoinable.
You have to terminate all the pool and then recreate it again for another tasks:
from multiprocessing import Pool
while True:
pool = Pool(processes=4)
jobs = pool.map_async(Check, range(10))
print "Waiting for result"
try:
result = jobs.get(timeout=1)
break # all clear
except multiprocessing.TimeoutError:
# kill all processes
pool.terminate()
pool.join()
print result
UPDATE
Pebble is an excellent and handy library, which solves the issue. Pebble is designed for the asynchronous execution of Python functions, where is PyExPool is designed for the asynchronous execution of modules and external executables, though both can be used interchangeably.
One more aspect is when 3dparty dependencies are not desirable, then PyExPool can be a good choice, which is a single-file lightweight implementation of Multi-process Execution Pool with per-Job and global timeouts, opportunity to group Jobs into Tasks and other features.
PyExPool can be embedded into your sources and customized, having permissive Apache 2.0 license and production quality, being used in the core of one high-loaded scientific benchmarking framework.
Try the construction where each process is being joined with a timeout on a separate thread. So the main program never gets stuck and as well the processes which if gets stuck, would be killed due to timeout. This technique is a combination of threading and multiprocessing modules.
Here is my way to maintain the minimum x number of threads in the memory. Its an combination of threading and multiprocessing modules. It may be unusual to other techniques like respected fellow members have explained above BUT may be worth considerable. For the sake of explanation, I am taking a scenario of crawling a minimum of 5 websites at a time.
so here it is:-
#importing dependencies.
from multiprocessing import Process
from threading import Thread
import threading
# Crawler function
def crawler(domain):
# define crawler technique here.
output.write(scrapeddata + "\n")
pass
Next is threadController function. This function will control the flow of threads to the main memory. It will keep activating the threads to maintain the threadNum "minimum" limit ie. 5. Also it won't exit until, all Active threads(acitveCount) are finished up.
It will maintain a minimum of threadNum(5) startProcess function threads (these threads will eventually start the Processes from the processList while joining them with a time out of 60 seconds). After staring threadController, there would be 2 threads which are not included in the above limit of 5 ie. the Main thread and the threadController thread itself. thats why threading.activeCount() != 2 has been used.
def threadController():
print "Thread count before child thread starts is:-", threading.activeCount(), len(processList)
# staring first thread. This will make the activeCount=3
Thread(target = startProcess).start()
# loop while thread List is not empty OR active threads have not finished up.
while len(processList) != 0 or threading.activeCount() != 2:
if (threading.activeCount() < (threadNum + 2) and # if count of active threads are less than the Minimum AND
len(processList) != 0): # processList is not empty
Thread(target = startProcess).start() # This line would start startThreads function as a seperate thread **
startProcess function, as a separate thread, would start Processes from the processlist. The purpose of this function (**started as a different thread) is that It would become a parent thread for Processes. So when It will join them with a timeout of 60 seconds, this would stop the startProcess thread to move ahead but this won't stop threadController to perform. So this way, threadController will work as required.
def startProcess():
pr = processList.pop(0)
pr.start()
pr.join(60.00) # joining the thread with time out of 60 seconds as a float.
if __name__ == '__main__':
# a file holding a list of domains
domains = open("Domains.txt", "r").read().split("\n")
output = open("test.txt", "a")
processList = [] # thread list
threadNum = 5 # number of thread initiated processes to be run at one time
# making process List
for r in range(0, len(domains), 1):
domain = domains[r].strip()
p = Process(target = crawler, args = (domain,))
processList.append(p) # making a list of performer threads.
# starting the threadController as a seperate thread.
mt = Thread(target = threadController)
mt.start()
mt.join() # won't let go next until threadController thread finishes.
output.close()
print "Done"
Besides maintaining a minimum number of threads in the memory, my aim was to also have something which could avoid stuck threads or processes in the memory. I did this using the time out function. My apologies for any typing mistake.
I hope this construction would help anyone in this world.
Regards,
Vikas Gautam

Categories

Resources