PIL.ImageOps.autocontrast() equivalent of opencv2 - python

I made a script in PIL or image processing but I wan tit to work fro videos too so I am rewriting it in opencv2-python. The issue I am running into is there is no equivalent of PIL auto contrast specifically the cutoff property.
If you have a solution let me know.
PIL.ImageOps.autocontrast()
EDIT:
I am going to add examples to show what I an trying to do and what I am expecting and what result I am getting.
Sample Image here
PIL CODE
from PIL import Image, ImageOps
img = Image.open("his_equi.jpg").convert("L") #name of the file is his_equi.jpg
edited = ImageOps.autocontrast(img, cutoff=3)
edited.save("hiseqpil_1.jpg")
PIL OUTPUT here
CV2 CODE
import cv2
img = cv2.imread("his_equi.jpg", 0)
alpha = 1.8 # Contrast control (1.0-3.0)
beta = 0 # Brightness control (0-100)
img = cv2.convertScaleAbs(img, alpha=alpha, beta=beta)
clahe = cv2.createCLAHE(clipLimit=3, tileGridSize=(2, 2))
img = clahe.apply(img)
cv2.imwrite('hiscl_2.jpg', img)
CV2 OUTPUT here
I tried cv2.equalizeHist()
import cv2
img = cv2.imread("his_equi.jpg", 0)
img = cv2.equalizeHist(img)
cv2.imwrite('hiscl_2.jpg', img)
cv2.equalizeHist() output here
You can see how I want the darkest pixels to become black even though they are grey and light grey pixels to become White. I think this is called normalizing an image.

I refer to an autocontrast_func from this github
def autocontrast_func(img, cutoff=0):
'''
same output as PIL.ImageOps.autocontrast
'''
n_bins = 256
def tune_channel(ch):
n = ch.size
cut = cutoff * n // 100
if cut == 0:
high, low = ch.max(), ch.min()
else:
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
low = np.argwhere(np.cumsum(hist) > cut)
low = 0 if low.shape[0] == 0 else low[0]
high = np.argwhere(np.cumsum(hist[::-1]) > cut)
high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0]
if high <= low:
table = np.arange(n_bins)
else:
scale = (n_bins - 1) / (high - low)
offset = -low * scale
table = np.arange(n_bins) * scale + offset
table[table < 0] = 0
table[table > n_bins - 1] = n_bins - 1
table = table.clip(0, 255).astype(np.uint8)
return table[ch]
channels = [tune_channel(ch) for ch in cv2.split(img)]
out = cv2.merge(channels)
return out
It seems to match well with PIL autocontrast.
from PIL import Image
import requests
url = 'https://i.stack.imgur.com/JJ4Se.jpg'
im = Image.open(requests.get(url, stream=True).raw)
arr_im = autocontrast_func(np.array(im), cutoff=3)
Image.fromarray(arr_im)

Related

Confusion with red eye detection

First of all, I am not asking anyone to do my homework. I would like to get an explanation or clarification about my difficulties in understanding the following question.
I just finished my image processing test, but one question that I could not solve due to my confusion.
The question is:
Write the code to detect the red eye in a given image in RGB color space using the following formula for HSL color space:
LS_ratio = L / S
eye_pixel = (L >= 64) and (S >= 100) and (LS_ratio > 0.5) and (LS_ratio < 1.5) and ((H <= 7) or (H >= 162))
Please note that in above formula, H, S and L represent a single pixel value for the image in HSL color space and the value of ‘eye_pixel’ will be either True or False depending on the values of H, S and L (i.e. it will be either a red eye color pixel or not).
Your task is to write the code to check all pixels in the image. Store the result as a numpy array and display the resulted image.
My code is:
from __future__ import print_function
import numpy as np
import argparse
import cv2
#argument paser
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required = True, help = "Path to the image")
args = vars(ap.parse_args())
#load the image
image = cv2.imread(args["image"])
#Convert image to HLS
hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)
#Split HLS Channels
H = hls[:, :, 0]
S = hls[:, :, 1]
L = hls[:, :, 2]
LS_ratio = L / S
#eye_pixel = (L >= 64) and (S >= 100) and (LS_ratio > 0.5) and (LS_ratio < 1.5) and ((H <= 7) or (H >= 162))
#if HSL pixel
#eye pixel either red or not
#show the image
#cv2.imshow("Image", np.hstack([image, red_eye]))
#debug
print("Lightness is: {}".format(L))
print("Saturation is: {}".format(S))
print("Hue is: {}".format(H))
#print("LS ratio: {}", LS_ratio)
cv2.waitKey(0)
Suppose that the image is:
I literally feel confused about what needs to be done. Highly appreciate if anyone helps explains to me what should be done.
Thank you.
All you need to do is implement the formula in term of the entire H, L, S images.
#Convert image to HLS
hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)
#Split HLS Channels
H = hls[:, :, 0]
L = hls[:, :, 1]
S = hls[:, :, 2]
LS_ratio = L/(S + 1e-6)
redeye = ((L>=64) * (S>=100) * np.logical_or(H<=7, H>=162) * (LS_ratio>0.5) * (LS_ratio<1.5)).astype(bool)
Here redeye is a bool array the same size of your original image, where each pixel contains a True or False, representing whether if it's a redeye pixel or not. If I display the image:
redeye = cv2.cvtColor(redeye.astype(np.uint8)*255, cv2.COLOR_GRAY2BGR)
cv2.imshow('image-redeye', np.hstack([image, redeye]))

How to add noise using skimage

I have written a simple code to add noise to image:
import cv2
from skimage.util import *
img = cv2.imread("./A/0030050944.jpg")
img = random_noise(img, mode='poisson', seed=42, clip=False)
cv2.imwrite("test.jpg", img)
But this only gives a blank black image.
Check this code. It adds gaussian , salt-pepper , poisson and speckle noise in an image.
Parameters
----------
image : ndarray
Input image data. Will be converted to float.
mode : str
One of the following strings, selecting the type of noise to add:
'gauss' Gaussian-distributed additive noise.
'poisson' Poisson-distributed noise generated from the data.
's&p' Replaces random pixels with 0 or 1.
'speckle' Multiplicative noise using out = image + n*image,where
n is uniform noise with specified mean & variance.
import numpy as np
import os
import cv2
def noisy(noise_typ,image):
if noise_typ == "gauss":
row,col,ch= image.shape
mean = 0
var = 0.1
sigma = var**0.5
gauss = np.random.normal(mean,sigma,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss
return noisy
elif noise_typ == "s&p":
row,col,ch = image.shape
s_vs_p = 0.5
amount = 0.004
out = np.copy(image)
# Salt mode
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt))
for i in image.shape]
out[coords] = 1
# Pepper mode
num_pepper = np.ceil(amount* image.size * (1. - s_vs_p))
coords = [np.random.randint(0, i - 1, int(num_pepper))
for i in image.shape]
out[coords] = 0
return out
elif noise_typ == "poisson":
vals = len(np.unique(image))
vals = 2 ** np.ceil(np.log2(vals))
noisy = np.random.poisson(image * vals) / float(vals)
return noisy
elif noise_typ =="speckle":
row,col,ch = image.shape
gauss = np.random.randn(row,col,ch)
gauss = gauss.reshape(row,col,ch)
noisy = image + image * gauss
return noisy
From How to add noise (Gaussian/salt and pepper etc) to image in Python with OpenCV
possion noise
from PIL import Image
import numpy as np
from skimage.util import random_noise
im = Image.open("test.jpg")
# convert PIL Image to ndarray
im_arr = np.asarray(im)
# random_noise() method will convert image in [0, 255] to [0, 1.0],
# inherently it use np.random.normal() to create normal distribution
# and adds the generated noised back to image
noise_img = random_noise(im_arr, mode='possion', var=0.05**2)
noise_img = (255*noise_img).astype(np.uint8)
img = Image.fromarray(noise_img)
img.show()

Automatically cropping an image with python/PIL

Can anyone help me figure out what's happening in my image auto-cropping script? I have a png image with a large transparent area/space. I would like to be able to automatically crop that space out and leave the essentials. Original image has a squared canvas, optimally it would be rectangular, encapsulating just the molecule.
here's the original image:
Doing some googling i came across PIL/python code that was reported to work, however in my hands, running the code below over-crops the image.
import Image
import sys
image=Image.open('L_2d.png')
image.load()
imageSize = image.size
imageBox = image.getbbox()
imageComponents = image.split()
rgbImage = Image.new("RGB", imageSize, (0,0,0))
rgbImage.paste(image, mask=imageComponents[3])
croppedBox = rgbImage.getbbox()
print imageBox
print croppedBox
if imageBox != croppedBox:
cropped=image.crop(croppedBox)
print 'L_2d.png:', "Size:", imageSize, "New Size:",croppedBox
cropped.save('L_2d_cropped.png')
the output is this:
Can anyone more familiar with image-processing/PLI can help me figure out the issue?
Install Pillow
pip install Pillow
and use as
from PIL import Image
image=Image.open('L_2d.png')
imageBox = image.getbbox()
cropped = image.crop(imageBox)
cropped.save('L_2d_cropped.png')
When you search for boundaries by mask=imageComponents[3], you search only by blue channel.
You can use numpy, convert the image to array, find all non-empty columns and rows and then create an image from these:
import Image
import numpy as np
image=Image.open('L_2d.png')
image.load()
image_data = np.asarray(image)
image_data_bw = image_data.max(axis=2)
non_empty_columns = np.where(image_data_bw.max(axis=0)>0)[0]
non_empty_rows = np.where(image_data_bw.max(axis=1)>0)[0]
cropBox = (min(non_empty_rows), max(non_empty_rows), min(non_empty_columns), max(non_empty_columns))
image_data_new = image_data[cropBox[0]:cropBox[1]+1, cropBox[2]:cropBox[3]+1 , :]
new_image = Image.fromarray(image_data_new)
new_image.save('L_2d_cropped.png')
The result looks like
If anything is unclear, just ask.
I tested most of the answers replied in this post, however, I was ended up my own answer. I used anaconda python3.
from PIL import Image, ImageChops
def trim(im):
bg = Image.new(im.mode, im.size, im.getpixel((0,0)))
diff = ImageChops.difference(im, bg)
diff = ImageChops.add(diff, diff, 2.0, -100)
#Bounding box given as a 4-tuple defining the left, upper, right, and lower pixel coordinates.
#If the image is completely empty, this method returns None.
bbox = diff.getbbox()
if bbox:
return im.crop(bbox)
if __name__ == "__main__":
bg = Image.open("test.jpg") # The image to be cropped
new_im = trim(bg)
new_im.show()
Here's another version using pyvips.
import sys
import pyvips
image = pyvips.Image.new_from_file(sys.argv[1])
left, top, width, height = image.find_trim(threshold=2, background=[255, 255, 255])
image = image.crop(left, top, width, height)
image.write_to_file(sys.argv[2])
The pyvips trimmer is useful for photographic images. It does a median filter, subtracts the background, finds pixels over the threshold, and removes up to the first and last row and column outside this set. The median and threshold mean it is not thrown off by things like JPEG compression, where noise or invisible compression artefacts can confuse other trimmers.
If you don't supply the background argument, it uses the pixel at (0, 0). threshold defaults to 10, which is about right for JPEG.
Here it is running on an 8k x 8k pixel NASA earth image:
$ time ./trim.py /data/john/pics/city_lights_asia_night_8k.jpg x.jpg
real 0m1.868s
user 0m13.204s
sys 0m0.280s
peak memory: 100mb
Before:
After:
There's a blog post with some more discussion here.
This is an improvement over snew's reply, which works for transparent background. With mathematical morphology we can make it work on white background (instead of transparent), with the following code:
from PIL import Image
from skimage.io import imread
from skimage.morphology import convex_hull_image
from skimage.color import rgb2gray
im = imread('L_2d.jpg')
plt.imshow(im)
plt.title('input image')
plt.show()
# create a binary image
im1 = 1 - rgb2gray(im)
threshold = 0.5
im1[im1 <= threshold] = 0
im1[im1 > threshold] = 1
chull = convex_hull_image(im1)
plt.imshow(chull)
plt.title('convex hull in the binary image')
plt.show()
imageBox = Image.fromarray((chull*255).astype(np.uint8)).getbbox()
cropped = Image.fromarray(im).crop(imageBox)
cropped.save('L_2d_cropped.jpg')
plt.imshow(cropped)
plt.show()
pilkit already contains processor for automatic cropping TrimBorderColor. SOmething like this should work:
from pilkit.lib import Image
from pilkit.processors import TrimBorderColor
img = Image.open('/path/to/my/image.png')
processor = TrimBorderColor()
new_img = processor.process(img)
https://github.com/matthewwithanm/pilkit/blob/b24990167aacbaab3db6d8ec9a02f9ad42856898/pilkit/processors/crop.py#L33
Came across this post recently and noticed the PIL library has changed. I re-implemented this with openCV:
import cv2
def crop_im(im, padding=0.1):
"""
Takes cv2 image, im, and padding % as a float, padding,
and returns cropped image.
"""
bw = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
rows, cols = bw.shape
non_empty_columns = np.where(bw.min(axis=0)<255)[0]
non_empty_rows = np.where(bw.min(axis=1)<255)[0]
cropBox = (int(min(non_empty_rows) * (1 - padding)),
int(min(max(non_empty_rows) * (1 + padding), rows)),
int(min(non_empty_columns) * (1 - padding)),
int(min(max(non_empty_columns) * (1 + padding), cols)))
cropped = im[cropBox[0]:cropBox[1]+1, cropBox[2]:cropBox[3]+1 , :]
return cropped
im = cv2.imread('testimage.png')
cropped = crop_im(im)
cv2.imshow('', cropped)
cv2.waitKey(0)
I know that this post is old but, for some reason, none of the suggested answers worked for me. So I hacked my own version from existing answers:
import Image
import numpy as np
import glob
import shutil
import os
grey_tolerance = 0.7 # (0,1) = crop (more,less)
f = 'test_image.png'
file,ext = os.path.splitext(f)
def get_cropped_line(non_empty_elms,tolerance,S):
if (sum(non_empty_elms) == 0):
cropBox = ()
else:
non_empty_min = non_empty_elms.argmax()
non_empty_max = S - non_empty_elms[::-1].argmax()+1
cropBox = (non_empty_min,non_empty_max)
return cropBox
def get_cropped_area(image_bw,tol):
max_val = image_bw.max()
tolerance = max_val*tol
non_empty_elms = (image_bw<=tolerance).astype(int)
S = non_empty_elms.shape
# Traverse rows
cropBox = [get_cropped_line(non_empty_elms[k,:],tolerance,S[1]) for k in range(0,S[0])]
cropBox = filter(None, cropBox)
xmin = [k[0] for k in cropBox]
xmax = [k[1] for k in cropBox]
# Traverse cols
cropBox = [get_cropped_line(non_empty_elms[:,k],tolerance,S[0]) for k in range(0,S[1])]
cropBox = filter(None, cropBox)
ymin = [k[0] for k in cropBox]
ymax = [k[1] for k in cropBox]
xmin = min(xmin)
xmax = max(xmax)
ymin = min(ymin)
ymax = max(ymax)
ymax = ymax-1 # Not sure why this is necessary, but it seems to be.
cropBox = (ymin, ymax-ymin, xmin, xmax-xmin)
return cropBox
def auto_crop(f,ext):
image=Image.open(f)
image.load()
image_data = np.asarray(image)
image_data_bw = image_data[:,:,0]+image_data[:,:,1]+image_data[:,:,2]
cropBox = get_cropped_area(image_data_bw,grey_tolerance)
image_data_new = image_data[cropBox[0]:cropBox[1]+1, cropBox[2]:cropBox[3]+1 , :]
new_image = Image.fromarray(image_data_new)
f_new = f.replace(ext,'')+'_cropped'+ext
new_image.save(f_new)

Intensity normalization of image using Python+PIL - Speed issues

I'm working on a little problem in my sparetime involving analysis of some images obtained through a microscope. It is a wafer with some stuff here and there, and ultimately I want to make a program to detect when certain materials show up.
Anyways, first step is to normalize the intensity across the image, since the lens does not give uniform lightning. Currently I use an image, with no stuff on, only the substrate, as a background, or reference, image. I find the maximum of the three (intensity) values for RGB.
from PIL import Image
from PIL import ImageDraw
rmax = 0;gmax = 0;bmax = 0;rmin = 300;gmin = 300;bmin = 300
im_old = Image.open("test_image.png")
im_back = Image.open("background.png")
maxx = im_old.size[0] #Import the size of the image
maxy = im_old.size[1]
im_new = Image.new("RGB", (maxx,maxy))
pixback = im_back.load()
for x in range(maxx):
for y in range(maxy):
if pixback[x,y][0] > rmax:
rmax = pixback[x,y][0]
if pixback[x,y][1] > gmax:
gmax = pixback[x,y][1]
if pixback[x,y][2] > bmax:
bmax = pixback[x,y][2]
pixnew = im_new.load()
pixold = im_old.load()
for x in range(maxx):
for y in range(maxy):
r = float(pixold[x,y][0]) / ( float(pixback[x,y][0])*rmax )
g = float(pixold[x,y][1]) / ( float(pixback[x,y][1])*gmax )
b = float(pixold[x,y][2]) / ( float(pixback[x,y][2])*bmax )
pixnew[x,y] = (r,g,b)
The first part of the code determines the maximum intensity of the RED, GREEN and BLUE channels, pixel by pixel, of the background image, but needs only be done once.
The second part takes the "real" image (with stuff on it), and normalizes the RED, GREEN and BLUE channels, pixel by pixel, according to the background. This takes some time, 5-10 seconds for an 1280x960 image, which is way too slow if I need to do this to several images.
What can I do to improve the speed? I thought of moving all the images to numpy arrays, but I can't seem to find a fast way to do that for RGB images.
I'd rather not move away from python, since my C++ is quite low-level, and getting a working FORTRAN code would probably take longer than I could ever save in terms of speed :P
import numpy as np
from PIL import Image
def normalize(arr):
"""
Linear normalization
http://en.wikipedia.org/wiki/Normalization_%28image_processing%29
"""
arr = arr.astype('float')
# Do not touch the alpha channel
for i in range(3):
minval = arr[...,i].min()
maxval = arr[...,i].max()
if minval != maxval:
arr[...,i] -= minval
arr[...,i] *= (255.0/(maxval-minval))
return arr
def demo_normalize():
img = Image.open(FILENAME).convert('RGBA')
arr = np.array(img)
new_img = Image.fromarray(normalize(arr).astype('uint8'),'RGBA')
new_img.save('/tmp/normalized.png')
See http://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.fromimage.html#scipy.misc.fromimage
You can say
databack = scipy.misc.fromimage(pixback)
rmax = numpy.max(databack[:,:,0])
gmax = numpy.max(databack[:,:,1])
bmax = numpy.max(databack[:,:,2])
which should be much faster than looping over all (r,g,b) triplets of your image.
Then you can do
dataold = scip.misc.fromimage(pixold)
r = dataold[:,:,0] / (pixback[:,:,0] * rmax )
g = dataold[:,:,1] / (pixback[:,:,1] * gmax )
b = dataold[:,:,2] / (pixback[:,:,2] * bmax )
datanew = numpy.array((r,g,b))
imnew = scipy.misc.toimage(datanew)
The code is not tested, but should work somehow with minor modifications.
This is partially from FolksTalk webpage:
from PIL import Image
import numpy as np
# Read image file
in_file = "my_image.png"
# convert('RGB') for PNG file type
image = Image.open(in_file).convert('RGB')
pixels = np.asarray(image)
# Convert from integers to floats
pixels = pixels.astype('float32')
# Normalize to the range 0-1
pixels /= 255.0

Doing the same as ImageMagick's "-level" in python / PIL?

I want to adjust the colour levels of an image in python. I can use any python library that can easily be installed on my Ubuntu desktop. I want to do the same as ImageMagick's -level ( http://www.imagemagick.org/www/command-line-options.html#level ). PIL (Python Image Library) doesn't seem to have it. I have been calling convert on the image and then reading in the file back again, but that seems wasteful. Is there a better / faster way?
If I understood correctly the -level option of ImageMagick, then the level_image function I provide should do what you want.
Two things to note:
the speed definitely can be improved
it currently only works with RGB images
the algorithm goes through the HSV colorspace, and affects only the V (brightness) component
The code:
import colorsys
class Level(object):
def __init__(self, minv, maxv, gamma):
self.minv= minv/255.0
self.maxv= maxv/255.0
self._interval= self.maxv - self.minv
self._invgamma= 1.0/gamma
def new_level(self, value):
if value <= self.minv: return 0.0
if value >= self.maxv: return 1.0
return ((value - self.minv)/self._interval)**self._invgamma
def convert_and_level(self, band_values):
h, s, v= colorsys.rgb_to_hsv(*(i/255.0 for i in band_values))
new_v= self.new_level(v)
return tuple(int(255*i)
for i
in colorsys.hsv_to_rgb(h, s, new_v))
def level_image(image, minv=0, maxv=255, gamma=1.0):
"""Level the brightness of image (a PIL.Image instance)
All values ≤ minv will become 0
All values ≥ maxv will become 255
gamma controls the curve for all values between minv and maxv"""
if image.mode != "RGB":
raise ValueError("this works with RGB images only")
new_image= image.copy()
leveller= Level(minv, maxv, gamma)
levelled_data= [
leveller.convert_and_level(data)
for data in image.getdata()]
new_image.putdata(levelled_data)
return new_image
If there is some way to do the RGB→HSV conversion (and vice versa) using PIL, then one can split into the H, S, V bands, use the .point method of the V band and convert back to RGB, speeding up the process by a lot; however, I haven't found such a way.
Why not use PythonMagick? It's a Python interface to Image Magick.
This is the code that I use. Levels are done, 1) on the brightness channel of the HSV image and, 2) according to the desired amount of blacks and whites pixels in the result.
The code can be modified to avoid to use pillow since openCV use numpy arrays as internal data. If doing so, be aware that openCV native colorspace is BGR. You will have to change the calls to cv.cvtColor() accordingly.
from PIL import Image
import numpy as np
import cv2 as cv
fileName = 'foo.JPG'
fileOut = 'bar.JPG'
imgPil = Image.open(fileName)
imgCV = np.asarray(imgPil, np.uint8)
hsv = cv.cvtColor(imgCV, cv.COLOR_RGB2HSV)
h,s,v = cv.split(hsv)
ceil = np.percentile(v,95) # 5% of pixels will be white
floor = np.percentile(v,5) # 5% of pixels will be black
a = 255/(ceil-floor)
b = floor*255/(floor-ceil)
v = np.maximum(0,np.minimum(255,v*a+b)).astype(np.uint8)
hsv = cv.merge((h,s,v))
rgb = cv.cvtColor(hsv, cv.COLOR_HSV2RGB)
imgPil = Image.fromarray(rgb)
imgPil.save(fileOut)
using code from this link here
# Auto leveling for image
def levels(data, all_same = 0, clip = 0):
if data.mode not in ['RGB', 'CMYK']:
return data
## get redistriputed histogram scalled smoothly
lut = _makelut(data, all_same, clip)
## update image points using histogram
data = data.point(lut)
return data
def _find_hi_lo(lut, clip):
min = None
max = None
for i in range(len(lut)):
if lut[i] > clip:
min = i
break
lut.reverse()
for i in range(len(lut)):
if lut[i] > clip:
max = 255 - i
break
return min, max
def _scale(channels, min, max):
lut = []
# hefny fix
ratio = float(max-min)
if ratio == 0:
ratio = 1
for i in range (channels):
for i in range(256):
value = int((i - min)*(255.0/ratio))
if value < 0:
value = 0
if value > 255:
value = 255
lut.append(value)
return lut
def _makelut(data, all_same, clip):
histogram = data.histogram()
lut = []
r, g, b, k = [], [], [], []
channels = len(histogram)/256
for i in range(256):
r.append(histogram[i])
g.append(histogram[256+i])
b.append(histogram[512+i])
if channels == 4:
for i in range(256):
k.append(histogram[768+i])
rmin, rmax = _find_hi_lo(r, clip)
gmin, gmax = _find_hi_lo(g, clip)
bmin, bmax = _find_hi_lo(b, clip)
if channels == 4:
kmin, kmax = _find_hi_lo(k)
else:
kmin, kmax = 128, 128
if all_same == 1:
min_max = [rmin, gmin, bmin, kmin, rmax, gmax, bmax, kmax]
min_max.sort()
lut = _scale(channels, min_max[0], min_max[-1])
else:
r_lut = _scale(1, rmin, rmax)
g_lut = _scale(1, gmin, gmax)
b_lut = _scale(1, bmin, bmax)
if channels == 4:
k_lut = _scale(1, kmin, kmax)
lut = []
for i in range (256):
lut.append(r_lut[i])
for i in range (256):
lut.append(g_lut[i])
for i in range (256):
lut.append(b_lut[i])
if channels == 4:
for i in range (256):
lut.append(k_lut[i])
return lut
from PIL import ImageEnhance , ImageDraw , Image
img = Image.open(file_path)
img2 = levels(img)

Categories

Resources