Search for column in pandas - python

How do you search if a value exist in a specific row?
Example I have this file which contains the following:
ID Name
1 Mark
2 John
3 Mary
The user will input 1 and it will
print("the value already exist.")
But if the user input 4 it will add a new row containing 4 and
name = input('Name')
and update the file like this
ID Name
1 Mark
2 John
3 Mary
4 (userinput)

An easy approach will be:
import pandas as pd
bool_val = False
for i in range(0, df.shape[0]):
if str(df.iloc[i]['ID']) == str(input_str):
bool_val = False
break
else:
print("there")
bool_val = True
if bool_val == True:
df = df.append(pd.Series([input_str, name], index = ['ID', 'Name']), ignore_index=True)
Remember to add the parameter ignore_index to avoid TypeError. I added a bool value to avoid appending a row multiple times.

searchid=20 #use sys.argv[1] if needed to be passed as argument to the program. Or read it as raw_input
if str(searchid) in df.index.astype(str):
print("ID found")
else:
name=raw_input("ID not found. Specify the name for this ID to update the data:") #use input() if python version >= 3
df.loc[searchid]=[str(name)]
If ID is not index:
if str(searchid) in df.ID.values.astype(str):
print("ID found")
else:
name=raw_input("ID not found. Specify the name for this ID to update the data:") #use input() if python version >= 3
df.loc[searchid]=[str(searchid),str(name)]
specifying column headers to update during df update might avoid errors of mismatch:
df.loc[searchid]={'ID': str(searchid), 'Name': str(name)}
This should help
Also read at https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html, that mentions the inherent nature of append and concat to copy the full dataframe.

df.loc['ID'] will return the row containing the ID in the index of the dataframe. Assuming IDs are the index values of the df you are referring to.
If you have a list of IDs and wish to search for them all together then:
assuming:
listofids=['ID1','ID2','ID3']
df.loc[listofids]
will yield the rows containing the above IDs
If IDs are not in index then:
Assuming df['ids'] contain the given ID list:
'searchedID' in df.ids.values
will return True or False based on presence or absence

Related

How to count rows where condition is false Pandas?

I have a NUM column, I try to filter rows where column NUM is valid (true) and:
Update current dataframe
Insert count of wrong rows into dict report
I try this:
report["NUM"] = dataset['NUM'].apply(~isValid).count()
So, it does not work for me.
Dataframe is:
NUM AGE COUNTRY
1 18 USA
2 19 USA
3 30 AU
The isValid it is a function
def isValid(value):
return True
Remark:
I use this rule:
report["NUM"] = (~dataset['NUM'].apply(checkNumber)).sum()
I get this error:
report["NUM"] = (~dataset['NUM'].apply(luhn)).sum()
C:\Users\Oleh\AppData\Local\Temp\ipykernel_17284\2678582562.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
If you want to count the rows where isValid outputs False:
(~dataset['NUM'].apply(isValid)).sum()
output: 0
edit
m = dataset['NUM'].apply(isValid)
report["NUM"] = (~m).sum()
dataset2 = dataset[m]
You need
dataset[dataset['NUM'].map(isValid) == False].count()
Because
dataset['NUM'].apply(~isValid)
is just wrong.
isValid is a function, ~isValid is like not isValid, which I'm guessing evaluates to False? I'm not sure.
Also
dataset[col].apply(func)
will return the whole dataset with the values returned by the function for each row. If you want to filter out the False ones you need the
df[df[col]==True]
syntax. If you had a new column say
df["valid"] = dataset[col].map(func)
You could then do
df.query("valid is False")
Or something of the sort
def isValid(value):
return True
my_df = pd.DataFrame({'NUM':[1,2,3], 'AGE':[18,19,20], 'COUNTRY':['USA','USA','AU']})
report = {'wrong_rows':(~my_df.NUM.apply(isValid)).sum()}

In Python, If there is a duplicate, use the date column to choose the what duplicate to use

I have code that runs 16 test cases against a CSV, checking for anomalies from poor data entry. A new column, 'Test case failed,' is created. A number corresponding to which test it failed is added to this column when a row fails a test. These failed rows are separated from the passed rows; then, they are sent back to be corrected before they are uploaded into a database.
There are duplicates in my data, and I would like to add code to check for duplicates, then decide what field to use based on the date, selecting the most updated fields.
Here is my data with two duplicate IDs, with the first row having the most recent Address while the second row has the most recent name.
ID
MnLast
MnFist
MnDead?
MnInactive?
SpLast
SpFirst
SPInactive?
SpDead
Addee
Sal
Address
NameChanged
AddrChange
123
Doe
John
No
No
Doe
Jane
No
No
Mr. John Doe
Mr. John
123 place
05/01/2022
11/22/2022
123
Doe
Dan
No
No
Doe
Jane
No
No
Mr. John Doe
Mr. John
789 road
11/01/2022
05/06/2022
Here is a snippet of my code showing the 5th testcase, which checks for the following: Record has Name information, Spouse has name information, no one is marked deceased, but Addressee or salutation doesn't have "&" or "AND." Addressee or salutation needs to be corrected; this record is married.
import pandas as pd
import numpy as np
data = pd.read_csv("C:/Users/file.csv", encoding='latin-1' )
# Create array to store which test number the row failed
data['Test Case Failed']= ''
data = data.replace(np.nan,'',regex=True)
data.insert(0, 'ID', range(0, len(data)))
# There are several test cases, but they function primarily the same
# Testcase 1
# Testcase 2
# Testcase 3
# Testcase 4
# Testcase 5 - comparing strings in columns
df = data[((data['FirstName']!='') & (data['LastName']!='')) &
((data['SRFirstName']!='') & (data['SRLastName']!='') &
(data['SRDeceased'].str.contains('Yes')==False) & (data['Deceased'].str.contains('Yes')==False)
)]
df1 = df[df['PrimAddText'].str.contains("AND|&")==False]
data_5 = df1[df1['PrimSalText'].str.contains("AND|&")==False]
ids = data_5.index.tolist()
# Assign 5 for each failed
for i in ids:
data.at[i,'Test Case Failed']+=', 5'
# Failed if column 'Test Case Failed' is not empty, Passed if empty
failed = data[(data['Test Case Failed'] != '')]
passed = data[(data['Test Case Failed'] == '')]
failed['Test Case Failed'] =failed['Test Case Failed'].str[1:]
failed = failed[(failed['Test Case Failed'] != '')]
# Clean up
del failed["ID"]
del passed["ID"]
failed['Test Case Failed'].value_counts()
# Print to console
print("There was a total of",data.shape[0], "rows.", "There was" ,data.shape[0] - failed.shape[0], "rows passed and" ,failed.shape[0], "rows failed at least one test case")
# output two files
failed.to_csv("C:/Users/Failed.csv", index = False)
passed.to_csv("C:/Users/Passed.csv", index = False)
What is the best approach to check for duplicates, choose the most updated fields, drop the outdated fields/row, and perform my test?
First, try to set a mapping that associates update date columns to their corresponding value columns.
date2val = {"AddrChange": ["Address"], "NameChanged": ["MnFist", "MnLast"], ...}
Then, transform date columns into datetime format to be able to compare them (using argmax later).
for key in date2val.keys():
failed[key] = pd.to_datetime(failed[key])
Then, group by ID the duplicates (since ID is the value that decides whether it is a duplicate), and for each date column get the maximum value in the group (which refers to the most recent update) and retrieve the columns to update from the initial mapping. I'll update the last row and set it as the final updated result (by putting it in corrected list).
corrected = list()
for _, grp in failed.groupby("ID"):
for key in date2val.keys():
recent = grp[key].argmax()
for col in date2val[key]:
grp.iloc[-1][col] = grp.iloc[recent][col]
corrected.append(grp.iloc[-1])
corrected = pd.DataFrame(corrected)
Preparing data:
import pandas as pd
c = 'ID MnLast MnFist MnDead? MnInactive? SpLast SpFirst SPInactive? SpDead Addee Sal Address NameChanged AddrChange'.split()
data1 = '123 Doe John No No Doe Jane No No Mr.JohnDoe Mr.John 123place 05/01/2022 11/22/2022'.split()
data2 = '123 Doe Dan No No Doe Jane No No Mr.JohnDoe Mr.John 789road 11/01/2022 05/06/2022'.split()
data3 = '8888 Brown Peter No No Brwon Peter No No Mr.PeterBrown M.Peter 666Avenue 01/01/2011 01/01/2011'.split()
df = pd.DataFrame(columns = c, data = [data1, data2, data3])
df.AddrChange.astype('datetime64')
df.NameChanged.astype('datetime64')
df
DataFrame is like the example:
Then you pick a piece of the dataframe avoiding changes in original. Adjacent rows have the same ID and the first one has the apropriate name:
df1 = df[['ID', 'MnFist', 'NameChanged']].sort_values(by=['ID', 'NameChanged'], ascending = False)
df1
Then you build a dictionary putting key as df.ID and the appropriate name for its value. You intend to build all the column MnFist:
d = {}
for id in set(df.ID.values):
df_mask = df1.ID == id # filter only rows with same id
filtered_df = df1[df_mask]
if len(filtered_df) <= 1:
d[id] = filtered_df.iat[0, 1] # id has only one row, so no changes
continue
for name in filtered_df.MnFist:
if name in ['unknown', '', ' '] or name is None: # name discards
continue
else:
d[id] = name # found a servible name
if id not in d.keys():
d[id] = filtered_df.iat[0, 1] # no servible name, so picked the first
print(d)
The partial output of the dictionary is:
{'8888': 'Peter', '123': 'Dan'}
Then you build all the column:
df.MnFist = [d[id] for id in df.ID]
df
The partial output is:
Then the same procedure to the other column:
df1 = df[['ID', 'Address', 'AddrChange']].sort_values(by=['ID', 'AddrChange'], ascending = False)
df1
d = { id: df1.loc[df1.ID == id, 'Address'].values[0] for id in set(df.ID.values) }
d
df.Address = [d[id] for id in df.ID]
df
The final output is:
Edited after author comented possibility of unknow inservible data.
Let me restate what I understood from the question:
You have a dataset on which you are doing several sanity checks. (Looks like you already have everything in place for this step)
In next step you are finding duplicates row with different columns updated at different dates. (I assume that you already have this)
Now, you are looking for a new dataset that has non-duplicated rows with updated fields using the latest date entries.
First, define different dates and their related columns in a form of dictionary:
date_to_cols = {"AddrChange": "Address", "NameChanged": ["MnLast", "MnFirst"]}
Next, apply group by using "ID" and then get the index for maximum value of different dates. Once we have the index, we can pull the related fields for that date from the data.
data[list(date_to_cols.keys())] =data[list(date_to_cols.keys())].astype('datetime64')
latest_data = df.groupby('ID')[list(date_to_cols.keys())].idxmax().reset_index()
for date_field, cols_to_update in date_to_cols.items():
latest_data[cols_to_update] = latest_data[date_field].apply(lambda x: data.iloc[x][cols_to_update])
latest_data[date_field] = latest_data[date_field].apply(lambda x: data.iloc[x][date_field])
Next, you can merge these latest_data with the original data (after removing old columns):
cols_to_drop = list(latest_data.columns)
cols_to_drop.remove("ID")
data.drop(columns= cols_to_drop, inplace=True)
latest_data_all_fields = data.merge(latest_data, on="ID", how="left")
latest_data_all_fields.drop_duplicates(inplace=True)

Pandas; Python - VLookup

This is my first time posting a question, so take it easy on me if I don't know stack overflow norm of asking questions.
Attached is a snippet of what I am trying to accomplish on my side-project. I want to be able to compare a user input with a database .xlsx file that was imported by pandas.
I want to compare the user input with the database column ['Component'], if that component is there, it will grab its properties associated with that component.
comp_loc = r'C:\Users\ayubi\Documents\Python Files\Chemical_Database.xlsx'
data = pd.read_excel(comp_loc)
print(data)
LK = input('What is the Light Key?: ') #Answer should be Benzene in this case
if LK == data['Component'].any():
Tcrit = data['TC, (K)']
Pcrit = data['PC, (bar)']
A = data['A']
B = data['B']
C = data['C']
D = data['D']
else:
print('False')
Results
Component TC, (K) PC, (bar) A B C D
0 Benzene 562.2 48.9 -6.983 1.332 -2.629 -3.333
1 Toluene 591.8 41.0 -7.286 1.381 -2.834 -2.792
What is the Light Key?: Benzene
False
Please let me know if you have any questions.
I do appreciate your help!
You can do this by taking advantage of indices and using the df.loc accessor in pandas:
# set index to Component column for convenience
data = data.set_index('Component')
LK = input('What is the Light Key?: ') #Answer should be Benzene in this case
# check if your lookup is in the index
if LK in data.index:
# grab the row by the index using .loc
row = data.loc[LK]
# if the column name has spaces, you need to access as key
Tcrit = row['TC, (K)']
Pcrit = row['PC, (bar)']
# if the column name doesn't have a space, you can access as attribute
A = row.A
B = row.B
C = row.C
D = row.D
else:
print('False')
This is a great case for an Index. Set 'Component' to the Index, and then you can use a very fast loc call to look up the data. Instead of the if-else use a try-except as a KeyError is going to tell you that the LK doesn't exist, without requiring the slower check of first checking whether it's in the index.
I also highly suggest you keep the values as a single Series, instead of floating around as 6 different varibales. It's simple to access each item by the Series index, i.e. Series['A'].
df = df.set_index('Component')
def grab_data(df, LK):
try:
return df.loc[LK]
except KeyError:
return False
grab_data(df, 'Benzene')
#TC, (K) 562.200
#PC, (bar) 48.900
#A -6.983
#B 1.332
#C -2.629
#D -3.333
#Name: Benzene, dtype: float64
grab_data(df, 'foo')
#False

remove duplicate word from pandas column

I have dataframe with information like below stored in one column
>>> Results.Category[:5]
0 issue delivery wrong master account
1 data wrong master account batch
2 order delivery wrong data account
3 issue delivery wrong master account
4 delivery wrong master account batch
Name: Category, dtype: object
Now I want to keep unique word in Category column
For Example :
In first row word "wrong" is present I want to remove it from all rest of the rows and keep word "wrong" in first row only
In second row word "data" is available then I want to remove it from all rest of the rows and keep word "data" in second row only
I found that if duplicates are available in row we can remove using below , but I need to remove duplicate words from columns, Can anyone please help me here.
AFResults['FinalCategoryN'] = AFResults['FinalCategory'].apply(lambda x: remove_dup(x))
It seems you want something like,
out = []
seen = set()
for c in df['Category']:
words = c.split()
out.append(' '.join([w for w in words if w not in seen]))
seen.update(words)
df['FinalCategoryN'] = out
df
Category FinalCategoryN
0 issue delivery wrong master account issue delivery wrong master account
1 data wrong master account batch data batch
2 order delivery wrong data account order
3 issue delivery wrong master account
4 delivery wrong master account batch
If you don't care about the ordering, you can use set logic:
u = df['Category'].apply(str.split)
v = split.shift().map(lambda x: [] if x != x else x).cumsum().map(set)
(u.map(set) - v).str.join(' ')
0 account delivery issue master wrong
1 batch data
2 order
3
4
Name: Category, dtype: object
In you case you need split it first then remove duplicate by drop_duplicates
df.c.str.split(expand=True).stack().drop_duplicates().\
groupby(level=0).apply(','.join).reindex(df.index)
Out[206]:
0 issue,delivery,wrong,master,account
1 data,batch
2 order
3 NaN
4 NaN
dtype: object
What you what cannot be vectorized, so let us just forget about pandas and use a Python set:
total = set()
result = []
for line in AFResults['FinalCategory']:
line = set(line.split()).difference(total)
total = total.union(line)
result.append(' '.join(line))
You get that list: ['wrong issue master delivery account', 'batch data', 'order', '', '']
You can use it to populate a dataframe column:
AFResults['FinalCategoryN'] = result
Use apply with sorted and set and str.join and list.index:
AFResults['FinalCategoryN'] = AFResults['FinalCategory'].apply(lambda x: ' '.join(sorted(set(x.split()), key=x.index)))

Reorder row values csv pandas

I have a csv file
1 , name , 1012B-Amazon , 2044C-Flipcart , Bosh27-Walmart
2 , name , Kelvi20-Flipcart, LG-Walmart
3, name , Kenstar-Walmart, Sony-Amazon , Kenstar-Flipcart
4, name , LG18-Walmart, Bravia-Amazon
I need the rows to be rearranged by the websites ie the part after -;
1, name , 1012B-Amazon , 2044C-Flipcart , Bosh27-Walmart
2, name , , Kelv20-Flipcart, LG-Walmart
3, name , Sony-Amazon, Kenstar-Flipcart ,Kenstar-Walmart
4, name , Bravia-Amazon, ,LG18-Walmart
Is it possible using pandas ? Finding the existence of a sting and re arrange it and iterate through all rows and repeat this for the next string ? I went through the documentation of Series.str.contains and str.extract but was unable to find a solution .
Using sorted with key
df.iloc[:,1:].apply(lambda x : sorted(x,key=lambda y: (y=='',y)),1)
2 3 4 5
1 ABC DEF GHI JKL
2 ABC DEF GHI
3 ABC DEF GHI JKL
#df.iloc[:,1:]=df.iloc[:,1:].apply(lambda x : sorted(x,key=lambda y: (y=='',y)),1)
Since you mention reindex I think get_dummies will work
s=pd.get_dummies(df.iloc[:,1:],prefix ='',prefix_sep='')
s=s.drop('',1)
df.iloc[:,1:]=s.mul(s.columns).values
df
1 2 3 4 5
1 name ABC DEF GHI JKL
2 name ABC DEF GHI
3 name ABC DEF GHI JKL
Assuming the empty value is np.nan:
# Fill in the empty values with some string to allow sorting
df.fillna('NaN', inplace=True)
# Flatten the dataframe, do the sorting and reshape back to a dataframe
pd.DataFrame(list(map(sorted, df.values)))
0 1 2 3
0 ABC DEF GHI JKL
1 ABC DEF GHI NaN
2 ABC DEF GHI JKL
UPDATE
Given the update to the question and the sample data being as follows
df = pd.DataFrame({'name': ['name1', 'name2', 'name3', 'name4'],
'b': ['1012B-Amazon', 'Kelvi20-Flipcart', 'Kenstar-Walmart', 'LG18-Walmart'],
'c': ['2044C-Flipcart', 'LG-Walmart', 'Sony-Amazon', 'Bravia-Amazon'],
'd': ['Bosh27-Walmart', np.nan, 'Kenstar-Flipcart', np.nan]})
a possible solution could be
def foo(df, retailer):
# Find cells that contain the name of the retailer
mask = df.where(df.apply(lambda x: x.str.contains(retailer)), '')
# Squash the resulting mask into a series
col = mask.max(skipna=True, axis=1)
# Optional: trim the name of the retailer
col = col.str.replace(f'-{retailer}', '')
return col
df_out = pd.DataFrame(df['name'])
for retailer in ['Amazon', 'Walmart', 'Flipcart']:
df_out[retailer] = foo(df, retailer)
resulting in
name Amazon Walmart Flipcart
0 name1 1012B Bosh27 2044C
1 name2 LG Kelvi20
2 name3 Sony Kenstar Kenstar
3 name4 Bravia LG18
Edit after Question Update:
This is the abc csv:
1,name,ABC,GHI,DEF,JKL
2,name,GHI,DEF,ABC,
3,name,JKL,GHI,ABC,DEF
This is the company csv (it is necessary to watch the commas carefully):
1,name,1012B-Amazon,2044C-Flipcart,Bosh27-Walmart
2,name,Kelvi20-Flipcart,LG-Walmart,
3,name,Kenstar-Walmart,Sony-Amazon,Kenstar-Flipcart
4,name,LG18-Walmart,Bravia-Amazon,
Here is the code
import pandas as pd
import numpy as np
#These solution assume that each value that is not empty is not repeated
#within each row. If that is not the case for your data, it would be possible
#to do some transformations that the non empty values are unique for each row.
#"get_company" returns the company if the value is non-empty and an
#empty value if the value was empty to begin with:
def get_company(company_item):
if pd.isnull(company_item):
return np.nan
else:
company=company_item.split('-')[-1]
return company
#Using the "define_sort_order" function, one can retrieve a template to later
#sort all rows in the sort_abc_rows function. The template is derived from all
#values, aside from empty values, within the matrix when "by_largest_row" = False.
#One could also choose the single largest row to serve as the
#template for all other rows to follow. Both options work similarly when
#all rows are subsets of the largest row i.e. Every element in every
#other row (subset) can be found in the largest row (or set)
#The difference relates to, when the items contain unique elements,
#Whether one wants to create a table with all sorted elements serving
#as the columns, or whether one wants to simply exclude elements
#that are not in the largest row when at least one non-subset row does not exist
#Rather than only having the application of returning the original data rows,
#one can get back a novel template with different values from that of the
#original dataset if one uses a function to operate on the template
def define_sort_order(data,by_largest_row = False,value_filtering_function = None):
if not by_largest_row:
if value_filtering_function:
data = data.applymap(value_filtering_function)
#data.values returns a numpy array
#with rows and columns. .flatten()
#puts all elements in a 1 dim array
#set gets all unique values in the array
filtered_values = list(set((data.values.flatten())))
filtered_values = [data_value for data_value in filtered_values if not_empty(data_value)]
#sorted returns a list, even with np.arrays as inputs
model_row = sorted(filtered_values)
else:
if value_filtering_function:
data = data.applymap(value_filtering_function)
row_lengths = data.apply(lambda data_row: data_row.notnull().sum(),axis = 1)
#locates the numerical index for the row with the most non-empty elements:
model_row_idx = row_lengths.idxmax()
#sort and filter the row with the most values:
filtered_values = list(set(data.iloc[model_row_idx]))
model_row = [data_value for data_value in sorted(filtered_values) if not_empty(data_value)]
return model_row
#"not_empty" is used in the above function in order to filter list models that
#they no empty elements remain
def not_empty(value):
return pd.notnull(value) and value not in ['',' ',None]
#Sorts all element in each _row within their corresponding position within the model row.
#elements in the model row that are missing from the current data_row are replaced with np.nan
def reorder_data_rows(data_row,model_row,check_by_function=None):
#Here, we just apply the same function that we used to find the sorting order that
#we computed when we originally #when we were actually finding the ordering of the model_row.
#We actually transform the values of the data row temporarily to determine whether the
#transformed value is in the model row. If so, we determine where, and order #the function
#below in such a way.
if check_by_function:
sorted_data_row = [np.nan]*len(model_row) #creating an empty vector that is the
#same length as the template, or model_row
data_row = [value for value in data_row.values if not_empty(value)]
for value in data_row:
value_lookup = check_by_function(value)
if value_lookup in model_row:
idx = model_row.index(value_lookup)
#placing company items in their respective row positions as indicated by
#the model_row #
sorted_data_row[idx] = value
else:
sorted_data_row = [value if value in data_row.values else np.nan for value in model_row]
return pd.Series(sorted_data_row)
##################### ABC ######################
#Reading the data:
#the file will automatically include the header as the first row if this the
#header = None option is not included. Note: "name" and the 1,2,3 columns are not in the index.
abc = pd.read_csv("abc.csv",header = None,index_col = None)
# Returns a sorted, non-empty list. IF you hard code the order you want,
# then you can simply put the hard coded order in the second input in model_row and avoid
# all functions aside from sort_abc_rows.
model_row = define_sort_order(abc.iloc[:,2:],False)
#applying the "define_sort_order" function we created earlier to each row before saving back into
#the original dataframe
#lambda allows us to create our own function without giving it a name.
#it is useful in this circumstance in order to use two inputs for sort_abc_rows
abc.iloc[:,2:] = abc.iloc[:,2:].apply(lambda abc_row: reorder_data_rows(abc_row,model_row),axis = 1).values
#Saving to a new csv that won't include the pandas created indices (0,1,2)
#or columns names (0,1,2,3,4):
abc.to_csv("sorted_abc.csv",header = False,index = False)
################################################
################## COMPANY #####################
company = pd.read_csv("company.csv",header=None,index_col=None)
model_row = define_sort_order(company.iloc[:,2:],by_largest_row = False,value_filtering_function=get_company)
#the only thing that changes here is that we tell the sort function what specific
#criteria to use to reorder each row by. We're using the result from the
#get_company function to do so. The custom function get_company, takes an input
#such as Kenstar-Walmart, and outputs Walmart (what's after the "-").
#we would then sort by the resulting list of companies.
#Because we used the define_sort_order function to retrieve companies rather than company items in order,
#We need to use the same function to reorder each element in the DataFrame
company.iloc[:,2:] = company.iloc[:,2:].apply(lambda companies_row: reorder_data_rows(companies_row,model_row,check_by_function=get_company),axis=1).values
company.to_csv("sorted_company.csv",header = False,index = False)
#################################################
Here is the first result from sorted_abc.csv:
1 name ABC DEF GHI JKL
2 name ABC DEF GHI NaN
3 name ABC DEF GHI JKL
After modifying the code to the subsequent form inquired about,
here is the sorted_company.csv that resulted from running the
script.
1 name 1012B-Amazon 2044C-Flipcart Bosh27-Walmart
2 name NaN Kelvi20-Flipcart LG-Walmart
3 name Sony-Amazon Kenstar-Flipcart Kenstar-Walmart
4 name Bravia-Amazon NaN LG18-Walmart
I hope it helps!

Categories

Resources