Plotly: How to plot on secondary y-Axis with plotly express - python

How do I utilize plotly.express to plot multiple lines on two yaxis out of one Pandas dataframe?
I find this very useful to plot all columns containing a specific substring:
fig = px.line(df, y=df.filter(regex="Linear").columns, render_mode="webgl")
as I don't want to loop over all my filtered columns and use something like:
fig.add_trace(go.Scattergl(x=df["Time"], y=df["Linear-"]))
in each iteration.

It took me some time to fiddle this out, but I feel this could be useful to some people.
# import some stuff
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
import numpy as np
# create some data
df = pd.DataFrame()
n = 50
df["Time"] = np.arange(n)
df["Linear-"] = np.arange(n)+np.random.rand(n)
df["Linear+"] = np.arange(n)+np.random.rand(n)
df["Log-"] = np.arange(n)+np.random.rand(n)
df["Log+"] = np.arange(n)+np.random.rand(n)
df.set_index("Time", inplace=True)
subfig = make_subplots(specs=[[{"secondary_y": True}]])
# create two independent figures with px.line each containing data from multiple columns
fig = px.line(df, y=df.filter(regex="Linear").columns, render_mode="webgl",)
fig2 = px.line(df, y=df.filter(regex="Log").columns, render_mode="webgl",)
fig2.update_traces(yaxis="y2")
subfig.add_traces(fig.data + fig2.data)
subfig.layout.xaxis.title="Time"
subfig.layout.yaxis.title="Linear Y"
subfig.layout.yaxis2.type="log"
subfig.layout.yaxis2.title="Log Y"
# recoloring is necessary otherwise lines from fig und fig2 would share each color
# e.g. Linear-, Log- = blue; Linear+, Log+ = red... we don't want this
subfig.for_each_trace(lambda t: t.update(line=dict(color=t.marker.color)))
subfig.show()
The trick with
subfig.for_each_trace(lambda t: t.update(line=dict(color=t.marker.color)))
I got from nicolaskruchten here: https://stackoverflow.com/a/60031260

Thank you derflo and vestland! I really wanted to use Plotly Express as opposed to Graph Objects with dual axis to more easily handle DataFrames with lots of columns. I dropped this into a function. Data1/2 works well as a DataFrame or Series.
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
def plotly_dual_axis(data1,data2, title="", y1="", y2=""):
# Create subplot with secondary axis
subplot_fig = make_subplots(specs=[[{"secondary_y": True}]])
#Put Dataframe in fig1 and fig2
fig1 = px.line(data1)
fig2 = px.line(data2)
#Change the axis for fig2
fig2.update_traces(yaxis="y2")
#Add the figs to the subplot figure
subplot_fig.add_traces(fig1.data + fig2.data)
#FORMAT subplot figure
subplot_fig.update_layout(title=title, yaxis=dict(title=y1), yaxis2=dict(title=y2))
#RECOLOR so as not to have overlapping colors
subplot_fig.for_each_trace(lambda t: t.update(line=dict(color=t.marker.color)))
return subplot_fig

Related

How to add a secondary Y axis to a Plotly Express bar plot?

I would like to add a second Y axis to my bar plot bellow, that is the number of citizens in integer:
this graph was made using plotly:
import plotly.express as px
fig = px.bar(df, x="country",y="pourcent_visit",color="city",barmode='group')
# fig.add_hline(y=10)
fig.show()
To my knowledge, there's no direct way to do this. But you can easily build a Plotly Express figure, grab the traces (and data structures) from there and combine them in a figure that allows multiple axes using fig = make_subplots(specs=[[{"secondary_y": True}]]). With no provided data sample, I'll use the built-in dataset px.data.tips() that I'm guessing to a large part resembles the structure of your real world dataset judging by the way you've applied the arguments in px.bar(). Details in the comments, but please don't hesitate to let me know if something is unclear.
Plot:
Complete code:
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# sample data
df = px.data.tips()
# figure setup with multiple axes
fig = make_subplots(specs=[[{"secondary_y": True}]])
# build plotly express plot
fig2 = px.bar(df, x="day", y="total_bill", color="smoker", barmode="group")
# add traces from plotly express figure to first figure
for t in fig2.select_traces():
fig.add_trace(t, secondary_y = False)
# handle data for secondary axis
df2 = df.groupby('day').agg('sum')#.reset_index()
df2 = df2.reindex(index = df['day'].unique()).reset_index()
#
fig.add_trace(go.Scatter(x = df2['day'], y = df2['size'], mode = 'lines'), secondary_y = True)
# fix layout
fig.update_layout(legend_title_text = 'smoker')
fig.show()

Plotly align two Y-axis with different values

Is it possible to align two Y-axis by two different values? I would like to align my yaxis1 at zero with my yaxis2 at 1, like in the picture
picture
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
df = pd.DataFrame(dict(months=['jan','feb','mar','apr','may','jun'],
assets = [60,20,-25,-35,20,80],
liabilities = [70,75,80,90,70,50]))
# calculate ratio
df['ratio'] = df['assets'] / df['liabilities']
fig = make_subplots(specs=[[{"secondary_y": True}]])
fig.add_trace(go.Bar(x=df['months'], y=df['assets'], marker_color='green'))
fig.add_trace(go.Bar(x=df['months'], y=df['liabilities'], marker_color='red'))
fig.add_trace(go.Scatter(x=df['months'], y=df['ratio'], marker_color='orange'), secondary_y=True)
fig.update_yaxes(showgrid=False, secondary_y=True)
fig.show()
To set the range of the 2nd y-axis, set the range in the layout. The manual adjustment of the second y-axis affected the scale of the first y-axis, which was corrected at the same time. If it is not the intended scale, you are responsible for correcting it.
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
df = pd.DataFrame(dict(months=['jan','feb','mar','apr','may','jun'],
assets = [60,20,-25,-35,20,80],
liabilities = [70,75,80,90,70,50]))
# calculate ratio
df['ratio'] = df['assets'] / df['liabilities']
fig = make_subplots(specs=[[{"secondary_y": True}]])
fig.add_trace(go.Bar(x=df['months'], y=df['assets'], marker_color='green',name='assets'))
fig.add_trace(go.Bar(x=df['months'], y=df['liabilities'], marker_color='red',name='liabilities'))
fig.add_trace(go.Scatter(x=df['months'], y=df['ratio'], marker_color='orange',name='ratio'), secondary_y=True)
fig.update_yaxes(showgrid=False, secondary_y=True),
fig.update_layout(autosize=True, yaxis=dict(range=[-50,150]), yaxis2=dict(range=[0,4]))#height=600,
fig.show()

I have 2 different bar charts with a common X axis and 2 different Y axis. I want to combine those 2 graphs using the X axis into one using python

Code for the first image:
import plotly.express as px
fig = px.bar(data, x='date', y='oi_diff_nifty15800CE',title='Oi chain of Nifty 15800CE')
fig.update_layout(width=650,height=500)
fig.show()
Code for second image:
import plotly.express as px
fig = px.bar(data, x='date', y='oi_diff_nifty15800PE',title='Oi chain of Nifty 15800PE')
fig.update_layout(width=650,height=500)
fig.show()
you really need to state what you are trying to achieve beyond combining
have simulated data
two approaches here
use add_traces() to add traces from one figure to another figure
just change px.bar() parameters so it is generated as a single figure
import pandas as pd
import numpy as np
import plotly.express as px
# simulate data...
data = pd.DataFrame({"date": pd.date_range("21-jun-2021", periods=2),
"oi_diff_nifty15800CE": np.random.randint(5, 15, 2),
"oi_diff_nifty15800PE": np.random.randint(5, 15, 2),})
fig = px.bar(data, x="date", y="oi_diff_nifty15800CE", title="Oi chain of Nifty 15800CE")
# build from two different figures
fig.update_layout(width=650, height=300).add_traces(
px.bar(data, x="date", y="oi_diff_nifty15800PE", title="Oi chain of Nifty 15800PE").data).show()
# just change params...
px.bar(data, x="date", y=["oi_diff_nifty15800PE","oi_diff_nifty15800CE"], barmode="group").update_layout(width=650, height=300).show()

Plotly two bar charts overlaid

I have two bar plots, one is positive, other is negative. I want to overlay them with same x-axis in plotly. How can I do this? Here is a simple example of two bar plots:
import plotly.express as px
import pandas as pd
df1 = pd.DataFrame({'x1':[1,2,3], 'y1':[1,1,1], 'col':['A','A','B']})
df2 = pd.DataFrame({'x2':[1,2,3], 'y2':[-1,-1,-1], 'col':['A','A','B']})
fig1 = px.bar(df1, x="x1", y="y1", color="col")
fig2 = px.bar(df2, x="x2", y="y2", color="col")
If you rename your columns so that they have the same name (like 'x1' and 'y1') you can concatenate the dataframes. Plotly stacks them automatically:
df1 = pd.DataFrame({'x1':[1,2,3], 'y1':[1,1,1], 'col':['A','A','B']})
df2 = pd.DataFrame({'x1':[1,2,3], 'y1':[-1,-1,-1], 'col':['A','A','B']})
df = pd.concat((df1, df2))
px.bar(df, x='x1', y='y1', color='col')

Plotly: Plot multiple figures as subplots

These resources show how to take data from a single Pandas DataFrame and plot different columns subplots on a Plotly graph. I'm interested in creating figures from separate DataFrames and plotting them to the same graph as subplots. Is this possible with Plotly?
https://plot.ly/python/subplots/
https://plot.ly/pandas/subplots/
I'm creating each figure from a dataframe like this:
import pandas as pd
import cufflinks as cf
from plotly.offline import download_plotlyjs, plot,iplot
cf.go_offline()
fig1 = df.iplot(kind='bar',barmode='stack',x='Type',
y=mylist,asFigure=True)
Edit:
Here is an example based on Naren's feedback:
Create the dataframes:
a={'catagory':['loc1','loc2','loc3'],'dogs':[1,5,6],'cats':[3,1,4],'birds':[4,12,2]}
df1 = pd.DataFrame(a)
b={'catagory':['loc1','loc2','loc3'],'dogs':[12,3,5],'cats':[4,6,1],'birds':[7,0,8]}
df2 = pd.DataFrame(b)
The plot will just show the information for the dogs, not the birds or cats:
fig = tls.make_subplots(rows=2, cols=1)
fig1 = df1.iplot(kind='bar',barmode='stack',x='catagory',
y=['dogs','cats','birds'],asFigure=True)
fig.append_trace(fig1['data'][0], 1, 1)
fig2 = df2.iplot(kind='bar',barmode='stack',x='catagory',
y=['dogs','cats','birds'],asFigure=True)
fig.append_trace(fig2['data'][0], 2, 1)
iplot(fig)
Here's a short function in a working example to save a list of figures all to a single HTML file.
def figures_to_html(figs, filename="dashboard.html"):
with open(filename, 'w') as dashboard:
dashboard.write("<html><head></head><body>" + "\n")
for fig in figs:
inner_html = fig.to_html().split('<body>')[1].split('</body>')[0]
dashboard.write(inner_html)
dashboard.write("</body></html>" + "\n")
# Example figures
import plotly.express as px
gapminder = px.data.gapminder().query("country=='Canada'")
fig1 = px.line(gapminder, x="year", y="lifeExp", title='Life expectancy in Canada')
gapminder = px.data.gapminder().query("continent=='Oceania'")
fig2 = px.line(gapminder, x="year", y="lifeExp", color='country')
gapminder = px.data.gapminder().query("continent != 'Asia'")
fig3 = px.line(gapminder, x="year", y="lifeExp", color="continent",
line_group="country", hover_name="country")
figures_to_html([fig1, fig2, fig3])
You can get a dashboard that contains several charts with legends next to each one:
import plotly
import plotly.offline as py
import plotly.graph_objs as go
fichier_html_graphs=open("DASHBOARD.html",'w')
fichier_html_graphs.write("<html><head></head><body>"+"\n")
i=0
while 1:
if i<=40:
i=i+1
#______________________________--Plotly--______________________________________
color1 = '#00bfff'
color2 = '#ff4000'
trace1 = go.Bar(
x = ['2017-09-25','2017-09-26','2017-09-27','2017-09-28','2017-09-29','2017-09-30','2017-10-01'],
y = [25,100,20,7,38,170,200],
name='Debit',
marker=dict(
color=color1
)
)
trace2 = go.Scatter(
x=['2017-09-25','2017-09-26','2017-09-27','2017-09-28','2017-09-29','2017-09-30','2017-10-01'],
y = [3,50,20,7,38,60,100],
name='Taux',
yaxis='y2'
)
data = [trace1, trace2]
layout = go.Layout(
title= ('Chart Number: '+str(i)),
titlefont=dict(
family='Courier New, monospace',
size=15,
color='#7f7f7f'
),
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
yaxis=dict(
title='Bandwidth Mbit/s',
titlefont=dict(
color=color1
),
tickfont=dict(
color=color1
)
),
yaxis2=dict(
title='Ratio %',
overlaying='y',
side='right',
titlefont=dict(
color=color2
),
tickfont=dict(
color=color2
)
)
)
fig = go.Figure(data=data, layout=layout)
plotly.offline.plot(fig, filename='Chart_'+str(i)+'.html',auto_open=False)
fichier_html_graphs.write(" <object data=\""+'Chart_'+str(i)+'.html'+"\" width=\"650\" height=\"500\"></object>"+"\n")
else:
break
fichier_html_graphs.write("</body></html>")
print("CHECK YOUR DASHBOARD.html In the current directory")
Result:
You can also try the following using cufflinks:
cf.subplots([df1.figure(kind='bar',categories='category'),
df2.figure(kind='bar',categories='category')],shape=(2,1)).iplot()
And this should give you:
New Answer:
We need to loop through each of the animals and append a new trace to generate what you need. This will give the desired output I am hoping.
import pandas as pd
import numpy as np
import cufflinks as cf
import plotly.tools as tls
from plotly.offline import download_plotlyjs, plot,iplot
cf.go_offline()
import random
def generate_random_color():
r = lambda: random.randint(0,255)
return '#%02X%02X%02X' % (r(),r(),r())
a={'catagory':['loc1','loc2','loc3'],'dogs':[1,5,6],'cats':[3,1,4],'birds':[4,12,2]}
df1 = pd.DataFrame(a)
b={'catagory':['loc1','loc2','loc3'],'dogs':[12,3,5],'cats':[4,6,1],'birds':[7,0,8]}
df2 = pd.DataFrame(b)
#shared Xaxis parameter can make this graph look even better
fig = tls.make_subplots(rows=2, cols=1)
for animal in ['dogs','cats','birds']:
animal_color = generate_random_color()
fig1 = df1.iplot(kind='bar',barmode='stack',x='catagory',
y=animal,asFigure=True,showlegend=False, color = animal_color)
fig.append_trace(fig1['data'][0], 1, 1)
fig2 = df2.iplot(kind='bar',barmode='stack',x='catagory',
y=animal,asFigure=True, showlegend=False, color = animal_color)
#if we do not use the below line there will be two legend
fig2['data'][0]['showlegend'] = False
fig.append_trace(fig2['data'][0], 2, 1)
#additional bonus
#use the below command to use the bar chart three mode
# [stack, overlay, group]
#as shown below
#fig['layout']['barmode'] = 'overlay'
iplot(fig)
Output:
Old Answer:
This will be the solution
Explanation:
Plotly tools has a subplot function to create subplots you should read the documentation for more details here. So I first use cufflinks to create a figure of the bar chart. One thing to note is cufflinks create and object with both data and layout. Plotly will only take one layout parameter as input, hence I take only the data parameter from the cufflinks figure and append_trace it to the make_suplots object. so fig.append_trace() the second parameter is row number and third parameter is column number
import pandas as pd
import cufflinks as cf
import numpy as np
import plotly.tools as tls
from plotly.offline import download_plotlyjs, plot,iplot
cf.go_offline()
fig = tls.make_subplots(rows=2, cols=1)
df = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('ABCD'))
fig1 = df.iplot(kind='bar',barmode='stack',x='A',
y='B',asFigure=True)
fig.append_trace(fig1['data'][0], 1, 1)
df2 = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('EFGH'))
fig2 = df2.iplot(kind='bar',barmode='stack',x='E',
y='F',asFigure=True)
fig.append_trace(fig2['data'][0], 2, 1)
iplot(fig)
If you want to add a common layout to the subplot I suggest that you do
fig.append_trace(fig2['data'][0], 2, 1)
fig['layout']['showlegend'] = False
iplot(fig)
or even
fig.append_trace(fig2['data'][0], 2, 1)
fig['layout'].update(fig1['layout'])
iplot(fig)
So in the first example before plotting, I access the individual parameters of the layout object and change them, you need to go through layout object properties for refernce.
In the second example before plotting, I update the layout of the figure with the cufflinks generated layout this will produce the same output as we see in cufflinks.
You've already received a few suggestions that work perfectly well. They do however require a lot of coding. Facet / trellis plots using px.bar() will let you produce the plot below using (almost) only this:
px.bar(df, x="category", y="dogs", facet_row="Source")
The only extra steps you'll have to take is to introduce a variable on which to split your data, and then gather or concatenate your dataframes like this:
df1['Source'] = 1
df2['Source'] = 2
df = pd.concat([df1, df2])
And if you'd like to include the other variables as well, just do:
fig = px.bar(df, x="category", y=["dogs", "cats", "birds"], facet_row="Source")
fig.update_layout(barmode = 'group')
Complete code:
# imports
import plotly.express as px
import pandas as pd
# data building
a={'category':['loc1','loc2','loc3'],'dogs':[1,5,6],'cats':[3,1,4],'birds':[4,12,2]}
df1 = pd.DataFrame(a)
b={'category':['loc1','loc2','loc3'],'dogs':[12,3,5],'cats':[4,6,1],'birds':[7,0,8]}
df2 = pd.DataFrame(b)
# data processing
df1['Source'] = 1
df2['Source'] = 2
df = pd.concat([df1, df2])
# plotly figure
fig = px.bar(df, x="category", y="dogs", facet_row="Source")
fig.show()
#fig = px.bar(df, x="category", y=["dogs", "cats", "birds"], facet_row="Source")
#fig.update_layout(barmode = 'group')

Categories

Resources