Average by value duplicated pandas python - python

I have the next csv and I need get the values duplicated from DialedNumer column and then the averege Duration of those duplicates.
I already got the duplicates with the next code:
df = pd.read_csv('cdrs.csv')
dnidump = pd.DataFrame(df, columns=['DialedNumber'])
pd.options.display.float_format = '{:.0f}'.format
dupl_dni = dnidump.pivot_table(index=['DialedNumber'], aggfunc='size')
a1 = dupl_dni.to_frame().rename(columns={0:'TimesRepeated'}).sort_values(by=['TimesRepeated'], ascending=False)
b = a1.head(10)
print(b)
Output:
DialedNumber TimesRepeated
50947740194 4
50936564292 2
50931473242 3
I can't figure out how to get the duration avarege of those duplicates, any ideas?
thx

try:
df_mean = df.groupby('DialedNumber').mean()

Use df.groupby('column').mean()
Here is sample code.
Input
df = pd.DataFrame({'A': [1, 1, 1, 2, 2],
'B': [2461, 1023, 9, 5614, 212],
'C': [2, 4, 8, 16, 32]}, columns=['A', 'B', 'C'])
df.groupby('A').mean()
Output
B C
A
1 1164.333333 4.666667
2 2913.000000 24.000000
API reference of pandas.core.groupby.GroupBy.mean
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.mean.html

Related

Combine 2 dataframes when the dataframes have different size

I have 2 df one is
df1 = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
df2 = {'col_1': [3, 2, 1, 3]}
I want the result as follows
df3 = {'col_1': [3, 2, 1, 3], 'col_2': ['a', 'b', 'c', 'a']}
The column 2 of the new df is the same as the column 2 of the df1 depending on the value of the df1.
Add the new column by mapping the values from df1 after setting its first column as index:
df3 = df2.copy()
df3['col_2'] = df2['col_1'].map(df1.set_index('col_1')['col_2'])
output:
col_1 col_2
0 3 a
1 2 b
2 1 c
3 3 a
You can do it with merge after converting the dicts to df with pd.DataFrame():
output = pd.DataFrame(df2)
output = output.merge(pd.DataFrame(df1),on='col_1',how='left')
Or in a one-liner:
output = pd.DataFrame(df2).merge(pd.DataFrame(df1),on='col_1',how='left')
Outputs:
col_1 col_2
0 3 a
1 2 b
2 1 c
3 3 a
This could be a simple way of doing it.
# use df1 to create a lookup dictionary
lookup = df1.set_index("col_1").to_dict()["col_2"]
# look up each value from df2's "col_1" in the lookup dict
df2["col_2"] = df2["col_1"].apply(lambda d: lookup[d])

Returna value in Pandas by index row number and column name?

I have a DF where the index is equal strings.
df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
index=['a', 'a', 'a'], columns=['A', 'B', 'C'])
>>> df
A B C
a 0 2 3
a 0 4 1
a 10 20 30
Let's say I am trying to access the value in col 'B' at the first row. I am using something like this:
>>> df.iloc[0]['B']
2
Reading the post here it seems .at is recommended to be used for efficiency. Is there any better way in my example to return the value by the index row number and column name?
Try with iat with get_indexer
df.iat[0,df.columns.get_indexer(['B'])[0]]
Out[124]: 2

concatenate in place in sub function with pandas concat function?

I'm trying to write a function that take a pandas Dataframe as argument and at some concatenate this datagframe with another.
for exemple:
def concat(df):
df = pd.concat((df, pd.DataFrame({'E': [1, 1, 1]})), axis=1)
I would like this function to modify in place the input df but I can't find how to achieve this. When I do
...
print(df)
concat(df)
print(df)
The dataframe df is identical before and after the function call
Note: I don't want to do df['E'] = [1, 1, 1] because I don't know how many column will be added to df. So I want to use pd.concat(), if possible...
This will edit the original DataFrame inplace and give the desired output as long as the new data contains the same number of rows as the original, and there are no conflicting column names.
It's the same idea as your df['E'] = [1, 1, 1] suggestion, except it will work for an arbitrary number of columns.
I don't think there is a way to achieve this using pd.concat, as it doesn't have an inplace parameter as some Pandas functions do.
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'C': [10, 20, 30], 'D': [40, 50, 60]})
df[df2.columns] = df2
Results (df):
A B C D
0 1 4 10 40
1 2 5 20 50
2 3 6 30 60

Compare Two Columns in Two Pandas Dataframes

I have two pandas dataframes:
df1:
a b c
1 1 2
2 1 2
3 1 3
df2:
a b c
4 0 2
5 5 2
1 1 2
df1 = {'a': [1, 2, 3], 'b': [1, 1, 1], 'c': [2, 2, 3]}
df2 = {'a': [4, 5, 6], 'b': [0, 5, 1], 'c': [2, 2, 2]}
df1= pd.DataFrame(df1)
df2 = pd.DataFrame(df2)
I'm looking for a function that will display whether df1 and df2 contain the same value in column a.
In the example I provided df1.a and df2.a both have a=1.
If df1 and df2 do not have an entry where the the value in column a are equal then the function should return None or False.
How do I do this? I've tried a couple combinations of panda.merge
Define your own function by using isin and any
def yourf(x,y):
if any(x.isin(y)):
#print(x[x.isin(y)])
return x[x.isin(y)]
else:
return 'No match' # you can change here to None
Out[316]:
0 1
Name: a, dtype: int64
yourf(df1.b,df2.c)
Out[318]: 'No match'
You could use set intersection:
def col_intersect(df1, df2, col='a'):
s1 = set(df1[col])
s2 = set(df2[col])
return s1 & s2 else None
Using merge as you tried, you could try this:
def col_match(df1, df2, col='a'):
merged = df1.merge(df2, how='inner', on=col)
if len(merged):
return merged[col]
else:
return None

Pandas div using index

I am sometimes struggling a bit to understand pandas datastructures and it seems to be the case again. Basically, I've got:
1 pivot table, major axis being a serial number
a Serie using the same index
I would like to divide each column of my pivot table by the value in the Serie using index to match the lines. I've tried plenty of combinations... without being successful so far :/
import pandas as pd
df = pd.DataFrame([['123', 1, 1, 3], ['456', 2, 3, 4], ['123', 4, 5, 6]], columns=['A', 'B', 'C', 'D'])
pt = pd.pivot_table(df, rows=['A', 'B'], cols='C', values='D', fill_value=0)
serie = pd.Series([5, 5, 5], index=['123', '678', '345'])
pt.div(serie, axis='index')
But I am only getting NaN. I guess it's because columns names are not matching but that's why I was using index as the axis. Any ideas on what I am doing wrong?
Thanks
You say "using the same index", but they're not the same: pt has a multiindex, and serie only an index:
>>> pt.index
MultiIndex(levels=[[u'123', u'456'], [1, 2, 4]],
labels=[[0, 0, 1], [0, 2, 1]],
names=[u'A', u'B'])
And you haven't told the division that you want to align on the A part of the index. You can pass that information using level:
>>> pt.div(serie, level='A', axis='index')
C 1 3 5
A B
123 1 0.6 0 0.0
4 0.0 0 1.2
456 2 NaN NaN NaN
[3 rows x 3 columns]

Categories

Resources