I want to extract car images without using Mask RCNN. I tried a couple of methods but couldn't decide on how to proceed with any of them. I need recommendation on which method would be best and how to go through with it.
Method 1 - Using XML files and haar cascade classifier
I was thinking of using xml files to detection and crop car images. The problems I faced were:
They only detect car in square shapes. I needed car images cropped. So ultimately I ended up with better images of cropped cars. This didn't solve my problem.
The cropped image didn't detect car as a whole but small parts of it. Maybe due to XML file's config.
My code:
!wget https://raw.githubusercontent.com/shaanhk/New-GithubTest/master/cars.xml
import numpy as py
import cv2
car_cascade=cv2.CascadeClassifier('cars.xml')
img = cv2.imread('im1.jpg')
cars = car_cascade.detectMultiScale(img, 1.1, 1)
for (x,y,w,h) in cars:
cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
Resulting image:
Method 2 - Using Canny Edge Detection
I tried to perform canny edge detection for car. It worked to some extent that I managed to reduce edges to mostly car object. But I don't know how to proceed from there.
My code:
import cv2
import numpy as np
image= cv2.imread('im1.jpg')
imagecopy= np.copy(image)
grayimage= cv2.cvtColor(imagecopy, cv2.COLOR_RGB2GRAY)
canny= cv2.Canny(grayimage, 300,150)
cv2.imshow('Highway Edge Detection Image', canny)
cv2.waitKey(0)
cv2.destroyAllWindows()
Resulting Image:
Method 3 - Extract car image using color gradients
On googling I found a method using HSV transformation and then creating a custom mask to extract cars. But I don't know much about this method and have no idea how to go about it. I used the code provided and am posting it below.
Code:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import cv2
%matplotlib inline
image = mpimg.imread('im1.jpg')
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
# HSV channels
h = hsv[:,:,0]
s = hsv[:,:,1]
v = hsv[:,:,2]
background_hue = h[10,10]
lower_hue = np.array([background_hue-10,0,0])
upper_hue = np.array([background_hue+10,255,255])
mask = cv2.inRange(hsv, lower_hue, upper_hue)
# Mask the image to let the car show through
masked_image = np.copy(image)
masked_image[mask != 0] = [0, 0, 0]
cv2.imwrite('mask.jpg',masked_image)
# Display it!
plt.imshow(masked_image)
Image:
I'd like to mention, I'm a complete beginner in Computer Vision and am trying to learn by doing some small stuff like these. My code is probably very flawed and hopefully I can work on it on the way. Please feel absolutely free to mention any other method (except Mask RCNN) or any problems with code.
Related
I have been learning how to implement pretrained yolo using pytorch, and I want to display the output image using openCV's cv2.imshow() method.
The output image can be displayed using .show() function and saved using .save() function, I however want to display it using cv2.imshow(), and for that I would need the image in the form of a numpy array.
I'm unaware about how we do that or even if that is at all possible.
Here's the code for it.
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
imgs = ['img.png'] # batch of images
results = model(imgs)
results.print()
results.show() # or .save(), shows/saves the same image with bounding boxes around detected objects
# Show 'results' using openCV's cv2.imshow() method?
results.xyxy[0] # img1 predictions (tensor)
print(results.pandas().xyxy[0]) # img1 predictions (pandas)
A longer way of solving this problem would be to create bounding boxes ourselves over the detected objects in the image and display it, but consider me lazy :p .
I am lazy like you :) and you can display the bounding boxes without the need to draw them manually. When you call results.save() it will save a version of the image with the boxes to this folder 'runs/detect/exp/' Then you can display that image using cv2.
results.save()
import cv2
img = cv2.imread("runs/detect/exp/zidane.jpg")
#cv2.imgshow does not work on Google collab so this is a work around.
# You should get the same results if you use cv2.imgshow
from google.colab.patches import cv2_imshow
cv2_imshow(img)
had the same issue, so I wrote a small method to do so quickly draw the image without saving it.
def drawRectangles(image, dfResults):
for index, row in dfResults.iterrows():
print( (row['xmin'], row['ymin']))
image = cv2.rectangle(image, (row['xmin'], row['ymin']), (row['xmax'], row['ymax']), (255, 0, 0), 2)
cv2_imshow(image)
_
results = model(image)
dfResults = results.pandas().xyxy[0]
self.drawRectangles(image, dfResults[['xmin', 'ymin', 'xmax','ymax']].astype(int))
Just open the image via cv2 and then ad rectangles by drawing a rectangle via the given points from your result arrays?
import cv2
img = cv2.imread("image_path")
link how to draw a rectangle with cv2
#ChristophRackwitz
here u have it
cv2.rectangle(image, start_point, end_point, color, thickness)
I am trying to crop an image of a piece of card/paper or such so that the card/paper is in focus. I tried the below code but the problem is that it works only when the object in question is alone in the picture. If it is a blank background with nothing else in it- the cropping is flawless, otherwise it does not work as expected.
I am attempting create a system which crops different kinds of images and puts them through a classifier and then extracts text from them.
import cv2
import numpy as np
filenames = "img.jpg"
img = cv2.imread(filenames)
blurred = cv2.blur(img, (3,3))
canny = cv2.Canny(blurred, 50, 200)
## find the non-zero min-max coords of canny
pts = np.argwhere(canny>0)
y1,x1 = pts.min(axis=0)
y2,x2 = pts.max(axis=0)
## crop the region
cropped = img[y1:y2, x1:x2]
filename_cropped = filenames.split('.')
filename_cropped[0] = filename_cropped[0] + '_cropped'
filename_cropped = '.'.join(filename_cropped)
cv2.imwrite(filename_cropped, cropped)
An sample image that works is
Something that does not work is
Can anyone help with this?
The first image works because the entire images besides your target is empty. Canny will also give other results when there is more in the image.
If you are looking for those specific cards I suggest you try to use some colour filtering first. You can try to filer for the blue/purple hue of the card.
Increasing the canny threshold could also work, but you will always still be finding the hand as well in this image unless you add some colour filtering.
You can also try Sobel edge detection . This will probably highlight the instant edges of the card pretty well. But then again, it will also show the hand, so you can't just take all the Sobel/Canny outputs. You need to add processing before it that isolates the card, or after it that can find the rectangular shape of the card in the sobel/canny.
I have two questions.
I am working with openCv and python and I am trying to have an image's contours. I am succesfull at that but when I try to se what is the difference between when I use cv2.drawContorus() functions and directly edit image with cv2.findContours() without sending a copy of original image as the source parameter. I have tried on some images but I couldnt see anything even happenning.
I am trying to get the contours of a square I created with paint square tool. But when I try with cv2.CHAIN_APPROX_SIMPLE method, it gives me coordinates of 6 points which none of the combinations from them is suitable for my square. Why does it do like that?
Can someone explain?
Here is my code for both problems:
import cv2
import numpy as np
image = cv2.imread(r"C:\Users\fazil\Desktop\12.png")
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
gray = cv2.Canny(gray,75,200)
gray = cv2.threshold(gray,127,255,cv2.THRESH_BINARY_INV)[1]
cv2.imshow("s",gray)
contours, hiearchy = cv2.findContours(gray,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
print(contours[1])
cv2.drawContours(image,contours,1,(45,67,89),5)
cv2.imshow("k",gray)
cv2.imshow("j",image)
cv2.waitKey(0)
cv2.destroyAllWindows()
I'm currently in the pursue of counting the number of shrimps in a given image. I'm using this test image:
The code I have used so far is the following:
import cv2
import numpy as np
from matplotlib import pyplot as plt
#Load img
path = r'C:\Users\...' #the path to the image
original=cv2.imread(path, cv2.COLOR_BGR2RGB)
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
#Hist to proceed with the binarizarion
hist = cv2.calcHist([img],[0],None,[256],[0,256])
#do the threshold
ret,thresh = cv2.threshold(img,60,255,cv2.THRESH_BINARY_INV)
From this point I have tried different morphological transformations such a erode, dilate, open and close but they don't seem to be working and separating the objects as I want.
I've read that I can apply a Watershed transformation so separate touching elements, but I donĀ“t have experience in this (working at this point at the moment).
After that I am planning on using a Simple Blob Detector to count the blobs, I don't know if these steps are correct.
Any help is very welcomed!
I trying to recognize some banknotes. I tried with a haar cascade algorithm in opencv but I can't get good results so I will try with template matching.
I think, first thing I should do is rotate the banknote so I always get it in horizontal mode.
this is what I am trying to recognize contours:
import numpy as np
import cv2
im = cv2.imread('10_euros_test1.jpg')
print im.shape #check if the image is loaded correctly
imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(imgray,127,255,0)
contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(im,contours,-1,(255,255,0),-1)
cv2.imshow("window title", im)
cv2.waitKey()
this is my banknote images:
What should I do right now to rotate them? Any example of getRotationMatrix2d fucntion?, I don't know how to get angles from here.
I think, there is something wrong witht he background in the second photo, maybe it is because of the lines in the table...