How to plot multiple seaborn.distplot in a single figure - python

I want to plot multiple seaborn distplot under a same window, where each plot has the same x and y grid. My attempt is shown below, which does not work.
# function to plot the density curve of the 200 Median Stn. MC-losses
def make_density(stat_list,color, layer_num):
num_subplots = len(stat_list)
ncols = 3
nrows = (num_subplots + ncols - 1) // ncols
fig, axes = plt.subplots(ncols=ncols, nrows=nrows, figsize=(ncols * 6, nrows * 5))
for i in range(len(stat_list)):
# Plot formatting
plt.title('Layer ' + layer_num)
plt.xlabel('Median Stn. MC-Loss')
plt.ylabel('Density')
plt.xlim(-0.2,0.05)
plt.ylim(0, 85)
min_ylim, max_ylim = plt.ylim()
# Draw the density plot.
sns.distplot(stat_list, hist = True, kde = True,
kde_kws = {'linewidth': 2}, color=color)
# `stat_list` is a list of 6 lists
# I want to draw histogram and density plot of
# each of these 6 lists contained in `stat_list` in a single window,
# where each row containing the histograms and densities of the 3 plots
# so in my example, there would be 2 rows of 3 columns of plots (2 x 3 =6).
stat_list = [[0.3,0.5,0.7,0.3,0.5],[0.2,0.1,0.9,0.7,0.4],[0.9,0.8,0.7,0.6,0.5]
[0.2,0.6,0.75,0.87,0.91],[0.2,0.3,0.8,0.9,0.3],[0.2,0.3,0.8,0.87,0.92]]
How can I modify my function to draw multiple distplot under the same window, where the x and y grid for each displayed plot is identical?
Thank you,
PS: Aside, I want the 6 distplots to have identical color, preferably green for all of them.

The easiest method is to load the data into pandas and then use seaborn.displot.
.displot replaces .distplot in seaborn version 0.11.0
Technically, what you would have wanted before, is a FacetGrid mapped with distplot.
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# data
stat_list = [[0.3,0.5,0.7,0.3,0.5], [0.2,0.1,0.9,0.7,0.4], [0.9,0.8,0.7,0.6,0.5], [0.2,0.6,0.75,0.87,0.91], [0.2,0.3,0.8,0.9,0.3], [0.2,0.3,0.8,0.87,0.92]]
# load the data into pandas and then transpose it for the correct column data
df = pd.DataFrame(stat_list).T
# name the columns; specify a layer number
df.columns = ['A', 'B', 'C', 'D', 'E', 'F']
# now stack the data into a long (tidy) format
dfl = df.stack().reset_index(level=1).rename(columns={'level_1': 'Layer', 0: 'Median Stn. MC-Loss'})
# plot a displot
g = sns.displot(data=dfl, x='Median Stn. MC-Loss', col='Layer', col_wrap=3, kde=True, color='green')
g.set_axis_labels(y_var='Density')
g.set(xlim=(0, 1.0), ylim=(0, 3.0))
sns.FacetGrid and sns.distplot
.distplot is deprecated
p = sns.FacetGrid(data=dfl, col='Layer', col_wrap=3, height=5)
p.map(sns.distplot, 'Median Stn. MC-Loss', bins=5, kde=True, color='green')
p.set(xlim=(0, 1.0))

Related

Remove for loops when plotting matplotlib subplots

I have large subplot-based figure to produce in python using matplotlib. In total the figure has in excess of 500 individual plots each with 1000s of datapoints. This can be plotted using a for loop-based approach modelled on the minimum example given below
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
# define main plot names and subplot names
mains = ['A','B','C','D']
subs = list(range(9))
# generate mimic data in pd dataframe
col = [letter+str(number) for letter in mains for number in subs]
col.insert(0,'Time')
df = pd.DataFrame(columns=col)
for title in df.columns:
df[title] = [i for i in range(100)]
# although alphabet and mains are the same in this minimal example this may not always be true
alphabet = ['A', 'B', 'C', 'D']
column_names = [column for column in df.columns if column != 'Time']
# define figure size and main gridshape
fig = plt.figure(figsize=(15, 15))
outer = gridspec.GridSpec(2, 2, wspace=0.2, hspace=0.2)
for i, letter in enumerate(alphabet):
# define inner grid size and shape
inner = gridspec.GridSpecFromSubplotSpec(3, 3,
subplot_spec=outer[i], wspace=0.1, hspace=0.1)
# select only columns with correct letter
plot_array = [col for col in column_names if col.startswith(letter)]
# set title for each letter plot
ax = plt.Subplot(fig, outer[i])
ax.set_title(f'Letter {letter}')
ax.axis('off')
fig.add_subplot(ax)
# create each subplot
for j, col in enumerate(plot_array):
ax = plt.Subplot(fig, inner[j])
X = df['Time']
Y = df[col]
# plot waveform
ax.plot(X, Y)
# hide all axis ticks
ax.axis('off')
# set y_axis limits so all plots share same y_axis
ax.set_ylim(df[column_names].min().min(),df[column_names].max().max())
fig.add_subplot(ax)
However this is slow, requiring minutes to plot the figure. Is there a more efficient (potentially for loop free) method to achieve the same result
The issue with the loop is not the plotting but the setting of the axis limits with df[column_names].min().min() and df[column_names].max().max().
Testing with 6 main plots, 64 subplots and 375,000 data points, the plotting section of the example takes approx 360s to complete when axis limits are set by searching df for min and max values each loop. However by moving the search for min and max outside the loops. eg
# set y_lims
y_upper = df[column_names].max().max()
y_lower = df[column_names].min().min()
and changing
ax.set_ylim(df[column_names].min().min(),df[column_names].max().max())
to
ax.set_ylim(y_lower,y_upper)
the plotting time is reduced to approx 24 seconds.

plotting area plot as a subplot [duplicate]

I have a few Pandas DataFrames sharing the same value scale, but having different columns and indices. When invoking df.plot(), I get separate plot images. what I really want is to have them all in the same plot as subplots, but I'm unfortunately failing to come up with a solution to how and would highly appreciate some help.
You can manually create the subplots with matplotlib, and then plot the dataframes on a specific subplot using the ax keyword. For example for 4 subplots (2x2):
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
df1.plot(ax=axes[0,0])
df2.plot(ax=axes[0,1])
...
Here axes is an array which holds the different subplot axes, and you can access one just by indexing axes.
If you want a shared x-axis, then you can provide sharex=True to plt.subplots.
You can see e.gs. in the documentation demonstrating joris answer. Also from the documentation, you could also set subplots=True and layout=(,) within the pandas plot function:
df.plot(subplots=True, layout=(1,2))
You could also use fig.add_subplot() which takes subplot grid parameters such as 221, 222, 223, 224, etc. as described in the post here. Nice examples of plot on pandas data frame, including subplots, can be seen in this ipython notebook.
You can plot multiple subplots of multiple pandas data frames using matplotlib with a simple trick of making a list of all data frame. Then using the for loop for plotting subplots.
Working code:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# dataframe sample data
df1 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df2 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df3 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df4 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df5 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df6 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
#define number of rows and columns for subplots
nrow=3
ncol=2
# make a list of all dataframes
df_list = [df1 ,df2, df3, df4, df5, df6]
fig, axes = plt.subplots(nrow, ncol)
# plot counter
count=0
for r in range(nrow):
for c in range(ncol):
df_list[count].plot(ax=axes[r,c])
count+=1
Using this code you can plot subplots in any configuration. You need to define the number of rows nrow and the number of columns ncol. Also, you need to make list of data frames df_list which you wanted to plot.
You can use the familiar Matplotlib style calling a figure and subplot, but you simply need to specify the current axis using plt.gca(). An example:
plt.figure(1)
plt.subplot(2,2,1)
df.A.plot() #no need to specify for first axis
plt.subplot(2,2,2)
df.B.plot(ax=plt.gca())
plt.subplot(2,2,3)
df.C.plot(ax=plt.gca())
etc...
You can use this:
fig = plt.figure()
ax = fig.add_subplot(221)
plt.plot(x,y)
ax = fig.add_subplot(222)
plt.plot(x,z)
...
plt.show()
You may not need to use Pandas at all. Here's a matplotlib plot of cat frequencies:
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)
f, axes = plt.subplots(2, 1)
for c, i in enumerate(axes):
axes[c].plot(x, y)
axes[c].set_title('cats')
plt.tight_layout()
Option 1: Create subplots from a dictionary of dataframes with long (tidy) data
Assumptions:
There is a dictionary of multiple dataframes of tidy data that are either:
Created by reading in from files
Created by separating a single dataframe into multiple dataframes
The categories, cat, may be overlapping, but all dataframes don't necessarily contain all values of cat
hue='cat'
This example uses a dict of dataframes, but a list of dataframes would be similar.
If the dataframes are wide, use pandas.DataFrame.melt to convert them to long form.
Because dataframes are being iterated through, there's no guarantee that colors will be mapped the same for each plot
A custom color map needs to be created from the unique 'cat' values for all the dataframes
Since the colors will be the same, place one legend to the side of the plots, instead of a legend in every plot
Tested in python 3.10, pandas 1.4.3, matplotlib 3.5.1, seaborn 0.11.2
Imports and Test Data
import pandas as pd
import numpy as np # used for random data
import matplotlib.pyplot as plt
from matplotlib.patches import Patch # for custom legend - square patches
from matplotlib.lines import Line2D # for custom legend - round markers
import seaborn as sns
import math import ceil # determine correct number of subplot
# synthetic data
df_dict = dict()
for i in range(1, 7):
np.random.seed(i) # for repeatable sample data
data_length = 100
data = {'cat': np.random.choice(['A', 'B', 'C'], size=data_length),
'x': np.random.rand(data_length), 'y': np.random.rand(data_length)}
df_dict[i] = pd.DataFrame(data)
# display(df_dict[1].head())
cat x y
0 B 0.944595 0.606329
1 A 0.586555 0.568851
2 A 0.903402 0.317362
3 B 0.137475 0.988616
4 B 0.139276 0.579745
# display(df_dict[6].tail())
cat x y
95 B 0.881222 0.263168
96 A 0.193668 0.636758
97 A 0.824001 0.638832
98 C 0.323998 0.505060
99 C 0.693124 0.737582
Create color mappings and plot
# create color mapping based on all unique values of cat
unique_cat = {cat for v in df_dict.values() for cat in v.cat.unique()} # get unique cats
colors = sns.color_palette('tab10', n_colors=len(unique_cat)) # get a number of colors
cmap = dict(zip(unique_cat, colors)) # zip values to colors
col_nums = 3 # how many plots per row
row_nums = math.ceil(len(df_dict) / col_nums) # how many rows of plots
# create the figue and axes
fig, axes = plt.subplots(row_nums, col_nums, figsize=(9, 6), sharex=True, sharey=True)
# convert to 1D array for easy iteration
axes = axes.flat
# iterate through dictionary and plot
for ax, (k, v) in zip(axes, df_dict.items()):
sns.scatterplot(data=v, x='x', y='y', hue='cat', palette=cmap, ax=ax)
sns.despine(top=True, right=True)
ax.legend_.remove() # remove the individual plot legends
ax.set_title(f'dataset = {k}', fontsize=11)
fig.tight_layout()
# create legend from cmap
# patches = [Patch(color=v, label=k) for k, v in cmap.items()] # square patches
patches = [Line2D([0], [0], marker='o', color='w', markerfacecolor=v, label=k, markersize=8) for k, v in cmap.items()] # round markers
# place legend outside of plot; change the right bbox value to move the legend up or down
plt.legend(title='cat', handles=patches, bbox_to_anchor=(1.06, 1.2), loc='center left', borderaxespad=0, frameon=False)
plt.show()
Option 2: Create subplots from a single dataframe with multiple separate datasets
The dataframes must be in a long form with the same column names.
This option uses pd.concat to combine multiple dataframes into a single dataframe, and .assign to add a new column.
See Import multiple csv files into pandas and concatenate into one DataFrame for creating a single dataframes from a list of files.
This option is easier because it doesn't require manually mapping colors to 'cat'
Combine DataFrames
# using df_dict, with dataframes as values, from the top
# combine all the dataframes in df_dict to a single dataframe with an identifier column
df = pd.concat((v.assign(dataset=k) for k, v in df_dict.items()), ignore_index=True)
# display(df.head())
cat x y dataset
0 B 0.944595 0.606329 1
1 A 0.586555 0.568851 1
2 A 0.903402 0.317362 1
3 B 0.137475 0.988616 1
4 B 0.139276 0.579745 1
# display(df.tail())
cat x y dataset
595 B 0.881222 0.263168 6
596 A 0.193668 0.636758 6
597 A 0.824001 0.638832 6
598 C 0.323998 0.505060 6
599 C 0.693124 0.737582 6
Plot a FacetGrid with seaborn.relplot
sns.relplot(kind='scatter', data=df, x='x', y='y', hue='cat', col='dataset', col_wrap=3, height=3)
Both options create the same result, however, it's less complicated to combine all the dataframes, and plot a figure-level plot with sns.relplot.
Building on #joris response above, if you have already established a reference to the subplot, you can use the reference as well. For example,
ax1 = plt.subplot2grid((50,100), (0, 0), colspan=20, rowspan=10)
...
df.plot.barh(ax=ax1, stacked=True)
Here is a working pandas subplot example, where modes is the column names of the dataframe.
dpi=200
figure_size=(20, 10)
fig, ax = plt.subplots(len(modes), 1, sharex="all", sharey="all", dpi=dpi)
for i in range(len(modes)):
ax[i] = pivot_df.loc[:, modes[i]].plot.bar(figsize=(figure_size[0], figure_size[1]*len(modes)),
ax=ax[i], title=modes[i], color=my_colors[i])
ax[i].legend()
fig.suptitle(name)
import numpy as np
import pandas as pd
imoprt matplotlib.pyplot as plt
fig, ax = plt.subplots(2,2)
df = pd.DataFrame({'A':np.random.randint(1,100,10),
'B': np.random.randint(100,1000,10),
'C':np.random.randint(100,200,10)})
for ax in ax.flatten():
df.plot(ax =ax)

seaborn jointplot prints partial legend

I'm getting something weird with the legend in a seaborn jointplot. I want to plot some quantity y as function of a quantity x for 8 different datasets. These datasets have only two columns for x and y and a different number of rows. First of all I concatenate all rows of all datasets using numpy
y = np.concatenate(((data1[:,1]), (data2[:,1]), (data3[:,1]), (data4[:,1]),(data5[:,1]), (data6[:,1]), (data7[:,1]), (data8[:,1])), axis=0)
x = np.concatenate(((data1[:,0]), (data2[:,0]), (data3[:,0]), (data4[:,0]), (data5[:,0]), (data6[:,0]), (data7[:,0]), (data8[:,0])), axis=0)
Then I create the array of values which I will use for the parameter "hue" in the jointplot, which will distinguish the several datasets in the legend/colors. I do this by assigning at every dataset one number from 1 to 8,which is repeated for every row of the cumulative dataset:
indexes = np.concatenate((np.ones(len(data1[:,0])), 2*np.ones(len(data2[:,0])), 3*np.ones(len(data3[:,0])), 4*np.ones(len(data4[:,0])), 5*np.ones(len(data5[:,0])), 6*np.ones(len(data6[:,0])), 7*np.ones(len(data7[:,0])), 8*np.ones(len(data8[:,0]))), axis=0)
Then I create the dataset:
all_together = np.column_stack((x, y, indexes))
df = pd.DataFrame(all_together, columns = ['x','y','Dataset'])
So now I can create the jointplot. This is simply done by:
g = sns.jointplot(y="y", x="x", data=df, hue="Dataset", palette='turbo')
handles, labels = g.ax_joint.get_legend_handles_labels()
g.ax_joint.legend(handles=handles, labels=['data1', 'data2', 'data3', 'data4', 'data5', 'data6', 'data7', 'data8'], fontsize=10)
At this point, the problem is: all points are getting plotted (at least I think), but the legend only shows: data1, data2, data3, data4 and data5. I don't understand why it is not showing also the other three labels, and in this way the plot is difficult to read. I have checked and the cumulative dataset df has the correct shape. Any ideas?
You can add legend='full' to obtain a full legend. By default, sns.jointplot uses sns.scatterplot for the central plot. The keyword parameters which aren't used by jointplot are sent to scatterplot. The legend parameter can be "auto", "brief", "full", or False.
From the docs:
If “brief”, numeric hue and size variables will be represented with a sample of evenly spaced values. If “full”, every group will get an entry in the legend. If “auto”, choose between brief or full representation based on number of levels. If False, no legend data is added and no legend is drawn.
The following code is tested with seaborn 0.11.2:
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
N = 200
k = np.repeat(np.arange(1, 9), N // 8)
df = pd.DataFrame({'x': 5 * np.cos(2 * k * np.pi / 8) + np.random.randn(N),
'y': 5 * np.sin(2 * k * np.pi / 8) + np.random.randn(N),
'Dataset': k})
g = sns.jointplot(y="y", x="x", data=df, hue="Dataset", palette='turbo', legend='full')
plt.show()

Creating box plots by looping multiple columns

I am trying to create multiple box plot charts for about 5 columns in my dataframe (df_summ):
columns = ['dimension_a','dimension_b']
for i in columns:
sns.set(style = "ticks", palette = "pastel")
box_plot = sns.boxplot(y="measure", x=i,
palette=["m","g"],
data=df_summ_1500_delta)
sns.despine(offset=10, trim=True)
medians = df_summ_1500_delta.groupby([i])['measure'].median()
vertical_offset=df_summ_1500_delta['measure'].median()*-0.5
for xtick in box_plot.get_xticks():
box_plot.text(xtick,medians[xtick] + vertical_offset,medians[xtick],
horizontalalignment='center',size='small',color='blue',weight='semibold')
My only issue is that they aren't be separated on different facets, but rather on top of each other.
Any help on how I can make both on their own separate chart with the x axis being 'dimension a' and the x axis of the second chart being 'dimension b'.
To draw two boxplots next to each other at each x-position, you can use a hue for dimension_a and dimension_b separately. These two columns need to be transformed (with pd.melt()) to "long form".
Here is a some example code starting from generated test data. Note that the order both for the x-values as for the hue-values needs to be enforced to be sure of their exact position. The individual box plots are distributed over a width of 0.8.
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
df = pd.DataFrame({'dimension_a': np.random.choice(['hot', 'cold'], 100),
'dimension_b': np.random.choice(['hot', 'cold'], 100),
'measure': np.random.uniform(100, 500, 100)})
df.loc[df['dimension_a'] == 'hot', 'measure'] += 100
df.loc[df['dimension_a'] == 'cold', 'measure'] -= 100
x_order = ['hot', 'cold']
columns = ['dimension_a', 'dimension_b']
df1 = df.melt(value_vars=columns, var_name='dimension', value_name='value', id_vars='measure')
sns.set(style="ticks", palette="pastel")
ax = sns.boxplot(data=df1, x='value', order=x_order, y='measure',
hue='dimension', hue_order=columns, palette=["m", "g"], dodge=True)
ax.set_xlabel('')
sns.despine(offset=10, trim=True)
for col, dodge_dist in zip(columns, np.linspace(-0.4, 0.4, 2 * len(x_order) + 1)[1::2]):
medians = df.groupby([col])['measure'].median()
vertical_offset = df['measure'].median() * -0.5
for x_ind, xtick in enumerate(x_order):
ax.text(x_ind + dodge_dist, medians[xtick] + vertical_offset, f'{medians[xtick]:.2f}',
horizontalalignment='center', size='small', color='blue', weight='semibold')
plt.show()

How to do kde plot in pyplot.subplots context? [duplicate]

I have a few Pandas DataFrames sharing the same value scale, but having different columns and indices. When invoking df.plot(), I get separate plot images. what I really want is to have them all in the same plot as subplots, but I'm unfortunately failing to come up with a solution to how and would highly appreciate some help.
You can manually create the subplots with matplotlib, and then plot the dataframes on a specific subplot using the ax keyword. For example for 4 subplots (2x2):
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
df1.plot(ax=axes[0,0])
df2.plot(ax=axes[0,1])
...
Here axes is an array which holds the different subplot axes, and you can access one just by indexing axes.
If you want a shared x-axis, then you can provide sharex=True to plt.subplots.
You can see e.gs. in the documentation demonstrating joris answer. Also from the documentation, you could also set subplots=True and layout=(,) within the pandas plot function:
df.plot(subplots=True, layout=(1,2))
You could also use fig.add_subplot() which takes subplot grid parameters such as 221, 222, 223, 224, etc. as described in the post here. Nice examples of plot on pandas data frame, including subplots, can be seen in this ipython notebook.
You can plot multiple subplots of multiple pandas data frames using matplotlib with a simple trick of making a list of all data frame. Then using the for loop for plotting subplots.
Working code:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# dataframe sample data
df1 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df2 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df3 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df4 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df5 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df6 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
#define number of rows and columns for subplots
nrow=3
ncol=2
# make a list of all dataframes
df_list = [df1 ,df2, df3, df4, df5, df6]
fig, axes = plt.subplots(nrow, ncol)
# plot counter
count=0
for r in range(nrow):
for c in range(ncol):
df_list[count].plot(ax=axes[r,c])
count+=1
Using this code you can plot subplots in any configuration. You need to define the number of rows nrow and the number of columns ncol. Also, you need to make list of data frames df_list which you wanted to plot.
You can use the familiar Matplotlib style calling a figure and subplot, but you simply need to specify the current axis using plt.gca(). An example:
plt.figure(1)
plt.subplot(2,2,1)
df.A.plot() #no need to specify for first axis
plt.subplot(2,2,2)
df.B.plot(ax=plt.gca())
plt.subplot(2,2,3)
df.C.plot(ax=plt.gca())
etc...
You can use this:
fig = plt.figure()
ax = fig.add_subplot(221)
plt.plot(x,y)
ax = fig.add_subplot(222)
plt.plot(x,z)
...
plt.show()
You may not need to use Pandas at all. Here's a matplotlib plot of cat frequencies:
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)
f, axes = plt.subplots(2, 1)
for c, i in enumerate(axes):
axes[c].plot(x, y)
axes[c].set_title('cats')
plt.tight_layout()
Option 1: Create subplots from a dictionary of dataframes with long (tidy) data
Assumptions:
There is a dictionary of multiple dataframes of tidy data that are either:
Created by reading in from files
Created by separating a single dataframe into multiple dataframes
The categories, cat, may be overlapping, but all dataframes don't necessarily contain all values of cat
hue='cat'
This example uses a dict of dataframes, but a list of dataframes would be similar.
If the dataframes are wide, use pandas.DataFrame.melt to convert them to long form.
Because dataframes are being iterated through, there's no guarantee that colors will be mapped the same for each plot
A custom color map needs to be created from the unique 'cat' values for all the dataframes
Since the colors will be the same, place one legend to the side of the plots, instead of a legend in every plot
Tested in python 3.10, pandas 1.4.3, matplotlib 3.5.1, seaborn 0.11.2
Imports and Test Data
import pandas as pd
import numpy as np # used for random data
import matplotlib.pyplot as plt
from matplotlib.patches import Patch # for custom legend - square patches
from matplotlib.lines import Line2D # for custom legend - round markers
import seaborn as sns
import math import ceil # determine correct number of subplot
# synthetic data
df_dict = dict()
for i in range(1, 7):
np.random.seed(i) # for repeatable sample data
data_length = 100
data = {'cat': np.random.choice(['A', 'B', 'C'], size=data_length),
'x': np.random.rand(data_length), 'y': np.random.rand(data_length)}
df_dict[i] = pd.DataFrame(data)
# display(df_dict[1].head())
cat x y
0 B 0.944595 0.606329
1 A 0.586555 0.568851
2 A 0.903402 0.317362
3 B 0.137475 0.988616
4 B 0.139276 0.579745
# display(df_dict[6].tail())
cat x y
95 B 0.881222 0.263168
96 A 0.193668 0.636758
97 A 0.824001 0.638832
98 C 0.323998 0.505060
99 C 0.693124 0.737582
Create color mappings and plot
# create color mapping based on all unique values of cat
unique_cat = {cat for v in df_dict.values() for cat in v.cat.unique()} # get unique cats
colors = sns.color_palette('tab10', n_colors=len(unique_cat)) # get a number of colors
cmap = dict(zip(unique_cat, colors)) # zip values to colors
col_nums = 3 # how many plots per row
row_nums = math.ceil(len(df_dict) / col_nums) # how many rows of plots
# create the figue and axes
fig, axes = plt.subplots(row_nums, col_nums, figsize=(9, 6), sharex=True, sharey=True)
# convert to 1D array for easy iteration
axes = axes.flat
# iterate through dictionary and plot
for ax, (k, v) in zip(axes, df_dict.items()):
sns.scatterplot(data=v, x='x', y='y', hue='cat', palette=cmap, ax=ax)
sns.despine(top=True, right=True)
ax.legend_.remove() # remove the individual plot legends
ax.set_title(f'dataset = {k}', fontsize=11)
fig.tight_layout()
# create legend from cmap
# patches = [Patch(color=v, label=k) for k, v in cmap.items()] # square patches
patches = [Line2D([0], [0], marker='o', color='w', markerfacecolor=v, label=k, markersize=8) for k, v in cmap.items()] # round markers
# place legend outside of plot; change the right bbox value to move the legend up or down
plt.legend(title='cat', handles=patches, bbox_to_anchor=(1.06, 1.2), loc='center left', borderaxespad=0, frameon=False)
plt.show()
Option 2: Create subplots from a single dataframe with multiple separate datasets
The dataframes must be in a long form with the same column names.
This option uses pd.concat to combine multiple dataframes into a single dataframe, and .assign to add a new column.
See Import multiple csv files into pandas and concatenate into one DataFrame for creating a single dataframes from a list of files.
This option is easier because it doesn't require manually mapping colors to 'cat'
Combine DataFrames
# using df_dict, with dataframes as values, from the top
# combine all the dataframes in df_dict to a single dataframe with an identifier column
df = pd.concat((v.assign(dataset=k) for k, v in df_dict.items()), ignore_index=True)
# display(df.head())
cat x y dataset
0 B 0.944595 0.606329 1
1 A 0.586555 0.568851 1
2 A 0.903402 0.317362 1
3 B 0.137475 0.988616 1
4 B 0.139276 0.579745 1
# display(df.tail())
cat x y dataset
595 B 0.881222 0.263168 6
596 A 0.193668 0.636758 6
597 A 0.824001 0.638832 6
598 C 0.323998 0.505060 6
599 C 0.693124 0.737582 6
Plot a FacetGrid with seaborn.relplot
sns.relplot(kind='scatter', data=df, x='x', y='y', hue='cat', col='dataset', col_wrap=3, height=3)
Both options create the same result, however, it's less complicated to combine all the dataframes, and plot a figure-level plot with sns.relplot.
Building on #joris response above, if you have already established a reference to the subplot, you can use the reference as well. For example,
ax1 = plt.subplot2grid((50,100), (0, 0), colspan=20, rowspan=10)
...
df.plot.barh(ax=ax1, stacked=True)
Here is a working pandas subplot example, where modes is the column names of the dataframe.
dpi=200
figure_size=(20, 10)
fig, ax = plt.subplots(len(modes), 1, sharex="all", sharey="all", dpi=dpi)
for i in range(len(modes)):
ax[i] = pivot_df.loc[:, modes[i]].plot.bar(figsize=(figure_size[0], figure_size[1]*len(modes)),
ax=ax[i], title=modes[i], color=my_colors[i])
ax[i].legend()
fig.suptitle(name)
import numpy as np
import pandas as pd
imoprt matplotlib.pyplot as plt
fig, ax = plt.subplots(2,2)
df = pd.DataFrame({'A':np.random.randint(1,100,10),
'B': np.random.randint(100,1000,10),
'C':np.random.randint(100,200,10)})
for ax in ax.flatten():
df.plot(ax =ax)

Categories

Resources