How to plot a side-by-side grouped bar plot - python

import pandas as pd
income_analysis = pd.DataFrame({'Household Income': ['0-24,999', '25,000-49,999', '50,000'], 'rank1': [3,2,1], 'rank2': [1,2,3]})
Household Income rank1 rank2
0 0-24,999 3 1
1 25,000-49,999 2 2
2 50,000 1 3
sns.barplot(data = income_analysis, x = 'Household Income', y = 'rank1')
I am trying to make a bar chart where each set of bars is a different rank, and within each set of bars it is divided based on household income. So all together, 6 bar, 2 sets of bars, 3 bars in each set. My marplot above plots one of them, but how do I do it for both?

Try this,transpose and pandas plot:
income_analysis.set_index('Household Income', inplace=True)
income_analysis.T.plot.bar()
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')

Related

Divide two columns in pivot table and plot grouped bar chart with pandas

I have a dataset that looks like this:
df = pd.DataFrame({
'Vintage': ['2016Q1','2016Q1', '2016Q2','2016Q3','2016Q4','2016Q1', '2016Q2','2016Q2','2016Q2','2016Q3','2016Q4'],
'Model': ['A','A','A','A','A','B','B','B','B','B','B',],
'Count': [1,1,1,1,1,1,1,1,1,1,1],
'Case':[0,1,1,0,1,1,0,0,1,1,0],
})
Vintage Model Count Case
0 2016Q1 A 1 0
1 2016Q1 A 1 1
2 2016Q2 A 1 1
3 2016Q3 A 1 0
4 2016Q4 A 1 1
5 2016Q1 B 1 1
6 2016Q2 B 1 0
7 2016Q2 B 1 0
8 2016Q2 B 1 1
9 2016Q3 B 1 1
10 2016Q4 B 1 0
What I need to do is:
Plot grouped bar chart, where vintage is the groups and model is the hue/color
Two line plots in the same chart that show the percentage of case over count, aka plot the division of case over count for each model and vintage.
I figured out how to do the first task with a pivot table but haven't been able to add the percentage from the same pivot.
This is the solution for point 1:
dfp = df.pivot_table(index='vintage', columns='model', values='count', aggfunc='sum')
dfp.plot(kind='bar', figsize=(8, 4), rot=45, ylabel='Frequency', title="Vintages")
I tried dividing between columns in the pivot table but it's not the right format to plot.
How can I do the percentage calculation and line plots so without creating a different table?
Could the whole task be done with groupby instead? (as I find it easier to use in general)
Here's a solution using the seaborn plotting library, not sure if it's ok for you to use it for your problem
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame({
'Vintage': ['2016Q1','2016Q1', '2016Q2','2016Q3','2016Q4','2016Q1', '2016Q2','2016Q2','2016Q2','2016Q3','2016Q4'],
'Model': ['A','A','A','A','A','B','B','B','B','B','B',],
'Count': [1,1,1,1,1,1,1,1,1,1,1],
'Case':[0,1,1,0,1,1,0,0,1,1,0],
})
agg_df = df.groupby(['Vintage','Model']).sum().reset_index()
agg_df['Fraction'] = agg_df['Case']/agg_df['Count']
sns.barplot(
x = 'Vintage',
y = 'Count',
hue = 'Model',
alpha = 0.5,
data = agg_df,
)
sns.lineplot(
x = 'Vintage',
y = 'Fraction',
hue = 'Model',
marker = 'o',
legend = False,
data = agg_df,
)
plt.show()
plt.close()
IIUC you want the lines to be drawn on the same plot. I'd recommend creating a new y-axis after computing the division from the original df. Then you can plot the lines with seaborn:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame({
'Vintage': ['2016Q1','2016Q1', '2016Q2','2016Q3','2016Q4','2016Q1', '2016Q2','2016Q2','2016Q2','2016Q3','2016Q4'],
'Model': ['A','A','A','A','A','B','B','B','B','B','B',],
'Count': [1,1,1,1,1,1,1,1,1,1,1],
'Case':[0,1,1,0,1,1,0,0,1,1,0],
})
dfp = df.pivot_table(index='Vintage', columns='Model', values='Count', aggfunc='sum')
ax1 = dfp.plot(kind='bar', figsize=(8, 4), rot=45, ylabel='Frequency', title="Vintages")
dfd = df.groupby(["Vintage", "Model"]).sum() \
.assign(div_pct=lambda x:100*x["Case"]/x["Count"]) \
.reset_index()
ax2 = ax1.twinx() # creating a second y axis
sns.lineplot(data=dfd, x="Vintage", y="div_pct", hue="Model", style="Model", ax=ax2, markers=True, dashes=False)
plt.show()
Output:

How make stacked bar chart from dataframe in python

I have the following dataframe:
Color Level Proportion
-------------------------------------
0 Blue 1 0.1
1 Blue 2 0.3
2 Blue 3 0.6
3 Red 1 0.2
4 Red 2 0.5
5 Red 3 0.3
Here I have 2 color categories, where each color category has 3 levels, and each entry has a proportion, which sum to 1 for each color category. I want to make a stacked bar chart from this dataframe that has 2 stacked bars, one for each color category. Within each of those stacked bars will be the proportion for each level, all summing to 1. So while the bars will be "stacked" different, the bars as complete bars will be the same length of 1.
I have tried this:
df.plot(kind='bar', stacked=True)
I then get this stacked bar chart, which is not what I want:
I want 2 stacked bars, and so a stacked bar for "Blue" and a stacked bar for "Red", where these bars are "stacked" by the proportions, with the colors of these stacks corresponding to each level. And so both of these bars would be of length 1 along the x-axis, which would be labelled "proportion". How can I fix my code to create this stacked bar chart?
Make a pivot and then plot it:
df.pivot(index = 'Color', columns = 'Level', values = 'Proportion')
df.plot(kind = 'bar', stacked = True)
Edit: Cleaner legend
You could create a Seaborn sns.histplot using the proportion as weights and the level as hue:
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
df = pd.DataFrame({'Color': ['Blue'] * 3 + ['Red'] * 3,
'Level': [1, 2, 3] * 2,
'Proportion': [.1, .3, .6, .2, .5, .3]})
sns.set_style('white')
ax = sns.histplot(data=df, x='Color', weights='Proportion', hue='Level', multiple='stack', palette='flare', shrink=0.75)
ax.set_ylabel('Proportion')
for bars in ax.containers:
ax.bar_label(bars, label_type='center', fmt='%.2f')
sns.move_legend(ax, loc='upper left', bbox_to_anchor=(1, 0.97))
sns.despine()
plt.tight_layout()
plt.show()

Create a seaborn histogram with two columns of a dataframe

I try to display a histogram with this dataframe.
gr_age weighted_cost
0 1 2272.985462
1 2 2027.919360
2 3 1417.617779
3 4 946.568598
4 5 715.731002
5 6 641.716770
I want to use gr_age column as the X axis and weighted_cost as the Y axis. Here is an example of what I am looking for with Excel:
I tried with the following code, and with discrete=True, but it gives another result, and I didn't do better with displot.
sns.histplot(data=df, x="gr_age", y="weighted_cost")
plt.show()
Thanking you for your ideas!
You want a barplot (x vs y values) not a histplot which plots the distribution of a dataset:
import seaborn as sns
ax = sns.barplot(data=df, x='gr_age', y='weighted_cost', color='#4473C5')
ax.set_title('Values by age group')
output:

Plotting two Seaborn catplots in one figure

I am trying to plot the following data as a horizontal stacked barplot. I would like to show the Week 1 and Week 2, as bars with the largest bar size ('Total') at the top and then descending down. The actual data is 100 lines so I arrived at using Seaborn catplots with kind='bar'. I'm not sure if possible to stack (like Matplotlib) so I opted to create two charts and overlay 'Week 1' on top of 'Total', for the same stacked effect.
However when I run the below I'm getting two separate plots and the chart title and axis is one the one graph. Am I able to combine this into one stacked horizontal chart. If easier way then appreciate to find out.
Company
Week 1
Week 2
Total
Stanley Atherton
0
1
1
Dennis Auton
1
1
2
David Bailey
3
8
11
Alan Ball
5
2
7
Philip Barker
3
0
3
Mark Beirne
0
1
1
Phyllis Blitz
3
0
3
Simon Blower
4
2
6
Steven Branton
5
7
12
Rebecca Brown
0
4
4
(Names created from random name generator)
Code:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
data = pd.read_csv('Sample1.csv', delimiter="\t", error_bad_lines=False)
data_rank = data.sort_values(["Attending", "Company"], ascending=[False,True])
sns.set(style="ticks")
g = sns.catplot(y='Company', x='Total', data=data_rank, kind='bar', height=4, color='red', aspect=0.8, ax=ax)
ax2 =ax.twinx()
g = sns.catplot(y='Company', x='Week 1', data=data_rank, kind='bar', height=4, color='blue', aspect=0.8, ax=ax2)
for ax in g.axes[0]:
ax.xaxis.tick_top()
ax.xaxis.set_label_position('top')
ax.spines['bottom'].set_visible(True)
ax.spines['top'].set_visible(True)
plt.title("Company by week ", size=7)
catplot 1
catplot 2
I think something like this works.
g = sns.barplot(y='Company', x='Total', data=data_rank, color='red', label='Total')
g = sns.barplot(y='Company', x='Week1', data=data_rank, color='blue', label='Week 1')
plt.title("Company by week ", size=12)
plt.xlabel('Frequency')
plt.legend()
plt.show()

Adding percentage values onto horizontal bar charts in matplotlib

My pandas dataset, df4, consists of 14 Colour Groups (Green, Blue etc) and 12 Categories (1, 2 etc). I am creating a horizontal bar chart for each category.
print(df4.head())
BASE VOLUME Color Group Type
0 6.0 GREEN 1
1 3.5 GREEN 1
2 2.5 GREEN 2
3 1.5 GREEN 2
4 2.5 BLUE 4
Here is the code below, with how the graph looks for 2 of the categories. On some of the categories, the percentages are all vertically lined up, but on others the percentages are wild.
#groupby / pivot transformation, and reindex
s='1'
dfrr = df4[df4['Type'] == s]
df5 = dfrr.groupby(['Color Group']).sum().sort_values("BASE VOLUME", ascending=False)
data = df5.reset_index().iloc[:,[0,2]]
data.columns = ['Color Group', 'BASE VOLUME']
x= data['BASE VOLUME']
y= data['Color Group']
data2 = data
data2['BASE VOLUME %'] = data2['BASE VOLUME']
data2 = data2.iloc[:,[0,2]]
data2['BASE VOLUME %'] = 100*data2['BASE VOLUME %']/(sum(data2['BASE VOLUME %']))
plt.figure(figsize=(10,6))
clrs = ['red' if (x > 10) else 'gray' for x in data2['BASE VOLUME %']]
ax = sns.barplot(x,y, data=data2, palette=clrs)
ax.set_xlabel('Base Volume',fontsize=15)
ax.set_ylabel('Color Group',fontsize=15)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
for i, v in enumerate(data2['BASE VOLUME %']):
ax.text(v + 0, i + 0.15, str("{0:.1f}%".format(v)), color='black', fontweight='bold', fontsize=14)
For Category 1, the percentages are lined up:
For Category 4, the percentages are not lined up:
The problem may be that there are only 7 colour groups in Category 4, compared to all 14 in Category 1. How can I tweak the code so that whatever I set as 's' (i.e the category), the percentages line up?

Categories

Resources