Formatting to nested dict [duplicate] - python

I have a flattened dictionary which I want to make into a nested one, of the form
flat = {'X_a_one': 10,
'X_a_two': 20,
'X_b_one': 10,
'X_b_two': 20,
'Y_a_one': 10,
'Y_a_two': 20,
'Y_b_one': 10,
'Y_b_two': 20}
I want to convert it to the form
nested = {'X': {'a': {'one': 10,
'two': 20},
'b': {'one': 10,
'two': 20}},
'Y': {'a': {'one': 10,
'two': 20},
'b': {'one': 10,
'two': 20}}}
The structure of the flat dictionary is such that there should not be any problems with ambiguities. I want it to work for dictionaries of arbitrary depth, but performance is not really an issue. I've seen lots of methods for flattening a nested dictionary, but basically none for nesting a flattened dictionary. The values stored in the dictionary are either scalars or strings, never iterables.
So far I have got something which can take the input
test_dict = {'X_a_one': '10',
'X_b_one': '10',
'X_c_one': '10'}
to the output
test_out = {'X': {'a_one': '10',
'b_one': '10',
'c_one': '10'}}
using the code
def nest_once(inp_dict):
out = {}
if isinstance(inp_dict, dict):
for key, val in inp_dict.items():
if '_' in key:
head, tail = key.split('_', 1)
if head not in out.keys():
out[head] = {tail: val}
else:
out[head].update({tail: val})
else:
out[key] = val
return out
test_out = nest_once(test_dict)
But I'm having trouble working out how to make this into something which recursively creates all levels of the dictionary.
Any help would be appreciated!
(As for why I want to do this: I have a file whose structure is equivalent to a nested dict, and I want to store this file's contents in the attributes dictionary of a NetCDF file and retrieve it later. However NetCDF only allows you to put flat dictionaries as the attributes, so I want to unflatten the dictionary I previously stored in the NetCDF file.)

Here is my take:
def nest_dict(flat):
result = {}
for k, v in flat.items():
_nest_dict_rec(k, v, result)
return result
def _nest_dict_rec(k, v, out):
k, *rest = k.split('_', 1)
if rest:
_nest_dict_rec(rest[0], v, out.setdefault(k, {}))
else:
out[k] = v
flat = {'X_a_one': 10,
'X_a_two': 20,
'X_b_one': 10,
'X_b_two': 20,
'Y_a_one': 10,
'Y_a_two': 20,
'Y_b_one': 10,
'Y_b_two': 20}
nested = {'X': {'a': {'one': 10,
'two': 20},
'b': {'one': 10,
'two': 20}},
'Y': {'a': {'one': 10,
'two': 20},
'b': {'one': 10,
'two': 20}}}
print(nest_dict(flat) == nested)
# True

output = {}
for k, v in source.items():
# always start at the root.
current = output
# This is the part you're struggling with.
pieces = k.split('_')
# iterate from the beginning until the second to last place
for piece in pieces[:-1]:
if not piece in current:
# if a dict doesn't exist at an index, then create one
current[piece] = {}
# as you walk into the structure, update your current location
current = current[piece]
# The reason you're using the second to last is because the last place
# represents the place you're actually storing the item
current[pieces[-1]] = v

Here's one way using collections.defaultdict, borrowing heavily from this previous answer. There are 3 steps:
Create a nested defaultdict of defaultdict objects.
Iterate items in flat input dictionary.
Build defaultdict result according to the structure derived from splitting keys by _, using getFromDict to iterate the result dictionary.
This is a complete example:
from collections import defaultdict
from functools import reduce
from operator import getitem
def getFromDict(dataDict, mapList):
"""Iterate nested dictionary"""
return reduce(getitem, mapList, dataDict)
# instantiate nested defaultdict of defaultdicts
tree = lambda: defaultdict(tree)
d = tree()
# iterate input dictionary
for k, v in flat.items():
*keys, final_key = k.split('_')
getFromDict(d, keys)[final_key] = v
{'X': {'a': {'one': 10, 'two': 20}, 'b': {'one': 10, 'two': 20}},
'Y': {'a': {'one': 10, 'two': 20}, 'b': {'one': 10, 'two': 20}}}
As a final step, you can convert your defaultdict to a regular dict, though usually this step is not necessary.
def default_to_regular_dict(d):
"""Convert nested defaultdict to regular dict of dicts."""
if isinstance(d, defaultdict):
d = {k: default_to_regular_dict(v) for k, v in d.items()}
return d
# convert back to regular dict
res = default_to_regular_dict(d)

The other answers are cleaner, but since you mentioned recursion we do have other options.
def nest(d):
_ = {}
for k in d:
i = k.find('_')
if i == -1:
_[k] = d[k]
continue
s, t = k[:i], k[i+1:]
if s in _:
_[s][t] = d[k]
else:
_[s] = {t:d[k]}
return {k:(nest(_[k]) if type(_[k])==type(d) else _[k]) for k in _}

You can use itertools.groupby:
import itertools, json
flat = {'Y_a_two': 20, 'Y_a_one': 10, 'X_b_two': 20, 'X_b_one': 10, 'X_a_one': 10, 'X_a_two': 20, 'Y_b_two': 20, 'Y_b_one': 10}
_flat = [[*a.split('_'), b] for a, b in flat.items()]
def create_dict(d):
_d = {a:list(b) for a, b in itertools.groupby(sorted(d, key=lambda x:x[0]), key=lambda x:x[0])}
return {a:create_dict([i[1:] for i in b]) if len(b) > 1 else b[0][-1] for a, b in _d.items()}
print(json.dumps(create_dict(_flat), indent=3))
Output:
{
"Y": {
"b": {
"two": 20,
"one": 10
},
"a": {
"two": 20,
"one": 10
}
},
"X": {
"b": {
"two": 20,
"one": 10
},
"a": {
"two": 20,
"one": 10
}
}
}

Another non-recursive solution with no imports. Splitting the logic between inserting each key-value pair of the flat dict and mapping over key-value pairs of the flat dict.
def insert(dct, lst):
"""
dct: a dict to be modified inplace.
lst: list of elements representing a hierarchy of keys
followed by a value.
dct = {}
lst = [1, 2, 3]
resulting value of dct: {1: {2: 3}}
"""
for x in lst[:-2]:
dct[x] = dct = dct.get(x, dict())
dct.update({lst[-2]: lst[-1]})
def unflat(dct):
# empty dict to store the result
result = dict()
# create an iterator of lists representing hierarchical indices followed by the value
lsts = ([*k.split("_"), v] for k, v in dct.items())
# insert each list into the result
for lst in lsts:
insert(result, lst)
return result
result = unflat(flat)
# {'X': {'a': {'one': 10, 'two': 20}, 'b': {'one': 10, 'two': 20}},
# 'Y': {'a': {'one': 10, 'two': 20}, 'b': {'one': 10, 'two': 20}}}

Here is a reasonably readable recursive result:
def unflatten_dict(a, result = None, sep = '_'):
if result is None:
result = dict()
for k, v in a.items():
k, *rest = k.split(sep, 1)
if rest:
unflatten_dict({rest[0]: v}, result.setdefault(k, {}), sep = sep)
else:
result[k] = v
return result
flat = {'X_a_one': 10,
'X_a_two': 20,
'X_b_one': 10,
'X_b_two': 20,
'Y_a_one': 10,
'Y_a_two': 20,
'Y_b_one': 10,
'Y_b_two': 20}
print(unflatten_dict(flat))
# {'X': {'a': {'one': 10, 'two': 20}, 'b': {'one': 10, 'two': 20}},
# 'Y': {'a': {'one': 10, 'two': 20}, 'b': {'one': 10, 'two': 20}}}
This is based on a couple of the above answers, uses no imports and is only tested in python 3.

Install ndicts
pip install ndicts
Then in your script
from ndicts.ndicts import NestedDict
flat = {'X_a_one': 10,
'X_a_two': 20,
'X_b_one': 10,
'X_b_two': 20,
'Y_a_one': 10,
'Y_a_two': 20,
'Y_b_one': 10,
'Y_b_two': 20}
nd = NestedDict()
for key, value in flat.items():
n_key = tuple(key.split("_"))
nd[n_key] = value
If you need the result as a dictionary:
>>> nd.to_dict()
{'X': {'a': {'one': 10, 'two': 20},
'b': {'one': 10, 'two': 20}},
'Y': {'a': {'one': 10, 'two': 20},
'b': {'one': 10, 'two': 20}}}

Related

AttributeError: 'NoneType' object has no attribute 'keys' (Python)

I'm writing a function that takes a number of dictionaries (keys - letters, values - numbers) and combines them into one dictionary. Dict values should be summarized in case of identical keys, but alwayw recieve the error for the line with " if k in d.keys():"
AttributeError: 'NoneType' object has no attribute 'keys'
def combine(*args):
d = args[0]
for dct in args[1:]:
for k, v in dct.items():
if k in d.keys():
d[k] = d[k] + v
d = d.update(dct)
print(d)
dict_1 = {'a': 100, 'b': 200}
dict_2 = {'a': 200, 'c': 300}
dict_3 = {'a': 300, 'd': 100}
combine_dicts(dict_1, dict_2, dict_3)
result should be {'a': 600, 'b': 200, 'c': 300, 'd': 100}
What's wrong with your code. 1. d = d.update(dct) will override exist data and and that's where you are getting AttributeError: because a none is returned. 2. You are calling a wrong function, your function is called combine and you are calling combine_dicts.
This is one of the appropriate approaches you can take you can taking using defaultdict from collections.
from collections import defaultdict
def combine(*args):
d = defaultdict(int)
for dct in args:
for key, value in dct.items():
d[key] += value
print(dict(d))
dict_1 = {'a': 100, 'b': 200}
dict_2 = {'a': 200, 'c': 300}
dict_3 = {'a': 300, 'd': 100}
combine(dict_1, dict_2, dict_3)
{'a': 600, 'b': 200, 'c': 300, 'd': 100}
I found the answer)
since dictionaries are mutable are should've used
d.update() instead of d = d.update(). And one else mistake, but not according to the question topic
It looks like you want to accumulate values from the other two dicts into the first one, or just transfer values if not already present.
This is the code you want:
def combine(*args):
d = args[0]
for dct in args[1:]:
for k, v in dct.items():
if k in d.keys():
d[k] = d[k] + v
else:
d[k] = v
print(d)
dict_1 = {'a': 100, 'b': 200}
dict_2 = {'a': 200, 'c': 300}
dict_3 = {'a': 300, 'd': 100}
combine(dict_1, dict_2, dict_3)
Output as requested

Python dictionary format change splitting keys

How could i go from this format of dictionary
{'A.B': 7, 'C.D': 5, 'A.D': 34}
to this:
{'A': {'B':7, D:34} , 'C': {'D': 5} }
Meaning of key 'A.B' is that i go from A to B and its value means 7 times, so what i am trying to do is change this format so that my dictionary key is where i go from and its value its a dictionary with his destinations (one or more) and the times of each.
I have tried several things, but for now things are not working out.
I have tried using for with a new dictionary but it overrides my keys.
Using defaultdict:
d = {'A.B': 7, 'C.D': 5, 'A.D': 34}
from collections import defaultdict
formatted_d = defaultdict(dict)
for k, v in d.items():
top_key, bottom_key = k.split('.')
formatted_d[top_key][bottom_key] = v
Without defaultdict:
formatted_d = {}
for k, v in d.items():
top_key, bottom_key = k.split('.')
if top_key not in formatted_d:
formatted_d[top_key] = {}
formatted_d[top_key][bottom_key] = v
Clean and easy to understand with collections.defaultdict:
from collections import defaultdict
dct = {'A.B': 7, 'C.D': 5, 'A.D': 34}
new_dict = defaultdict(dict)
for key, value in dct.items():
root, descendant = key.split(".")
new_dict[root][descendant] = value
print(new_dict)
This yields
defaultdict(<class 'dict'>, {'A': {'B': 7, 'D': 34}, 'C': {'D': 5}})
Quick approach:
d = {'A.B': 7, 'C.D': 5, 'A.D': 34}
dicts_init = {key.split('.')[0]: {} for key, value in d.items()}
for key, value in d.items():
root_k, val = key.split(".")
dicts_init[root_k][val] = value
print(dicts_init)
Outputs:
{'A': {'B': 7, 'D': 34}, 'C': {'D': 5}}
d = {'A.B': 7, 'C.D': 5, 'A.D': 34}
result = {}
for key in d:
current, destination = key.split('.')
times = d.get(key)
if current not in result.keys():
result[current] = {destination: int(times)}
else:
result[current][destination] = int(times)
print(result)

Extract varying levels of nested key value pairs from dictionary [duplicate]

Suppose you have a dictionary like:
{'a': 1,
'c': {'a': 2,
'b': {'x': 5,
'y' : 10}},
'd': [1, 2, 3]}
How would you go about flattening that into something like:
{'a': 1,
'c_a': 2,
'c_b_x': 5,
'c_b_y': 10,
'd': [1, 2, 3]}
Basically the same way you would flatten a nested list, you just have to do the extra work for iterating the dict by key/value, creating new keys for your new dictionary and creating the dictionary at final step.
import collections
def flatten(d, parent_key='', sep='_'):
items = []
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, collections.MutableMapping):
items.extend(flatten(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
>>> flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]})
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}
For Python >= 3.3, change the import to from collections.abc import MutableMapping to avoid a deprecation warning and change collections.MutableMapping to just MutableMapping.
Or if you are already using pandas, You can do it with json_normalize() like so:
import pandas as pd
d = {'a': 1,
'c': {'a': 2, 'b': {'x': 5, 'y' : 10}},
'd': [1, 2, 3]}
df = pd.json_normalize(d, sep='_')
print(df.to_dict(orient='records')[0])
Output:
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'c_b_y': 10, 'd': [1, 2, 3]}
There are two big considerations that the original poster needs to consider:
Are there keyspace clobbering issues? For example, {'a_b':{'c':1}, 'a':{'b_c':2}} would result in {'a_b_c':???}. The below solution evades the problem by returning an iterable of pairs.
If performance is an issue, does the key-reducer function (which I hereby refer to as 'join') require access to the entire key-path, or can it just do O(1) work at every node in the tree? If you want to be able to say joinedKey = '_'.join(*keys), that will cost you O(N^2) running time. However if you're willing to say nextKey = previousKey+'_'+thisKey, that gets you O(N) time. The solution below lets you do both (since you could merely concatenate all the keys, then postprocess them).
(Performance is not likely an issue, but I'll elaborate on the second point in case anyone else cares: In implementing this, there are numerous dangerous choices. If you do this recursively and yield and re-yield, or anything equivalent which touches nodes more than once (which is quite easy to accidentally do), you are doing potentially O(N^2) work rather than O(N). This is because maybe you are calculating a key a then a_1 then a_1_i..., and then calculating a then a_1 then a_1_ii..., but really you shouldn't have to calculate a_1 again. Even if you aren't recalculating it, re-yielding it (a 'level-by-level' approach) is just as bad. A good example is to think about the performance on {1:{1:{1:{1:...(N times)...{1:SOME_LARGE_DICTIONARY_OF_SIZE_N}...}}}})
Below is a function I wrote flattenDict(d, join=..., lift=...) which can be adapted to many purposes and can do what you want. Sadly it is fairly hard to make a lazy version of this function without incurring the above performance penalties (many python builtins like chain.from_iterable aren't actually efficient, which I only realized after extensive testing of three different versions of this code before settling on this one).
from collections import Mapping
from itertools import chain
from operator import add
_FLAG_FIRST = object()
def flattenDict(d, join=add, lift=lambda x:(x,)):
results = []
def visit(subdict, results, partialKey):
for k,v in subdict.items():
newKey = lift(k) if partialKey==_FLAG_FIRST else join(partialKey,lift(k))
if isinstance(v,Mapping):
visit(v, results, newKey)
else:
results.append((newKey,v))
visit(d, results, _FLAG_FIRST)
return results
To better understand what's going on, below is a diagram for those unfamiliar with reduce(left), otherwise known as "fold left". Sometimes it is drawn with an initial value in place of k0 (not part of the list, passed into the function). Here, J is our join function. We preprocess each kn with lift(k).
[k0,k1,...,kN].foldleft(J)
/ \
... kN
/
J(k0,J(k1,J(k2,k3)))
/ \
/ \
J(J(k0,k1),k2) k3
/ \
/ \
J(k0,k1) k2
/ \
/ \
k0 k1
This is in fact the same as functools.reduce, but where our function does this to all key-paths of the tree.
>>> reduce(lambda a,b:(a,b), range(5))
((((0, 1), 2), 3), 4)
Demonstration (which I'd otherwise put in docstring):
>>> testData = {
'a':1,
'b':2,
'c':{
'aa':11,
'bb':22,
'cc':{
'aaa':111
}
}
}
from pprint import pprint as pp
>>> pp(dict( flattenDict(testData) ))
{('a',): 1,
('b',): 2,
('c', 'aa'): 11,
('c', 'bb'): 22,
('c', 'cc', 'aaa'): 111}
>>> pp(dict( flattenDict(testData, join=lambda a,b:a+'_'+b, lift=lambda x:x) ))
{'a': 1, 'b': 2, 'c_aa': 11, 'c_bb': 22, 'c_cc_aaa': 111}
>>> pp(dict( (v,k) for k,v in flattenDict(testData, lift=hash, join=lambda a,b:hash((a,b))) ))
{1: 12416037344,
2: 12544037731,
11: 5470935132935744593,
22: 4885734186131977315,
111: 3461911260025554326}
Performance:
from functools import reduce
def makeEvilDict(n):
return reduce(lambda acc,x:{x:acc}, [{i:0 for i in range(n)}]+range(n))
import timeit
def time(runnable):
t0 = timeit.default_timer()
_ = runnable()
t1 = timeit.default_timer()
print('took {:.2f} seconds'.format(t1-t0))
>>> pp(makeEvilDict(8))
{7: {6: {5: {4: {3: {2: {1: {0: {0: 0,
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0}}}}}}}}}
import sys
sys.setrecursionlimit(1000000)
forget = lambda a,b:''
>>> time(lambda: dict(flattenDict(makeEvilDict(10000), join=forget)) )
took 0.10 seconds
>>> time(lambda: dict(flattenDict(makeEvilDict(100000), join=forget)) )
[1] 12569 segmentation fault python
... sigh, don't think that one is my fault...
[unimportant historical note due to moderation issues]
Regarding the alleged duplicate of Flatten a dictionary of dictionaries (2 levels deep) of lists
That question's solution can be implemented in terms of this one by doing sorted( sum(flatten(...),[]) ). The reverse is not possible: while it is true that the values of flatten(...) can be recovered from the alleged duplicate by mapping a higher-order accumulator, one cannot recover the keys. (edit: Also it turns out that the alleged duplicate owner's question is completely different, in that it only deals with dictionaries exactly 2-level deep, though one of the answers on that page gives a general solution.)
If you're using pandas there is a function hidden in pandas.io.json._normalize1 called nested_to_record which does this exactly.
from pandas.io.json._normalize import nested_to_record
flat = nested_to_record(my_dict, sep='_')
1 In pandas versions 0.24.x and older use pandas.io.json.normalize (without the _)
Here is a kind of a "functional", "one-liner" implementation. It is recursive, and based on a conditional expression and a dict comprehension.
def flatten_dict(dd, separator='_', prefix=''):
return { prefix + separator + k if prefix else k : v
for kk, vv in dd.items()
for k, v in flatten_dict(vv, separator, kk).items()
} if isinstance(dd, dict) else { prefix : dd }
Test:
In [2]: flatten_dict({'abc':123, 'hgf':{'gh':432, 'yu':433}, 'gfd':902, 'xzxzxz':{"432":{'0b0b0b':231}, "43234":1321}}, '.')
Out[2]:
{'abc': 123,
'gfd': 902,
'hgf.gh': 432,
'hgf.yu': 433,
'xzxzxz.432.0b0b0b': 231,
'xzxzxz.43234': 1321}
Not exactly what the OP asked, but lots of folks are coming here looking for ways to flatten real-world nested JSON data which can have nested key-value json objects and arrays and json objects inside the arrays and so on. JSON doesn't include tuples, so we don't have to fret over those.
I found an implementation of the list-inclusion comment by #roneo to the answer posted by #Imran :
https://github.com/ScriptSmith/socialreaper/blob/master/socialreaper/tools.py#L8
import collections
def flatten(dictionary, parent_key=False, separator='.'):
"""
Turn a nested dictionary into a flattened dictionary
:param dictionary: The dictionary to flatten
:param parent_key: The string to prepend to dictionary's keys
:param separator: The string used to separate flattened keys
:return: A flattened dictionary
"""
items = []
for key, value in dictionary.items():
new_key = str(parent_key) + separator + key if parent_key else key
if isinstance(value, collections.MutableMapping):
items.extend(flatten(value, new_key, separator).items())
elif isinstance(value, list):
for k, v in enumerate(value):
items.extend(flatten({str(k): v}, new_key).items())
else:
items.append((new_key, value))
return dict(items)
Test it:
flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3] })
>> {'a': 1, 'c.a': 2, 'c.b.x': 5, 'c.b.y': 10, 'd.0': 1, 'd.1': 2, 'd.2': 3}
Annd that does the job I need done: I throw any complicated json at this and it flattens it out for me.
All credits to https://github.com/ScriptSmith .
Code:
test = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}
def parse_dict(init, lkey=''):
ret = {}
for rkey,val in init.items():
key = lkey+rkey
if isinstance(val, dict):
ret.update(parse_dict(val, key+'_'))
else:
ret[key] = val
return ret
print(parse_dict(test,''))
Results:
$ python test.py
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}
I am using python3.2, update for your version of python.
This is not restricted to dictionaries, but every mapping type that implements .items(). Further ist faster as it avoides an if condition. Nevertheless credits go to Imran:
def flatten(d, parent_key=''):
items = []
for k, v in d.items():
try:
items.extend(flatten(v, '%s%s_' % (parent_key, k)).items())
except AttributeError:
items.append(('%s%s' % (parent_key, k), v))
return dict(items)
How about a functional and performant solution in Python3.5?
from functools import reduce
def _reducer(items, key, val, pref):
if isinstance(val, dict):
return {**items, **flatten(val, pref + key)}
else:
return {**items, pref + key: val}
def flatten(d, pref=''):
return(reduce(
lambda new_d, kv: _reducer(new_d, *kv, pref),
d.items(),
{}
))
This is even more performant:
def flatten(d, pref=''):
return(reduce(
lambda new_d, kv: \
isinstance(kv[1], dict) and \
{**new_d, **flatten(kv[1], pref + kv[0])} or \
{**new_d, pref + kv[0]: kv[1]},
d.items(),
{}
))
In use:
my_obj = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y': 10}}, 'd': [1, 2, 3]}
print(flatten(my_obj))
# {'d': [1, 2, 3], 'cby': 10, 'cbx': 5, 'ca': 2, 'a': 1}
If you are a fan of pythonic oneliners:
my_dict={'a': 1,'c': {'a': 2,'b': {'x': 5,'y' : 10}},'d': [1, 2, 3]}
list(pd.json_normalize(my_dict).T.to_dict().values())[0]
returns:
{'a': 1, 'c.a': 2, 'c.b.x': 5, 'c.b.y': 10, 'd': [1, 2, 3]}
You can leave the [0] from the end, if you have a list of dictionaries and not just a single dictionary.
My Python 3.3 Solution using generators:
def flattenit(pyobj, keystring=''):
if type(pyobj) is dict:
if (type(pyobj) is dict):
keystring = keystring + "_" if keystring else keystring
for k in pyobj:
yield from flattenit(pyobj[k], keystring + k)
elif (type(pyobj) is list):
for lelm in pyobj:
yield from flatten(lelm, keystring)
else:
yield keystring, pyobj
my_obj = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y': 10}}, 'd': [1, 2, 3]}
#your flattened dictionary object
flattened={k:v for k,v in flattenit(my_obj)}
print(flattened)
# result: {'c_b_y': 10, 'd': [1, 2, 3], 'c_a': 2, 'a': 1, 'c_b_x': 5}
Utilizing recursion, keeping it simple and human readable:
def flatten_dict(dictionary, accumulator=None, parent_key=None, separator="."):
if accumulator is None:
accumulator = {}
for k, v in dictionary.items():
k = f"{parent_key}{separator}{k}" if parent_key else k
if isinstance(v, dict):
flatten_dict(dictionary=v, accumulator=accumulator, parent_key=k)
continue
accumulator[k] = v
return accumulator
Call is simple:
new_dict = flatten_dict(dictionary)
or
new_dict = flatten_dict(dictionary, separator="_")
if we want to change the default separator.
A little breakdown:
When the function is first called, it is called only passing the dictionary we want to flatten. The accumulator parameter is here to support recursion, which we see later. So, we instantiate accumulator to an empty dictionary where we will put all of the nested values from the original dictionary.
if accumulator is None:
accumulator = {}
As we iterate over the dictionary's values, we construct a key for every value. The parent_key argument will be None for the first call, while for every nested dictionary, it will contain the key pointing to it, so we prepend that key.
k = f"{parent_key}{separator}{k}" if parent_key else k
In case the value v the key k is pointing to is a dictionary, the function calls itself, passing the nested dictionary, the accumulator (which is passed by reference, so all changes done to it are done on the same instance) and the key k so that we can construct the concatenated key. Notice the continue statement. We want to skip the next line, outside of the if block, so that the nested dictionary doesn't end up in the accumulator under key k.
if isinstance(v, dict):
flatten_dict(dict=v, accumulator=accumulator, parent_key=k)
continue
So, what do we do in case the value v is not a dictionary? Just put it unchanged inside the accumulator.
accumulator[k] = v
Once we're done we just return the accumulator, leaving the original dictionary argument untouched.
NOTE
This will work only with dictionaries that have strings as keys. It will work with hashable objects implementing the __repr__ method, but will yield unwanted results.
Simple function to flatten nested dictionaries. For Python 3, replace .iteritems() with .items()
def flatten_dict(init_dict):
res_dict = {}
if type(init_dict) is not dict:
return res_dict
for k, v in init_dict.iteritems():
if type(v) == dict:
res_dict.update(flatten_dict(v))
else:
res_dict[k] = v
return res_dict
The idea/requirement was:
Get flat dictionaries with no keeping parent keys.
Example of usage:
dd = {'a': 3,
'b': {'c': 4, 'd': 5},
'e': {'f':
{'g': 1, 'h': 2}
},
'i': 9,
}
flatten_dict(dd)
>> {'a': 3, 'c': 4, 'd': 5, 'g': 1, 'h': 2, 'i': 9}
Keeping parent keys is simple as well.
I was thinking of a subclass of UserDict to automagically flat the keys.
class FlatDict(UserDict):
def __init__(self, *args, separator='.', **kwargs):
self.separator = separator
super().__init__(*args, **kwargs)
def __setitem__(self, key, value):
if isinstance(value, dict):
for k1, v1 in FlatDict(value, separator=self.separator).items():
super().__setitem__(f"{key}{self.separator}{k1}", v1)
else:
super().__setitem__(key, value)
‌
The advantages it that keys can be added on the fly, or using standard dict instanciation, without surprise:
‌
>>> fd = FlatDict(
... {
... 'person': {
... 'sexe': 'male',
... 'name': {
... 'first': 'jacques',
... 'last': 'dupond'
... }
... }
... }
... )
>>> fd
{'person.sexe': 'male', 'person.name.first': 'jacques', 'person.name.last': 'dupond'}
>>> fd['person'] = {'name': {'nickname': 'Bob'}}
>>> fd
{'person.sexe': 'male', 'person.name.first': 'jacques', 'person.name.last': 'dupond', 'person.name.nickname': 'Bob'}
>>> fd['person.name'] = {'civility': 'Dr'}
>>> fd
{'person.sexe': 'male', 'person.name.first': 'jacques', 'person.name.last': 'dupond', 'person.name.nickname': 'Bob', 'person.name.civility': 'Dr'}
This is similar to both imran's and ralu's answer. It does not use a generator, but instead employs recursion with a closure:
def flatten_dict(d, separator='_'):
final = {}
def _flatten_dict(obj, parent_keys=[]):
for k, v in obj.iteritems():
if isinstance(v, dict):
_flatten_dict(v, parent_keys + [k])
else:
key = separator.join(parent_keys + [k])
final[key] = v
_flatten_dict(d)
return final
>>> print flatten_dict({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]})
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}
The answers above work really well. Just thought I'd add the unflatten function that I wrote:
def unflatten(d):
ud = {}
for k, v in d.items():
context = ud
for sub_key in k.split('_')[:-1]:
if sub_key not in context:
context[sub_key] = {}
context = context[sub_key]
context[k.split('_')[-1]] = v
return ud
Note: This doesn't account for '_' already present in keys, much like the flatten counterparts.
Davoud's solution is very nice but doesn't give satisfactory results when the nested dict also contains lists of dicts, but his code be adapted for that case:
def flatten_dict(d):
items = []
for k, v in d.items():
try:
if (type(v)==type([])):
for l in v: items.extend(flatten_dict(l).items())
else:
items.extend(flatten_dict(v).items())
except AttributeError:
items.append((k, v))
return dict(items)
def flatten(unflattened_dict, separator='_'):
flattened_dict = {}
for k, v in unflattened_dict.items():
if isinstance(v, dict):
sub_flattened_dict = flatten(v, separator)
for k2, v2 in sub_flattened_dict.items():
flattened_dict[k + separator + k2] = v2
else:
flattened_dict[k] = v
return flattened_dict
I actually wrote a package called cherrypicker recently to deal with this exact sort of thing since I had to do it so often!
I think the following code would give you exactly what you're after:
from cherrypicker import CherryPicker
dct = {
'a': 1,
'c': {
'a': 2,
'b': {
'x': 5,
'y' : 10
}
},
'd': [1, 2, 3]
}
picker = CherryPicker(dct)
picker.flatten().get()
You can install the package with:
pip install cherrypicker
...and there's more docs and guidance at https://cherrypicker.readthedocs.io.
Other methods may be faster, but the priority of this package is to make such tasks easy. If you do have a large list of objects to flatten though, you can also tell CherryPicker to use parallel processing to speed things up.
here's a solution using a stack. No recursion.
def flatten_nested_dict(nested):
stack = list(nested.items())
ans = {}
while stack:
key, val = stack.pop()
if isinstance(val, dict):
for sub_key, sub_val in val.items():
stack.append((f"{key}_{sub_key}", sub_val))
else:
ans[key] = val
return ans
Using generators:
def flat_dic_helper(prepand,d):
if len(prepand) > 0:
prepand = prepand + "_"
for k in d:
i = d[k]
if isinstance(i, dict):
r = flat_dic_helper(prepand + k,i)
for j in r:
yield j
else:
yield (prepand + k,i)
def flat_dic(d):
return dict(flat_dic_helper("",d))
d = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}
print(flat_dic(d))
>> {'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}
Here's an algorithm for elegant, in-place replacement. Tested with Python 2.7 and Python 3.5. Using the dot character as a separator.
def flatten_json(json):
if type(json) == dict:
for k, v in list(json.items()):
if type(v) == dict:
flatten_json(v)
json.pop(k)
for k2, v2 in v.items():
json[k+"."+k2] = v2
Example:
d = {'a': {'b': 'c'}}
flatten_json(d)
print(d)
unflatten_json(d)
print(d)
Output:
{'a.b': 'c'}
{'a': {'b': 'c'}}
I published this code here along with the matching unflatten_json function.
If you want to flat nested dictionary and want all unique keys list then here is the solution:
def flat_dict_return_unique_key(data, unique_keys=set()):
if isinstance(data, dict):
[unique_keys.add(i) for i in data.keys()]
for each_v in data.values():
if isinstance(each_v, dict):
flat_dict_return_unique_key(each_v, unique_keys)
return list(set(unique_keys))
I always prefer access dict objects via .items(), so for flattening dicts I use the following recursive generator flat_items(d). If you like to have dict again, simply wrap it like this: flat = dict(flat_items(d))
def flat_items(d, key_separator='.'):
"""
Flattens the dictionary containing other dictionaries like here: https://stackoverflow.com/questions/6027558/flatten-nested-python-dictionaries-compressing-keys
>>> example = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}
>>> flat = dict(flat_items(example, key_separator='_'))
>>> assert flat['c_b_y'] == 10
"""
for k, v in d.items():
if type(v) is dict:
for k1, v1 in flat_items(v, key_separator=key_separator):
yield key_separator.join((k, k1)), v1
else:
yield k, v
def flatten_nested_dict(_dict, _str=''):
'''
recursive function to flatten a nested dictionary json
'''
ret_dict = {}
for k, v in _dict.items():
if isinstance(v, dict):
ret_dict.update(flatten_nested_dict(v, _str = '_'.join([_str, k]).strip('_')))
elif isinstance(v, list):
for index, item in enumerate(v):
if isinstance(item, dict):
ret_dict.update(flatten_nested_dict(item, _str= '_'.join([_str, k, str(index)]).strip('_')))
else:
ret_dict['_'.join([_str, k, str(index)]).strip('_')] = item
else:
ret_dict['_'.join([_str, k]).strip('_')] = v
return ret_dict
Using dict.popitem() in straightforward nested-list-like recursion:
def flatten(d):
if d == {}:
return d
else:
k,v = d.popitem()
if (dict != type(v)):
return {k:v, **flatten(d)}
else:
flat_kv = flatten(v)
for k1 in list(flat_kv.keys()):
flat_kv[k + '_' + k1] = flat_kv[k1]
del flat_kv[k1]
return {**flat_kv, **flatten(d)}
If you do not mind recursive functions, here is a solution. I have also taken the liberty to include an exclusion-parameter in case there are one or more values you wish to maintain.
Code:
def flatten_dict(dictionary, exclude = [], delimiter ='_'):
flat_dict = dict()
for key, value in dictionary.items():
if isinstance(value, dict) and key not in exclude:
flatten_value_dict = flatten_dict(value, exclude, delimiter)
for k, v in flatten_value_dict.items():
flat_dict[f"{key}{delimiter}{k}"] = v
else:
flat_dict[key] = value
return flat_dict
Usage:
d = {'a':1, 'b':[1, 2], 'c':3, 'd':{'a':4, 'b':{'a':7, 'b':8}, 'c':6}, 'e':{'a':1,'b':2}}
flat_d = flatten_dict(dictionary=d, exclude=['e'], delimiter='.')
print(flat_d)
Output:
{'a': 1, 'b': [1, 2], 'c': 3, 'd.a': 4, 'd.b.a': 7, 'd.b.b': 8, 'd.c': 6, 'e': {'a': 1, 'b': 2}}
Variation of this Flatten nested dictionaries, compressing keys with max_level and custom reducer.
def flatten(d, max_level=None, reducer='tuple'):
if reducer == 'tuple':
reducer_seed = tuple()
reducer_func = lambda x, y: (*x, y)
else:
raise ValueError(f'Unknown reducer: {reducer}')
def impl(d, pref, level):
return reduce(
lambda new_d, kv:
(max_level is None or level < max_level)
and isinstance(kv[1], dict)
and {**new_d, **impl(kv[1], reducer_func(pref, kv[0]), level + 1)}
or {**new_d, reducer_func(pref, kv[0]): kv[1]},
d.items(),
{}
)
return impl(d, reducer_seed, 0)
I tried some of the solutions on this page - though not all - but those I tried failed to handle the nested list of dict.
Consider a dict like this:
d = {
'owner': {
'name': {'first_name': 'Steven', 'last_name': 'Smith'},
'lottery_nums': [1, 2, 3, 'four', '11', None],
'address': {},
'tuple': (1, 2, 'three'),
'tuple_with_dict': (1, 2, 'three', {'is_valid': False}),
'set': {1, 2, 3, 4, 'five'},
'children': [
{'name': {'first_name': 'Jessica',
'last_name': 'Smith', },
'children': []
},
{'name': {'first_name': 'George',
'last_name': 'Smith'},
'children': []
}
]
}
}
Here's my makeshift solution:
def flatten_dict(input_node: dict, key_: str = '', output_dict: dict = {}):
if isinstance(input_node, dict):
for key, val in input_node.items():
new_key = f"{key_}.{key}" if key_ else f"{key}"
flatten_dict(val, new_key, output_dict)
elif isinstance(input_node, list):
for idx, item in enumerate(input_node):
flatten_dict(item, f"{key_}.{idx}", output_dict)
else:
output_dict[key_] = input_node
return output_dict
which produces:
{
owner.name.first_name: Steven,
owner.name.last_name: Smith,
owner.lottery_nums.0: 1,
owner.lottery_nums.1: 2,
owner.lottery_nums.2: 3,
owner.lottery_nums.3: four,
owner.lottery_nums.4: 11,
owner.lottery_nums.5: None,
owner.tuple: (1, 2, 'three'),
owner.tuple_with_dict: (1, 2, 'three', {'is_valid': False}),
owner.set: {1, 2, 3, 4, 'five'},
owner.children.0.name.first_name: Jessica,
owner.children.0.name.last_name: Smith,
owner.children.1.name.first_name: George,
owner.children.1.name.last_name: Smith,
}
A makeshift solution and it's not perfect.
NOTE:
it doesn't keep empty dicts such as the address: {} k/v pair.
it won't flatten dicts in nested tuples - though it would be easy to add using the fact that python tuples act similar to lists.
You can use recursion in order to flatten your dictionary.
import collections
def flatten(
nested_dict,
seperator='.',
name=None,
):
flatten_dict = {}
if not nested_dict:
return flatten_dict
if isinstance(
nested_dict,
collections.abc.MutableMapping,
):
for key, value in nested_dict.items():
if name is not None:
flatten_dict.update(
flatten(
nested_dict=value,
seperator=seperator,
name=f'{name}{seperator}{key}',
),
)
else:
flatten_dict.update(
flatten(
nested_dict=value,
seperator=seperator,
name=key,
),
)
else:
flatten_dict[name] = nested_dict
return flatten_dict
if __name__ == '__main__':
nested_dict = {
1: 'a',
2: {
3: 'c',
4: {
5: 'e',
},
6: [1, 2, 3, 4, 5, ],
},
}
print(
flatten(
nested_dict=nested_dict,
),
)
Output:
{
"1":"a",
"2.3":"c",
"2.4.5":"e",
"2.6":[1, 2, 3, 4, 5]
}

How can I get a list of nested dictionary keys as dot separated strings?

Say I have a dictionary that looks like:
d = {'a': 1, 'b': {'sa': 11, 'sb': 22, 'sc': {'ssa': 111, 'ssb': 222}}, 'c': 3}
I want a list of all the keys whose values aren't other dicts, but represented by their dot notation (assuming you 'dot' at each level of the dict). To put it another way, I want the compound, dot-notation key for all values who have no children.
For example, for the above dict, I would like to get (not necessarily in any order):
['a',
'b.sa',
'b.sb',
'b.sc.ssa',
'b.sc.ssb',
'c']
I'm sure there is a more elegant way to solve this problem but this should get you started.
d = {'a': 1, 'b': {'sa': 11, 'sb': 22, 'sc': {'ssa': 111, 'ssb': 222}}, 'c': 3}
def dotter(d, key, dots):
if isinstance(d, dict):
for k in d:
dotter(d[k], key + '.' + k if key else k, dots)
else:
dots.append(key)
return dots
print dotter(d, '', [])
d = {'a': 1, 'b': {'sa': 11, 'sb': 22, 'sc': {'ssa': 111, 'ssb': 222}}, 'c': 3}
def fun(k, d, pre):
path = '%s.%s' % (pre, k) if pre else k
return path if type(d[k]) is not dict else ",".join([fun(i,d[k], path) for i in d[k]])
print ",".join([fun(k,d, '') for k in d]).split(',')
OUTPUT
['a', 'c', 'b.sc.ssa', 'b.sc.ssb', 'b.sb', 'b.sa']
In case you want the dict with its values
def dotter(mixed, key='', dots={}):
if isinstance(mixed, dict):
for (k, v) in mixed.items():
dotter(mixed[k], '%s.%s' % (key, k) if key else k)
else:
dots[key] = mixed
return dots
>>> d = {'a': 1, 'b': {'sa': 11, 'sb': 22, 'sc': {'ssa': 111, 'ssb': 222}}, 'c': 3}
>>> dotted_dict = dotter(d)
>>> print(dotted_dict)
{'a': 1, 'c': 3, 'b.sa': 11, 'b.sb': 22, 'b.sc.ssb': 222, 'b.sc.ssa': 111}

Combining Two Dictionaries by Like Keys

Let's say I have two dictionaries like so:
first_dict = {'1': 3, '2': 4, '3':8, '9': 20}
second_dict = {'3': 40, '9': 28, '100': 3}
Now here's the idea: I want to get all the keys that are the same, and make the entries for those keys into a dictionary of each value.
For example:
combined_dict = {'3': {'first_dict': 8, 'second_dict': 40}, '9': {'first_dict': 20, 'second_dict':28}}
What would be the best way to accomplish this for larger dictionaries?
Use dictionary view objects:
combined_dict = {key: {'first_dict': first_dict[key], 'second_dict': second_dict[key]}
for key in first_dict.viewkeys() & second_dict}
The expression first_dict.viewkeys() & second_dict uses a set intersection to list just the keys that both dictionaries have in common. The dict.viewkeys() gives us a view into the dictionary that acts like a set without creating a whole new set object.
This makes the above expression more efficient than creating two sets and intersecting those, especially when dealing with large dictionaries.
common_keys = set(first_dict.keys()) & set(second_dict.keys())
combined_dict = { key: {'first_dict': first_dict[key],
'second_dict': second_dict[key] } for key in common_keys
}
This works with arbitrary number of dicts:
def combine(**kwargs):
return { k: { d: kwargs[d][k] for d in kwargs
} for k in set.intersection(*map(set, kwargs.values()))
}
For example:
print combine(
one={'1': 3, '2': 4, '3':8, '9': 20},
two={'3': 40, '9': 28, '100': 3},
three={'3':14, '9':42})
# {'9': {'one': 20, 'three': 42, 'two': 28}, '3': {'one': 8, 'three': 14, 'two': 40}}

Categories

Resources