Is it possible to dash the blurred part of the image?
Right now I am using python with OpenCV. I know only how to load images and display if the image is blurred.
My input is a blurred image:
I would like to get:
I do not have:
original/unblurred image.
Output can have still blurred parts but dashed.
Thanks a lot for help!
You could try by computing the "Variance of the Laplacian" on parts of the image to detect the regions that have a low variation in greyscales (= assumed blurry) and which regions have a high variation in greyscale (= assumed non-blurry).
There is a nice tutorial on how to check if an image is blurry, it can be found here
There is also a post here that explains the theory behind it.
It ain't a complete solution, but it might be a way to start.
Related
My goal is to transform an image captured by a camera and transform that image to orthographical image without effects of perspective.
I have a few objects of known size on a surface. I have a camera, placed above and directed to those objects, as exemplified in the scene. The camera is capturing images as in image captured by the camera. I want to get an orthographical image of the environment as in orthographical image I want to get.
I have read few posts, but did not really understand their relevance to my problem, as I am not expert on these transforms. The answer from this question made me think it is possible, although I did not get how.
I would appreciate a clear explanation or pointing a clear tutorial, using Python or Lua if possible.
Any help is appreciated.
This was not possible without distorting the image. A straightforward explanation is that the perspective causes some parts of the image to be not visible, for example the white line in the marked area is not visible, and there could be something small that we are not able to observe. For those parts, the algorithm is supposed to produce some kind of prediction based on heuristics.
I'm currently learning about computer vision OCR. I have an image that needs to be scan. I face a problem during the image cleansing.
I use opencv2 in python to do the things. This is the original image:
image = cv2.imread(image_path)
cv2.imshow("imageWindow", image)
I want to cleans the above image, the number at the middle (64) is the area I wanted to scan. However, the number got cleaned as well.
image[np.where((image > [0,0,105]).all(axis=2))] = [255,255,255]
cv2.imshow("imageWindow", image)
What should I do to correct the cleansing here? I wanted to make the screen where the number 64 located is cleansed coz I will perform OCR scan afterwards.
Please help, thank you in advance.
What you're trying to do is called "thresholding". Looks like your technique is recoloring pixels that fall below a certain threshold, but the LCD digit darkness varies enough in that image to throw it off.
I'd spend some time reading about thresholding, here's a good starting place:
Thresholding in OpenCV with Python. You're probably going to need an adaptive technique (like Adaptive Gaussian Thresholding), but you may find other ways that work for your images.
I am new to openCV and python both. I am trying to count people in an image. The image is supposed to be captured with an overhead camera or the way a CCTV camera is placed.
I have converted the colored image into binary image and then inverted the binary image. Then I used bitwise OR on original and inverted binary image so that the background is white and the people are colored.
How to count these people? Is it necessary to use a classifier or can i just count the contours ,if yes then how to count them?
Plus there are some issues with the technique I'm using.
Faces of people are light in color so sometimes only hair are getting extracted.
The dark objects other than people also get extracted.
If the floor is dark it won't give the binary image that is needed.
So is there any other method to achieve what I'm trying to do here?
Not sure but it may worth to check there.
It explain how to perform face recognition using openCV and python in pictures and extand it to webcam here, it's not quite what your looking for but may give you some clue/
I'm trying to isolate the sky region from a series of grayscale images in OpenCV. All of the images are fairly similar: the top of the image is always a sky region, and is always a bright, gray-white colour. I've attempted contour-based approaches, and written my own algorithm to extract the line of the horizon and divide the image into two masks accordingly. However, I've noticed that the reliability of the magic wand tool in Photoshop on this image set is MUCH more accurate.
Here's the image that I'm processing:
and the result that I hope to achieve:
How can this be imitated in OpenCV?
I think what you're looking for is the grabcut algorithm
I need to blur faces to protect the privacy of people in street view images like Google does in Google Street View. The blur should not make the image aesthetically unpleasant. I read in the paper titled Large-scale Privacy Protection in Google Street View by Google (link) that Google does the following to blur the detected faces.
We chose to apply a combination of noise and aggressive Gaussian blur that we alpha-blend smoothly with the background starting at the edge of the box.
Can someone explain how to perform this task? I understand Gaussian Blur, but how to blend it with the background?
Code will be helpful but not required
My question is not how to blur a part of image?, it is how to blend the blurred portion with the background so that blur is not unpleasant? Please refer to the quote I provided from the paper.
I have large images and a lot of them. An iterative process as in the possible duplicate will be time consuming.
EDIT
If someone ever wants to do something like this, I wrote a Python implementation. It isn't exactly what I was asking for but it does the job.
Link: pyBlur
I'm reasonably sure the general idea is:
Create a shape for the area you want to blur (say a rectangle).
Extend your shape by X pixels outwards.
Apply a gradient on alpha from 0.0 .. 1.0 (or similar) over the extended area.
Apply blur the extended area (ignoring alpha)
Now use an alpha-blend to apply the modified image to the original image.
Adding noise in a similar way to the original image would make it further less obvious that it's been blurred (because the blur will of course also blur away the noise).
I don't know the exact parameters for how much to grow, what values to use for the alpha gradient, etc, but that's what I understand from the quoted text.