I am loading NumPy arrays as images in PyTorch while training the model, it’s giving me this error, I tried everything but couldn’t figure out pls help…, I am training a classifier model.......................................................................................................................................................................................
ValueError Traceback (most recent call last)
<ipython-input-12-b4d3f7be01c1> in <module>
1 # training
----> 2 trained_model = train(n_epochs, np.Inf, loaders, model, optimizer, criterion)
<ipython-input-10-b4d180a2c041> in train(n_epochs, valid_loss_min_input, loaders, model, optimizer, criterion, device, checkpoint_path, best_model_path)
29 ###################
30 model.train()
---> 31 for batch_idx, (data, target) in enumerate(loaders['train']):
32 # move to gpu
33 data, target = data.to(device), target.to(device)
G:\anaconda3\envs\data_env\lib\site-packages\torch\utils\data\dataloader.py in __next__(self)
343
344 def __next__(self):
--> 345 data = self._next_data()
346 self._num_yielded += 1
347 if self._dataset_kind == _DatasetKind.Iterable and \
G:\anaconda3\envs\data_env\lib\site-packages\torch\utils\data\dataloader.py in _next_data(self)
383 def _next_data(self):
384 index = self._next_index() # may raise StopIteration
--> 385 data = self._dataset_fetcher.fetch(index) # may raise StopIteration
386 if self._pin_memory:
387 data = _utils.pin_memory.pin_memory(data)
G:\anaconda3\envs\data_env\lib\site-packages\torch\utils\data\_utils\fetch.py in fetch(self, possibly_batched_index)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
G:\anaconda3\envs\data_env\lib\site-packages\torch\utils\data\_utils\fetch.py in <listcomp>(.0)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
G:\anaconda3\envs\data_env\lib\site-packages\torchvision\datasets\folder.py in __getitem__(self, index)
135 sample = self.loader(path)
136 if self.transform is not None:
--> 137 sample = self.transform(sample)
138 if self.target_transform is not None:
139 target = self.target_transform(target)
G:\anaconda3\envs\data_env\lib\site-packages\torchvision\transforms\transforms.py in __call__(self, img)
59 def __call__(self, img):
60 for t in self.transforms:
---> 61 img = t(img)
62 return img
63
<ipython-input-3-88cdee8f0d6c> in __call__(self, img)
7 im = np.asarray(img)
8 im = detect(im)
----> 9 img = Image.fromarray(im)
10 img = img.resize(size=(128, 128))
11 return img
G:\anaconda3\envs\data_env\lib\site-packages\PIL\Image.py in fromarray(obj, mode)
2768 obj = obj.tostring()
2769
-> 2770 return frombuffer(mode, size, obj, "raw", rawmode, 0, 1)
2771
2772
G:\anaconda3\envs\data_env\lib\site-packages\PIL\Image.py in frombuffer(mode, size, data, decoder_name, *args)
2708 return im
2709
-> 2710 return frombytes(mode, size, data, decoder_name, args)
2711
2712
G:\anaconda3\envs\data_env\lib\site-packages\PIL\Image.py in frombytes(mode, size, data, decoder_name, *args)
2648
2649 im = new(mode, size)
-> 2650 im.frombytes(data, decoder_name, args)
2651 return im
2652
G:\anaconda3\envs\data_env\lib\site-packages\PIL\Image.py in frombytes(self, data, decoder_name, *args)
795 # unpack data
796 d = _getdecoder(self.mode, decoder_name, args)
--> 797 d.setimage(self.im)
798 s = d.decode(data)
799
ValueError: tile cannot extend outside the image
In the custom function, I am trying to preprocess the image and then calling it
It works fine when I test out the code loading a small batch for display
Related
I am trying to fine tune the T5 transformer for summarization but I am receiving a key error message:
KeyError: 'Indexing with integers (to access backend Encoding for a given batch index) is not available when using Python based tokenizers'
The code I am using is basically this:
model_name = '...'
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
model.to(device)
(...)
df_dataset = df_dataset[['summary','document']]
df_dataset.document = 'summarize: ' + df_dataset.document
X = list(df_dataset['document'])
y = list(df_dataset['summary'])
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
X_train_tokenized = tokenizer(X_train, padding=True, truncation=True, max_length=512)
y_train_tokenized = tokenizer(y_train, padding=True, truncation=True, max_length=512)
X_val_tokenized = tokenizer(X_val, padding=True, truncation=True, max_length=512)
y_val_tokenized = tokenizer(y_val, padding=True, truncation=True, max_length=512)
# Create torch dataset
class Dataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
training_set = Dataset(X_train_tokenized, y_train_tokenized)
validation_set = Dataset(X_val_tokenized, y_val_tokenized)
# Define Trainer
args = TrainingArguments(
output_dir="output",
evaluation_strategy="steps",
eval_steps=500,
per_device_train_batch_size=TRAIN_BATCH_SIZE,
per_device_eval_batch_size=VALID_BATCH_SIZE,
num_train_epochs=TRAIN_EPOCHS,
save_steps=3000,
load_best_model_at_end = True,
)
trainer = Trainer(
model=model,
args=args,
train_dataset=training_set,
eval_dataset=validation_set,
compute_metrics=compute_metrics,
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
trainer.train()
And the full error:
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-29-f31e4c5cde21> in <module>
1 # Train pre-trained model
----> 2 trainer.train()
c:\programdata\anaconda3\envs\summa\lib\site-packages\transformers\trainer.py in train(self, resume_from_checkpoint, trial, **kwargs)
1099 self.control = self.callback_handler.on_epoch_begin(self.args, self.state, self.control)
1100
-> 1101 for step, inputs in enumerate(epoch_iterator):
1102
1103 # Skip past any already trained steps if resuming training
c:\programdata\anaconda3\envs\summa\lib\site-packages\torch\utils\data\dataloader.py in __next__(self)
515 if self._sampler_iter is None:
516 self._reset()
--> 517 data = self._next_data()
518 self._num_yielded += 1
519 if self._dataset_kind == _DatasetKind.Iterable and \
c:\programdata\anaconda3\envs\summa\lib\site-packages\torch\utils\data\dataloader.py in _next_data(self)
555 def _next_data(self):
556 index = self._next_index() # may raise StopIteration
--> 557 data = self._dataset_fetcher.fetch(index) # may raise StopIteration
558 if self._pin_memory:
559 data = _utils.pin_memory.pin_memory(data)
c:\programdata\anaconda3\envs\summa\lib\site-packages\torch\utils\data\_utils\fetch.py in fetch(self, possibly_batched_index)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
c:\programdata\anaconda3\envs\summa\lib\site-packages\torch\utils\data\_utils\fetch.py in <listcomp>(.0)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
<ipython-input-24-67979e648b75> in __getitem__(self, idx)
7 def __getitem__(self, idx):
8 item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
----> 9 item['labels'] = torch.tensor(self.labels[idx])
10 return item
11
c:\programdata\anaconda3\envs\summa\lib\site-packages\transformers\tokenization_utils_base.py in __getitem__(self, item)
232 return self._encodings[item]
233 else:
--> 234 raise KeyError(
235 "Indexing with integers (to access backend Encoding for a given batch index) "
236 "is not available when using Python based tokenizers"
KeyError: 'Indexing with integers (to access backend Encoding for a given batch index) is not available when using Python based tokenizers'
And if change the line:
tokenizer = T5Tokenizer.from_pretrained(model_name)
To:
tokenizer = T5TokenizerFast.from_pretrained(model_name)
the error changes to:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-28-f31e4c5cde21> in <module>
1 # Train pre-trained model
----> 2 trainer.train()
c:\programdata\anaconda3\envs\summa\lib\site-packages\transformers\trainer.py in train(self, resume_from_checkpoint, trial, **kwargs)
1099 self.control = self.callback_handler.on_epoch_begin(self.args, self.state, self.control)
1100
-> 1101 for step, inputs in enumerate(epoch_iterator):
1102
1103 # Skip past any already trained steps if resuming training
c:\programdata\anaconda3\envs\summa\lib\site-packages\torch\utils\data\dataloader.py in __next__(self)
515 if self._sampler_iter is None:
516 self._reset()
--> 517 data = self._next_data()
518 self._num_yielded += 1
519 if self._dataset_kind == _DatasetKind.Iterable and \
c:\programdata\anaconda3\envs\summa\lib\site-packages\torch\utils\data\dataloader.py in _next_data(self)
555 def _next_data(self):
556 index = self._next_index() # may raise StopIteration
--> 557 data = self._dataset_fetcher.fetch(index) # may raise StopIteration
558 if self._pin_memory:
559 data = _utils.pin_memory.pin_memory(data)
c:\programdata\anaconda3\envs\summa\lib\site-packages\torch\utils\data\_utils\fetch.py in fetch(self, possibly_batched_index)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
c:\programdata\anaconda3\envs\summa\lib\site-packages\torch\utils\data\_utils\fetch.py in <listcomp>(.0)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
<ipython-input-23-67979e648b75> in __getitem__(self, idx)
7 def __getitem__(self, idx):
8 item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
----> 9 item['labels'] = torch.tensor(self.labels[idx])
10 return item
11
RuntimeError: Could not infer dtype of tokenizers.Encoding
Any idea of what is wrong?
This is because this tokenizer returns an object with the following structure
You have to amend the __getitem__ method of your dataset class along the lines of
class ForT5Dataset(torch.utils.data.Dataset):
def __init__(self, inputs, targets):
self.inputs = inputs
self.targets = targets
def __len__(self):
return len(self.targets)
def __getitem__(self, index):
input_ids = torch.tensor(self.inputs["input_ids"][index]).squeeze()
target_ids = torch.tensor(self.targets["input_ids"][index]).squeeze()
return {"input_ids": input_ids, "labels": target_ids}
and pass data prop when initializing, like:
train_ds = ForT5Dataset(train_in.data, train_out.data).
I was trying to load some data using pytorch, the code is like the followings:
test_ds = ImageFolder(root="./test", transform=data_transform)
test_dl = DataLoader(test_ds,batch_size=12)
x , y= next(iter(test_dl))
when next(iter(test_dl)) is called, it throws TypeError: an integer is required (got type tuple) , I could not figure out why, since earlier when I did the same task using MAC, the result is OK, does this has something to do with OS
The full traceback:
TypeError Traceback (most recent call last)
<ipython-input-89-cecf634332ce> in <module>
----> 1 next(iter(test_dl))
D:\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py in __next__(self)
312 if self.num_workers == 0: # same-process loading
313 indices = next(self.sample_iter) # may raise StopIteration
--> 314 batch = self.collate_fn([self.dataset[i] for i in indices])
315 if self.pin_memory:
316 batch = pin_memory_batch(batch)
D:\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py in <listcomp>(.0)
312 if self.num_workers == 0: # same-process loading
313 indices = next(self.sample_iter) # may raise StopIteration
--> 314 batch = self.collate_fn([self.dataset[i] for i in indices])
315 if self.pin_memory:
316 batch = pin_memory_batch(batch)
D:\Anaconda3\lib\site-packages\torchvision\datasets\folder.py in __getitem__(self, index)
101 sample = self.loader(path)
102 if self.transform is not None:
--> 103 sample = self.transform(sample)
104 if self.target_transform is not None:
105 target = self.target_transform(target)
D:\Anaconda3\lib\site-packages\torchvision\transforms\transforms.py in __call__(self, img)
47 def __call__(self, img):
48 for t in self.transforms:
---> 49 img = t(img)
50 return img
51
D:\Anaconda3\lib\site-packages\torchvision\transforms\transforms.py in __call__(self, img)
544 """
545 i, j, h, w = self.get_params(img, self.scale, self.ratio)
--> 546 return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)
547
548 def __repr__(self):
D:\Anaconda3\lib\site-packages\torchvision\transforms\functional.py in resized_crop(img, i, j, h, w, size, interpolation)
329 assert _is_pil_image(img), 'img should be PIL Image'
330 img = crop(img, i, j, h, w)
--> 331 img = resize(img, size, interpolation)
332 return img
333
D:\Anaconda3\lib\site-packages\torchvision\transforms\functional.py in resize(img, size, interpolation)
204 return img.resize((ow, oh), interpolation)
205 else:
--> 206 return img.resize(size[::-1], interpolation)
207
208
D:\Anaconda3\lib\site-packages\PIL\Image.py in resize(self, size, resample, box)
1890 self.load()
1891
-> 1892 return self._new(self.im.resize(size, resample, box))
1893
1894 def rotate(
TypeError: an integer is required (got type tuple)
I am trying to create a custom transformation to part of the CIFAR10 data set which superimposing of an image over the dataset. I was able to download the data and divide it into subsets. Using the following code:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
traindata = datasets.CIFAR10('./data', train=True, download=True,
transform= transform_train)
partitions = 5
traindata_split = torch.utils.data.random_split(traindata, [int(traindata.data.shape[0] / partitions) for _ in range(partitions)])
then I wanted to modify part of the splits so I created the following class and functions to use as as follows:
class MyDataset(Dataset): # https://discuss.pytorch.org/t/torch-utils-data-dataset-random-split/32209/3
def __init__(self, subset, transform=None):
self.subset = subset
self.transform = transform
def __getitem__(self, index):
x, y = self.subset[index]
if self.transform:
x = self.transform(x)
return x, y
def __len__(self):
return len(self.subset)
and
class ImageSuperImpose(object):
""" Image input as PIL and output as PIL
To be used as part of torchvision.transforms
Args: p, a threshold value to control image thinning
"""
def __init__(self, p=0):
self.p = p
def __call__(self, image):
img = cv2.imread('img.jpg')
img = img('float32')/255
imgSm = cv2.resize(img,(32,32))
np_arr = image.cpu().detach().numpy().T
sample = cv2.addWeighted(np_arr, 1, imgSm, 1, 0)
sample = sample.T
t = torch.from_numpy(sample)
return sample
transform_train2 = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
ImagePoisoning(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
datasetA = MyDataset(
traindata_split[0], transform= transform_train2
)
test_loader = torch.utils.data.DataLoader(datasetA, batch_size=128, shuffle=True)
But when I tried to train the model on the subset I got the following error:
RuntimeError: The size of tensor a (32) must match the size of tensor b (3) at non-singleton dimension 0
** UPDATE**
Here is the full given error
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-20-7428084b03be> in <module>()
----> 1 train(model, opt, test_loader, 3)
9 frames
<ipython-input-14-fcb03e1d7685> in client_update(client_model, optimizer, train_loader, epoch)
5 client_model.train()
6 for e in range(epoch):
----> 7 for batch_idx, (data, target) in enumerate(train_loader):
8 data, target = data.to(device), target.to(device)
9 optimizer.zero_grad()
/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py in __next__(self)
433 if self._sampler_iter is None:
434 self._reset()
--> 435 data = self._next_data()
436 self._num_yielded += 1
437 if self._dataset_kind == _DatasetKind.Iterable and \
/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py in _next_data(self)
473 def _next_data(self):
474 index = self._next_index() # may raise StopIteration
--> 475 data = self._dataset_fetcher.fetch(index) # may raise StopIteration
476 if self._pin_memory:
477 data = _utils.pin_memory.pin_memory(data)
/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py in fetch(self, possibly_batched_index)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py in <listcomp>(.0)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
<ipython-input-7-1bde43acaff0> in __getitem__(self, index)
7 x, y = self.subset[index]
8 if self.transform:
----> 9 x = self.transform(x)
10 return x, y
11
/usr/local/lib/python3.6/dist-packages/torchvision/transforms/transforms.py in __call__(self, img)
65 def __call__(self, img):
66 for t in self.transforms:
---> 67 img = t(img)
68 return img
69
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
/usr/local/lib/python3.6/dist-packages/torchvision/transforms/transforms.py in forward(self, tensor)
224 Tensor: Normalized Tensor image.
225 """
--> 226 return F.normalize(tensor, self.mean, self.std, self.inplace)
227
228 def __repr__(self):
/usr/local/lib/python3.6/dist-packages/torchvision/transforms/functional.py in normalize(tensor, mean, std, inplace)
282 if std.ndim == 1:
283 std = std.view(-1, 1, 1)
--> 284 tensor.sub_(mean).div_(std)
285 return tensor
286
RuntimeError: The size of tensor a (32) must match the size of tensor b (3) at non-singleton dimension 0
I try to launch a code with Numba and I get errors.
What I want to do is to compute the cosine similarity with a cosinus_sparse function. This class method I use in the search class method, then I call search in the results method. Although I added the #jit decorator before each method I have this implementation error that appears.
Here is my code:
import numpy as np
from numba import jit
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
import pandas as pd
import math
class Search:
def __init__(self, corpus, method='XTERM', stop_words='english', max_df=1.0, min_df=1, max_features=None):
self.corpus = corpus
self.method = method
self.stop_words = stop_words
self.max_df = max_df
self.min_df = min_df
self.max_features = max_features
self.vectorization()
self.get_shape()
self.features_names = self.bag_of_word.get_feature_names()
def vectorization(self):
if self.method == 'XTERM':
self.bag_of_word = CountVectorizer(stop_words=self.stop_words,
max_df=self.max_df, min_df=self.min_df,
max_features=self.max_features)
self.corpus_vectorized = self.bag_of_word.fit_transform(self.corpus)
elif self.method == 'TFxIDF':
self.bag_of_word = TfidfVectorizer(stop_words=self.stop_words,
max_df=self.max_df, min_df=self.min_df,
max_features=self.max_features)
self.corpus_vectorized = self.bag_of_word.fit_transform(self.corpus)
else:
raise MethodError('Method provided is not valid')
def get_shape(self):
self.n_docs, self.n_terms = self.corpus_vectorized.shape
def get_query(self, query):
self.indexes = [self.features_names.index(q) for q in query if q in self.features_names]
self.query_vec = np.zeros(self.n_terms)
self.query_vec[self.indexes] = 1
#staticmethod
#jit(nopython=True)
def cosinus_sparse(i, j):
num = i.dot(j)
spars = i * i.transpose()
den = math.sqrt(spars[0, 0]) * math.sqrt(sum(j * j))
if (den > 0):
return int(num) / den
else:
return 0
#jit(nopython=True)
def search(self, q) -> dict:
cc = {i: self.cosinus_sparse(self.corpus_vectorized[i, :], q) for i in range(self.n_docs)}
cc = sorted(cc.items(), key=lambda x: x[1], reverse=True)
return cc
#jit
def get_result(self) -> list:
self.result = self.search(self.query_vec)
def result_announcer(self):
self.search_lenght = len([i for i in self.result if i[1] > 0])
print('{} documents linked to your query where found'.format(search_lenght))
def verif_query_vec(self, query):
if int(sum(self.query_vec)) != len(query):
raise QueryError('Error in query or query_vec')
def processing(self, query):
try:
self.get_query(query)
self.verif_query_vec(query)
self.get_result()
except NameError:
self.vectorisation()
self.get_shape()
self.get_feature_names()
self.get_query(query)
self.verif_query_vec(query)
self.get_result()
import ipywidgets as widgets
from IPython.display import display
text = widgets.Text(
value='',
placeholder='Type words',
description='String:',
disabled=False
)
method_radio = widgets.RadioButtons(
options=['XTERM', 'TFxIDF'],
# value='TF',
description='Method:',
disabled=False
)
submit = widgets.Button(description = 'Search')
display(widgets.VBox([text, radio, submit]))
def handle_submit(sender):
global query
query = text.value.lower().split(' ')
method = method_radio.value
# instentiation de l'objet de recherche
global search_obj
search_obj = Search(corpus=corpus, method=method, )
search_obj.processing(query)
submit.on_click(handle_submit)
Here is the error
NotImplementedError Traceback (most recent call last)
<ipython-input-288-025a488daa60> in handle_submit(sender)
27 global search_obj
28 search_obj = Search(corpus=corpus, method=method, )
---> 29 search_obj.processing(query)
30
31 submit.on_click(handle_submit)
<ipython-input-287-147d4798a88b> in processing(self, query)
167 self.get_query(query)
168 self.verif_query_vec(query)
--> 169 self.get_result()
170
171 except NameError:
~\Anaconda3\lib\site-packages\numba\dispatcher.py in _compile_for_args(self, *args, **kws)
365 e.patch_message(''.join(e.args) + help_msg)
366 # ignore the FULL_TRACEBACKS config, this needs reporting!
--> 367 raise e
368
369 def inspect_llvm(self, signature=None):
~\Anaconda3\lib\site-packages\numba\dispatcher.py in _compile_for_args(self, *args, **kws)
322 argtypes.append(self.typeof_pyval(a))
323 try:
--> 324 return self.compile(tuple(argtypes))
325 except errors.TypingError as e:
326 # Intercept typing error that may be due to an argument
~\Anaconda3\lib\site-packages\numba\compiler_lock.py in _acquire_compile_lock(*args, **kwargs)
30 def _acquire_compile_lock(*args, **kwargs):
31 with self:
---> 32 return func(*args, **kwargs)
33 return _acquire_compile_lock
34
~\Anaconda3\lib\site-packages\numba\dispatcher.py in compile(self, sig)
653
654 self._cache_misses[sig] += 1
--> 655 cres = self._compiler.compile(args, return_type)
656 self.add_overload(cres)
657 self._cache.save_overload(sig, cres)
~\Anaconda3\lib\site-packages\numba\dispatcher.py in compile(self, args, return_type)
80 args=args, return_type=return_type,
81 flags=flags, locals=self.locals,
---> 82 pipeline_class=self.pipeline_class)
83 # Check typing error if object mode is used
84 if cres.typing_error is not None and not flags.enable_pyobject:
~\Anaconda3\lib\site-packages\numba\compiler.py in compile_extra(typingctx, targetctx, func, args, return_type, flags, locals, library, pipeline_class)
924 pipeline = pipeline_class(typingctx, targetctx, library,
925 args, return_type, flags, locals)
--> 926 return pipeline.compile_extra(func)
927
928
~\Anaconda3\lib\site-packages\numba\compiler.py in compile_extra(self, func)
372 self.lifted = ()
373 self.lifted_from = None
--> 374 return self._compile_bytecode()
375
376 def compile_ir(self, func_ir, lifted=(), lifted_from=None):
~\Anaconda3\lib\site-packages\numba\compiler.py in _compile_bytecode(self)
855 """
856 assert self.func_ir is None
--> 857 return self._compile_core()
858
859 def _compile_ir(self):
~\Anaconda3\lib\site-packages\numba\compiler.py in _compile_core(self)
842 self.define_pipelines(pm)
843 pm.finalize()
--> 844 res = pm.run(self.status)
845 if res is not None:
846 # Early pipeline completion
~\Anaconda3\lib\site-packages\numba\compiler_lock.py in _acquire_compile_lock(*args, **kwargs)
30 def _acquire_compile_lock(*args, **kwargs):
31 with self:
---> 32 return func(*args, **kwargs)
33 return _acquire_compile_lock
34
~\Anaconda3\lib\site-packages\numba\compiler.py in run(self, status)
253 # No more fallback pipelines?
254 if is_final_pipeline:
--> 255 raise patched_exception
256 # Go to next fallback pipeline
257 else:
~\Anaconda3\lib\site-packages\numba\compiler.py in run(self, status)
244 try:
245 event(stage_name)
--> 246 stage()
247 except _EarlyPipelineCompletion as e:
248 return e.result
~\Anaconda3\lib\site-packages\numba\compiler.py in stage_inline_pass(self)
582 self.flags.auto_parallel,
583 self.parfor_diagnostics.replaced_fns)
--> 584 inline_pass.run()
585 # Remove all Dels, and re-run postproc
586 post_proc = postproc.PostProcessor(self.func_ir)
~\Anaconda3\lib\site-packages\numba\inline_closurecall.py in run(self)
75
76 if guard(self._inline_closure,
---> 77 work_list, block, i, func_def):
78 modified = True
79 break # because block structure changed
~\Anaconda3\lib\site-packages\numba\ir_utils.py in guard(func, *args, **kwargs)
1358 """
1359 try:
-> 1360 return func(*args, **kwargs)
1361 except GuardException:
1362 return None
~\Anaconda3\lib\site-packages\numba\inline_closurecall.py in _inline_closure(self, work_list, block, i, func_def)
212 inline_closure_call(self.func_ir,
213 self.func_ir.func_id.func.__globals__,
--> 214 block, i, func_def, work_list=work_list)
215 return True
216
~\Anaconda3\lib\site-packages\numba\inline_closurecall.py in inline_closure_call(func_ir, glbls, block, i, callee, typingctx, arg_typs, typemap, calltypes, work_list)
253 callee_closure = callee.closure if hasattr(callee, 'closure') else callee.__closure__
254 # first, get the IR of the callee
--> 255 callee_ir = get_ir_of_code(glbls, callee_code)
256 callee_blocks = callee_ir.blocks
257
~\Anaconda3\lib\site-packages\numba\ir_utils.py in get_ir_of_code(glbls, fcode)
1572 f.__name__ = fcode.co_name
1573 from numba import compiler
-> 1574 ir = compiler.run_frontend(f)
1575 # we need to run the before inference rewrite pass to normalize the IR
1576 # XXX: check rewrite pass flag?
~\Anaconda3\lib\site-packages\numba\compiler.py in run_frontend(func)
168 interp = interpreter.Interpreter(func_id)
169 bc = bytecode.ByteCode(func_id=func_id)
--> 170 func_ir = interp.interpret(bc)
171 post_proc = postproc.PostProcessor(func_ir)
172 post_proc.run()
~\Anaconda3\lib\site-packages\numba\interpreter.py in interpret(self, bytecode)
101 # Data flow analysis
102 self.dfa = dataflow.DataFlowAnalysis(self.cfa)
--> 103 self.dfa.run()
104
105 # Temp states during interpretation
~\Anaconda3\lib\site-packages\numba\dataflow.py in run(self)
26 def run(self):
27 for blk in self.cfa.iterliveblocks():
---> 28 self.infos[blk.offset] = self.run_on_block(blk)
29
30 def run_on_block(self, blk):
~\Anaconda3\lib\site-packages\numba\dataflow.py in run_on_block(self, blk)
76 for offset in blk:
77 inst = self.bytecode[offset]
---> 78 self.dispatch(info, inst)
79 return info
80
~\Anaconda3\lib\site-packages\numba\dataflow.py in dispatch(self, info, inst)
86 fname = "op_%s" % inst.opname.replace('+', '_')
87 fn = getattr(self, fname, self.handle_unknown_opcode)
---> 88 fn(info, inst)
89
90 def handle_unknown_opcode(self, info, inst):
~\Anaconda3\lib\site-packages\numba\dataflow.py in handle_unknown_opcode(self, info, inst)
91 msg = "Use of unknown opcode {} at line {} of {}"
92 raise NotImplementedError(msg.format(inst.opname, inst.lineno,
---> 93 self.bytecode.func_id.filename))
94
95 def dup_topx(self, info, inst, count):
NotImplementedError: Failed in nopython mode pipeline (step: inline calls to locally defined closures)
Use of unknown opcode MAP_ADD at line 116 of <ipython-input-287-147d4798a88b>
How do I fix this error?
Thanks a lot for your help.
Normally i was working on letter&digit recognition on my computer and I wanted to move my project to Colab but unfortunately there was an error (you can see the error below).
after some debugging i found which line is giving me error.
transforms.RandomRotation(degrees=(90, -90))
below i wrote simple abstract code to show this error.This code does not work on colab but it works fine at my own computer environment.Problem might be about the different versions of pytorch library i have version 1.3.1 on my computer and colab uses version 1.4.0.
import torch
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
transformOpt = transforms.Compose([
transforms.RandomRotation(degrees=(90, -90)),
transforms.ToTensor()
])
train_set = datasets.MNIST(
root='', train=True, transform=transformOpt, download=True)
test_set = datasets.MNIST(
root='', train=False, transform=transformOpt, download=True)
train_loader = torch.utils.data.DataLoader(
dataset=train_set,
batch_size=100,
shuffle=True)
test_loader = torch.utils.data.DataLoader(
dataset=test_set,
batch_size=100,
shuffle=False)
images, labels = next(iter(train_loader))
plt.imshow(images[0].view(28, 28), cmap="gray")
plt.show()
The full error I got when I execute this sample code above on Google Colab.
TypeError Traceback (most recent call last)
<ipython-input-1-8409db422154> in <module>()
24 shuffle=False)
25
---> 26 images, labels = next(iter(train_loader))
27 plt.imshow(images[0].view(28, 28), cmap="gray")
28 plt.show()
10 frames
/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py in __next__(self)
343
344 def __next__(self):
--> 345 data = self._next_data()
346 self._num_yielded += 1
347 if self._dataset_kind == _DatasetKind.Iterable and \
/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py in _next_data(self)
383 def _next_data(self):
384 index = self._next_index() # may raise StopIteration
--> 385 data = self._dataset_fetcher.fetch(index) # may raise StopIteration
386 if self._pin_memory:
387 data = _utils.pin_memory.pin_memory(data)
/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py in fetch(self, possibly_batched_index)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py in <listcomp>(.0)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
/usr/local/lib/python3.6/dist-packages/torchvision/datasets/mnist.py in __getitem__(self, index)
95
96 if self.transform is not None:
---> 97 img = self.transform(img)
98
99 if self.target_transform is not None:
/usr/local/lib/python3.6/dist-packages/torchvision/transforms/transforms.py in __call__(self, img)
68 def __call__(self, img):
69 for t in self.transforms:
---> 70 img = t(img)
71 return img
72
/usr/local/lib/python3.6/dist-packages/torchvision/transforms/transforms.py in __call__(self, img) 1001 angle = self.get_params(self.degrees) 1002
-> 1003 return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill) 1004 1005 def
__repr__(self):
/usr/local/lib/python3.6/dist-packages/torchvision/transforms/functional.py in rotate(img, angle, resample, expand, center, fill)
727 fill = tuple([fill] * 3)
728
--> 729 return img.rotate(angle, resample, expand, center, fillcolor=fill)
730
731
/usr/local/lib/python3.6/dist-packages/PIL/Image.py in rotate(self, angle, resample, expand, center, translate, fillcolor) 2003 w, h = nw, nh 2004
-> 2005 return self.transform((w, h), AFFINE, matrix, resample, fillcolor=fillcolor) 2006 2007 def save(self, fp, format=None, **params):
/usr/local/lib/python3.6/dist-packages/PIL/Image.py in transform(self, size, method, data, resample, fill, fillcolor) 2297 raise ValueError("missing method data") 2298
-> 2299 im = new(self.mode, size, fillcolor) 2300 if method == MESH: 2301 # list of quads
/usr/local/lib/python3.6/dist-packages/PIL/Image.py in new(mode, size, color) 2503 im.palette = ImagePalette.ImagePalette() 2504 color = im.palette.getcolor(color)
-> 2505 return im._new(core.fill(mode, size, color)) 2506 2507
TypeError: function takes exactly 1 argument (3 given)
You're absolutely correct. torchvision 0.5 has a bug in RandomRotation() in the fill argument probably due to incompatible Pillow version. This issue has now been fixed (PR#1760) and will be resolved in the next release.
Temporarily, you add fill=(0,) to RandomRotation transform to fix it.
transforms.RandomRotation(degrees=(90, -90), fill=(0,))