I am using Tensorflow Object Detection API. Recently it was updated to Tensorflow2.
And with it authors put out a great Colab https://github.com/tensorflow/models/blob/master/research/object_detection/colab_tutorials/eager_few_shot_od_training_tf2_colab.ipynb. They fine-tune RetinaNet on new dataset, however I don't understand how can I use this to fine-tune CenterNet (and EfficientDet).
They have the following code for initialising RetinaNet model:
tf.keras.backend.clear_session()
print('Building model and restoring weights for fine-tuning...', flush=True)
num_classes = 1
pipeline_config = 'models/research/object_detection/configs/tf2/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8.config'
checkpoint_path = 'models/research/object_detection/test_data/checkpoint/ckpt-0'
# Load pipeline config and build a detection model.
#
# Since we are working off of a COCO architecture which predicts 90
# class slots by default, we override the `num_classes` field here to be just
# one (for our new rubber ducky class).
configs = config_util.get_configs_from_pipeline_file(pipeline_config)
model_config = configs['model']
model_config.ssd.num_classes = num_classes
model_config.ssd.freeze_batchnorm = True
detection_model = model_builder.build(
model_config=model_config, is_training=True)
# Set up object-based checkpoint restore --- RetinaNet has two prediction
# `heads` --- one for classification, the other for box regression. We will
# restore the box regression head but initialize the classification head
# from scratch (we show the omission below by commenting out the line that
# we would add if we wanted to restore both heads)
fake_box_predictor = tf.compat.v2.train.Checkpoint(
_base_tower_layers_for_heads=detection_model._box_predictor._base_tower_layers_for_heads,
# _prediction_heads=detection_model._box_predictor._prediction_heads,
# (i.e., the classification head that we *will not* restore)
_box_prediction_head=detection_model._box_predictor._box_prediction_head,
)
fake_model = tf.compat.v2.train.Checkpoint(
_feature_extractor=detection_model._feature_extractor,
_box_predictor=fake_box_predictor)
ckpt = tf.compat.v2.train.Checkpoint(model=fake_model)
ckpt.restore(checkpoint_path).expect_partial()
# Run model through a dummy image so that variables are created
image, shapes = detection_model.preprocess(tf.zeros([1, 640, 640, 3]))
prediction_dict = detection_model.predict(image, shapes)
_ = detection_model.postprocess(prediction_dict, shapes)
print('Weights restored!')
I tried to do similar thing with CenterNet model (it is used for inferencing in this Colab tutorial https://github.com/tensorflow/models/blob/master/research/object_detection/colab_tutorials/inference_tf2_colab.ipynb):
pipeline_config = 'models/research/object_detection/configs/tf2/centernet_hourglass104_512x512_coco17_tpu-8.config'
model_dir = 'models/research/object_detection/test_data/checkpoint/'
num_classes = 1
# Load pipeline config and build a detection model
configs = config_util.get_configs_from_pipeline_file(pipeline_config)
model_config = configs['model']
model_config.center_net.num_classes = num_classes
detection_model = model_builder.build(
model_config=model_config, is_training=True)
# Restore checkpoint
ckpt = tf.compat.v2.train.Checkpoint(
model=detection_model)
ckpt.restore(os.path.join(model_dir, 'ckpt-0')).expect_partial()
However, an exception is thrown because shapes are not compatible (because I changed number of classes). In the example with RetinaNet this trick was used (as I understand) to make tensors of right shapes:
fake_box_predictor = tf.compat.v2.train.Checkpoint(
_base_tower_layers_for_heads=detection_model._box_predictor._base_tower_layers_for_heads,
# _prediction_heads=detection_model._box_predictor._prediction_heads,
# (i.e., the classification head that we *will not* restore)
_box_prediction_head=detection_model._box_predictor._box_prediction_head,
)
fake_model = tf.compat.v2.train.Checkpoint(
_feature_extractor=detection_model._feature_extractor,
_box_predictor=fake_box_predictor)
But how can I discover what should I write inside checkpoint function? (for example, _base_tower_layers_for_heads=detection_model._box_predictor._base_tower_layers_for_heads or _box_prediction_head=detection_model._box_predictor._box_prediction_head)
Related
I followed this tutorial: https://github.com/lih0905/PyTorch_Study/blob/master/8)%20TorchVision%200.3%20Object%20Detection%20finetuning%20tutorial.ipynb and how can you see there is output images at the end of page and it's pretty good.
Now I also did this and my images are cloudy, it looks like a trash.
I trained maskrcnn and save models, and from here I'm loading epoch-2.pt to see results.
This is my code:
PATH = '/home/Nezz/Train/ArT/models_vjezba/epoch-2.pt'
#model = torch.load(PATH)
#model.to(device)
model.load_state_dict(torch.load(PATH))
# pick one image from the test set
img, _ = dataset_test[21]
# put the model in evaluation mode
model.eval()
#evaluate(model, data_loader_test, device=device)
with torch.no_grad():
prediction = model([img.to(device)])
#print(prediction)
imaag = Image.fromarray(img.mul(255).permute(1, 2, 0).byte().numpy())
imag = Image.fromarray(prediction[0]['masks'][0, 0].mul(255).byte().cpu().numpy())
imag.show()
imaag.show()
output:
I have a pre-trained model which I load like so:
from transformers import BertForSequenceClassification, AdamW, BertConfig, BertModel
model = BertForSequenceClassification.from_pretrained(
"bert-base-uncased", # Use the 12-layer BERT model, with an uncased vocab.
num_labels = 2, # The number of output labels--2 for binary classification.
# You can increase this for multi-class tasks.
output_attentions = False, # Whether the model returns attentions weights.
output_hidden_states = False, # Whether the model returns all hidden-states.
)
I want to create a new model with the same architecture, and random initial weights, except for the embedding layer:
==== Embedding Layer ====
bert.embeddings.word_embeddings.weight (30522, 768)
bert.embeddings.position_embeddings.weight (512, 768)
bert.embeddings.token_type_embeddings.weight (2, 768)
bert.embeddings.LayerNorm.weight (768,)
bert.embeddings.LayerNorm.bias (768,)
It seems I can do this to create a new model with the same architecture, but then all the weights are random:
configuration = model.config
untrained_model = BertForSequenceClassification(configuration)
So how do I copy over model's embedding layer weights to the new untrained_model?
Weights and bias are just tensor and you can simply copy them with copy_:
from transformers import BertForSequenceClassification, BertConfig
jetfire = BertForSequenceClassification.from_pretrained('bert-base-cased')
config = BertConfig.from_pretrained('bert-base-cased')
optimus = BertForSequenceClassification(config)
parts = ['bert.embeddings.word_embeddings.weight'
,'bert.embeddings.position_embeddings.weight'
,'bert.embeddings.token_type_embeddings.weight'
,'bert.embeddings.LayerNorm.weight'
,'bert.embeddings.LayerNorm.bias']
def joltElectrify (jetfire, optimus, parts):
target = dict(optimus.named_parameters())
source = dict(jetfire.named_parameters())
for part in parts:
target[part].data.copy_(source[part].data)
joltElectrify(jetfire, optimus, parts)
I'm trying to finetune saved locally universal sentence embedder large v.3.
Plan is to take tf-hub module, wrap with simple classifier, train model and save USE module with updated weights to use for embeddings.
But after loading module from local folder for re-training I'm receiving error that it cant get files from temporary folder "C:\Users\xxx\AppData\Local\Temp\1\tfhub_modules....":
InvalidArgumentError: Unsuccessful TensorSliceReader constructor: Failed to get matching files on C:\Users\xxx\AppData\Local\Temp\1\tfhub_modules\96e8f1d3d4d90ce86b2db128249eb8143a91db73\variables\variables: Not found: FindFirstFile failed for: C:/Users/xxx/AppData/Local/Temp/1/tfhub_modules/96e8f1d3d4d90ce86b2db128249eb8143a91db73/variables : The system cannot find the path specified.
; No such process
[[{{node checkpoint_initializer_25}}]]
Save model:
with tf.Session(graph=tf.Graph()) as sess:
module = hub.Module("https://tfhub.dev/google/universal-sentence-encoder-large/3", trainable=True)
text_input = tf.placeholder(dtype=tf.string, shape=[None])
sess.run([tf.global_variables_initializer(), tf.tables_initializer()])
embeddings = module(text_input)
simple_save(sess,
export_dir,
inputs={'text': text_input},
outputs={'embeddings': embeddings},
legacy_init_op=tf.tables_initializer())
Finetune:
text = ["cat", "kitten", "dog", "puppy"]
label = [0, 0, 1, 1]
graph=tf.Graph()
with tf.Session(graph=graph) as sess:
sess.run([tf.global_variables_initializer(), tf.tables_initializer()])
model = tf.saved_model.loader.load(export_dir=**_export_dir,_** sess=sess,
tags=[tag_constants.SERVING])
# universal sentence encoder input/output
input_tensor_name = model.signature_def[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY].inputs['text'].name
in_tensor = tf.get_default_graph().get_tensor_by_name(input_tensor_name)
embedd_tensor_name = model.signature_def[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY].outputs[
'embeddings'].name
out_tensor = tf.get_default_graph().get_tensor_by_name(embedd_tensor_name)
# simple classification on top of use
input_y = tf.placeholder(tf.int32, shape=(None))
labels = tf.one_hot(input_y, 4)
logits = tf.layers.dense(out_tensor, 4)
loss = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
sess.run(tf.global_variables_initializer())
for epoch in range(2):
feed_dict = {
in_tensor: text,
input_y: label
}
sess.run(optimizer, feed_dict)
message_embeddings = sess.run(out_tensor, feed_dict={in_tensor: text})
print("Embeddings after tuning:", message_embeddings)`
So currently I suspect issues with variables initialization. But I am not sure regarding the correct way.
I've managed to fix this issue by initialization only optimizer variables.
sess.run(tf.global_variables_initializer()) to
uninitialized_vars = []
for var in tf.all_variables():
try:
sess.run(var)
except tf.errors.FailedPreconditionError:
uninitialized_vars.append(var)
sess.run(tf.initialize_variables(uninitialized_vars))
But I faced another issue - after training, I'm saving fine-tuned embedding model, but size became 2.3Gb, instead of 800Mb original. As I understand this is due to the variables of optimizer.
I have created a model with 3 hidden layers and trained it with the specific data-set.
How can I visualize the Model, with the neuron connections and weights at each iteration.
Here is the snippet of the python code :
#<ALL IMPORT STATEMENTS>
MODEL_DIR = <model_name>
def make_estimator(model_dir):
config = run_config.RunConfig(model_dir=model_dir)
feat_cols = [tf.feature_column.numeric_column("x", shape=<number_of_feat_cols>)]
return estimator.DNNClassifier(config=config, hidden_units=[<>,<>,<>],feature_columns=feat_cols,n_classes=2,optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.001))
data = pd.read_csv(<csv_file>)
feat_data = data.drop('Type',axis=1)
feat_data_matrix = feat_data.as_matrix()
labels = data['Type']
labels_matrix = labels.as_matrix()
deep_model = make_estimator(MODEL_DIR)
input_fn = estimator.inputs.numpy_input_fn(x={'x':feat_data_matrix}, y=labels_matrix, shuffle=True, batch_size=10, num_epochs=1000)
tr_steps = <step_size>
deep_model.train(input_fn=input_fn,steps=tr_steps)
print ("Training Done")
In the code above, I have not created any tensorflow session, without it where can I implement the TensorBoard APIs for visualizing the model ?
By using the Python API simply call the method tf.summary.FileWriter
Then if you load the file written by the SummaryWriter into TensorBoard, the graph is shown.
You have to load the graph like this:
# Launch the graph.
current_session = tf.Session()
current_session.run(init)
# Create a summary writer, add the 'graph' to the event file.
writer = tf.summary.FileWriter(<some-directory>, current_session.graph)
See here.
I'm trying to fine tune inception models, and validate it with test data. But all the examples given at tensorflow slime web page only either fine-tuning or testing, there is not any example that doing both at same graph and session.
Basically I want to this.
with tf.Graph().as_default():
image, image_raw, label,image_name, label_name = dut.distorted_inputs(params,is_training=is_training)
test_image, test_image_raw, test_label,test_image_name, test_label_name = dut.distorted_inputs(params,is_training=False)
# I'm creating as it is suggested at github slim page:
logits, _ =inception.inception_v2(image, num_classes=N, is_training=True)
tf.get_variable_scope().reuse_variables()
logits_tes, _ =inception.inception_v2(test_image, num_classes=N, is_training=Test)
err=tf.sub(logits, label)
losses = tf.reduce_mean(tf.reduce_sum(tf.square(err)))
# total_loss = model_loss+losses
total_loss = losses+slim.losses.get_total_loss()
test_err=tf.sub(test_logits, test_label)
test_loss= tf.reduce_mean(tf.reduce_sum(tf.square(test_err)))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
train_op = slim.learning.create_train_op(total_loss, optimizer)
final_loss = slim.learning.train(
train_op,
logdir=params["cp_file"],
init_fn=ut.get_init_fn(slim,params),
number_of_steps=2,
summary_writer=summary_writer
)
this code fails As it can be seen, I don't have loop separately to call my test models, I want to test my model on my test data at each 10th batch.
Does calling train with number_of_steps=10 and then using the evaluation code work?