How merge rectangles with NMBoxes? - python

I am doing a simple dectection with images. The original size of the image is 1280x1024 but I go through the 64x64 image.
If the subimage is predicted as 1 then I draw a rectangle, but when the rectangles consecutive I prefer to draw only one.
I make the selection of the rectangles with cv2.dnn.NMSBoxes, cv2.dnn.NMSBoxes return the first box no consecutie. How merge the boxes consecutive?
For example:
imgDst = np.zeros((1024, 1280), dtype='float')
rect = [[448, 0, 512, 64], [512, 0, 576, 64], [576, 0, 640, 64], [576, 64, 640, 128], [128, 192, 192, 256]]
boxes = cv2.dnn.NMSBoxes(bboxes=rects, scores=[.9, .9, .9, .9, .9], score_threshold=.5, nms_threshold=.4)
print (boxes)
rect_def = #Some merge of consecutive.
for r in rects:
rectangle(imgDst, (r[0], r[1]), (r[2], r[3]), (0, 0, 255), 2)
Output:
[[0], [3], [4]]
Based on the output I consider that the rectangles 0, 1, 2 should be joined.

Related

OpenCV transform image shape transformation into a given contour

Does anyone know whether it's possible to transform image A into image B contour if their shapes are random, using OpenCV or any other python libraries that work with images?
Here is what I have so far with 2 images:
I've been able to find draw contours of the bulb and insert a fox in it using bitwise_and method, but what it does is it crops the second image, whereas I need it to transform its shape into the bulb contour.
import cv2
src1 = cv2.imread('fox.png')
src2 = cv2.imread('bulb-contour-filled.png')
src2 = cv2.resize(src2, src1.shape[1::-1])
dst = cv2.bitwise_and(src1, src2)
cv2.imwrite('img_fin.jpg', dst)
Bulb original image:
Fox original image:
Bulb contour:
The Concept
For this we are going to need to slice the into triangles, and warp each triangle individually. The starting points of the image should be along the outline of the original image, and the ending points should be along the outline of the destination shape.
Although below I have hard-coded the 2 sets of points, you'll just need to figure out the optimal processing to retrieve the contours of the 2 images (each needs have the same number of points and in the same order). Also, I have programmed an interactive OpenCV program that will allow us to easily retrieve the coordinates.
The Code
import cv2
import numpy as np
def triangles(points):
points = np.where(points, points, 1)
subdiv = cv2.Subdiv2D((*points.min(0), *points.max(0)))
for pt in points:
subdiv.insert(tuple(map(int, pt)))
for pts in subdiv.getTriangleList().reshape(-1, 3, 2):
yield [np.where(np.all(points == pt, 1))[0][0] for pt in pts]
def crop(img, pts):
x, y, w, h = cv2.boundingRect(pts)
img_cropped = img[y: y + h, x: x + w]
pts[:, 0] -= x
pts[:, 1] -= y
return img_cropped, pts
def warp(img1, img2, pts1, pts2):
img2 = img2.copy()
for indices in triangles(pts1):
img1_cropped, triangle1 = crop(img1, pts1[indices])
img2_cropped, triangle2 = crop(img2, pts2[indices])
transform = cv2.getAffineTransform(np.float32(triangle1), np.float32(triangle2))
img2_warped = cv2.warpAffine(img1_cropped, transform, img2_cropped.shape[:2][::-1], None, cv2.INTER_LINEAR, cv2.BORDER_REFLECT_101)
mask = np.zeros_like(img2_cropped)
cv2.fillConvexPoly(mask, np.int32(triangle2), (1, 1, 1), 16, 0)
img2_cropped *= 1 - mask
img2_cropped += img2_warped * mask
return img2
def resize(img, size):
h, w = img.shape[:2]
return cv2.resize(img, (int(w * size), int(h * size)))
img1 = resize(cv2.imread("dog.png"), 0.8)
img2 = resize(cv2.imread("bulb.png"), 0.8)
pts1 = np.array([[322, 508], [390, 475], [413, 425], [440, 367], [453, 305], [458, 289], [446, 202], [434, 139], [392, 104], [324, 94], [246, 97], [194, 101], [111, 127], [98, 185], [88, 240], [95, 306], [90, 363], [123, 431], [160, 487], [223, 508]])
pts2 = np.array([[459, 793], [513, 715], [541, 580], [552, 470], [583, 398], [633, 323], [643, 233], [616, 144], [557, 71], [470, 28], [354, 27], [264, 72], [206, 138], [179, 225], [178, 302], [236, 401], [266, 480], [278, 564], [297, 707], [357, 792]])
cv2.imshow("result", warp(img1, img2, pts1, pts2))
cv2.waitKey(0)
cv2.destroyAllWindows()
The Output
The Explanation
Import the necessary libraries:
import cv2
import numpy as np
Define a function, triangles, that will take in an array of coordinates, points, and yield lists of 3 indices of the array for triangles that will cover the area of the original array of coordinates:
def triangles(points):
points = np.where(points, points, 1)
subdiv = cv2.Subdiv2D((*points.min(0), *points.max(0)))
for pt in points:
subdiv.insert(tuple(map(int, pt)))
for pts in subdiv.getTriangleList().reshape(-1, 3, 2):
yield [np.where(np.all(points == pt, 1))[0][0] for pt in pts]
Define a function, crop, that will take in an image array, img, and an array of three coordinates, pts. It will return a rectangular segment of the image just large enough to fit the triangle formed by the three point, and return the array of three coordinates transferred to the top-left corner of image:
def crop(img, pts):
x, y, w, h = cv2.boundingRect(pts)
img_cropped = img[y: y + h, x: x + w]
pts[:, 0] -= x
pts[:, 1] -= y
return img_cropped, pts
Define a function, warp, that will take in 2 image arrays, img1 and img2, and 2 arrays of coordinates, pts1 and pts2. It will utilize the triangles function defined before iterate through the triangles from the first array of coordinates, the crop function defined before to crop both images at coordinates corresponding to the triangle indices and use the cv2.warpAffine() method to warp the image at the current triangle of the iterations:
def warp(img1, img2, pts1, pts2):
img2 = img2.copy()
for indices in triangles(pts1):
img1_cropped, triangle1 = crop(img1, pts1[indices])
img2_cropped, triangle2 = crop(img2, pts2[indices])
transform = cv2.getAffineTransform(np.float32(triangle1), np.float32(triangle2))
img2_warped = cv2.warpAffine(img1_cropped, transform, img2_cropped.shape[:2][::-1], None, cv2.INTER_LINEAR, cv2.BORDER_REFLECT_101)
mask = np.zeros_like(img2_cropped)
cv2.fillConvexPoly(mask, np.int32(triangle2), (1, 1, 1), 16, 0)
img2_cropped *= 1 - mask
img2_cropped += img2_warped * mask
return img2
Read in your images. Note that I have resized the images to better fit my screen. If you remove the resizing part, you'll need to use the program below to re-adjust the points and get the corrected sets of points:
def resize(img, size):
h, w = img.shape[:2]
return cv2.resize(img, (int(w * size), int(h * size)))
img1 = resize(cv2.imread("dog.png"), 0.8)
img2 = resize(cv2.imread("bulb.png"), 0.8)
Finally, define the 2 sets of points; the first set outlining the first image, and the second one outlining the second. Use the warp function defined before to warp img1 to have its keypoints overlap with the kewpoints of img2 and show the resulting image:
pts1 = np.array([[0, 0], [286, 0], [286, 198], [174, 198], [158, 116], [0, 97]])
pts2 = np.array([[80, 37], [409, 42], [416, 390], [331, 384], [291, 119], [111, 311]])
cv2.imshow("result", warp(img1, img2, pts1, pts2))
cv2.waitKey(0)
cv2.destroyAllWindows()
Tools
Use the program below to manually drag the point onto each image, and see the warp effect in real-time. Of course, rather than manually doing this, you can detect the contours of the two images (make sure that they have the same number of points and are in the same order):
import cv2
import numpy as np
def triangles(points):
points = np.where(points, points, 1)
subdiv = cv2.Subdiv2D((*points.min(0), *points.max(0)))
for pt in points:
subdiv.insert(tuple(map(int, pt)))
for pts in subdiv.getTriangleList().reshape(-1, 3, 2):
yield [np.where(np.all(points == pt, 1))[0][0] for pt in pts]
def crop(img, pts):
x, y, w, h = cv2.boundingRect(pts)
img_cropped = img[y: y + h, x: x + w]
pts[:, 0] -= x
pts[:, 1] -= y
return img_cropped, pts
def warp(img1, img2, pts1, pts2):
img2 = img2.copy()
for indices in triangles(pts1):
img1_cropped, triangle1 = crop(img1, pts1[indices])
img2_cropped, triangle2 = crop(img2, pts2[indices])
transform = cv2.getAffineTransform(np.float32(triangle1), np.float32(triangle2))
img2_warped = cv2.warpAffine(img1_cropped, transform, img2_cropped.shape[:2][::-1], None, cv2.INTER_LINEAR, cv2.BORDER_REFLECT_101)
mask = np.zeros_like(img2_cropped)
cv2.fillConvexPoly(mask, np.int32(triangle2), (1, 1, 1), 16, 0)
img2_cropped *= 1 - mask
img2_cropped += img2_warped * mask
return img2
def draw_circle(event, x, y, flags, param):
pts = param
if event == cv2.EVENT_LBUTTONDOWN:
for pt in pts:
dist = (pt[0] - x) ** 2 + (pt[1] - y) ** 2
if dist < 225:
active_pt[:] = pt
elif event == cv2.EVENT_LBUTTONUP:
active_pt[:] = 0
elif event == cv2.EVENT_MOUSEMOVE:
if np.any(active_pt):
for pt in pts:
if np.all(active_pt == pt):
pt[:] = active_pt[:] = x, y
def draw_circles(img, pts):
img = img.copy()
for i, (x, y) in enumerate(pts):
cv2.circle(img, (x, y), 15, (0, 0, 255), -1)
cv2.putText(img, str(i), (x - 10, y + 10), cv2.FONT_HERSHEY_COMPLEX, 0.8, (0, 0, 0), 2)
return img
def resize(img, size):
h, w = img.shape[:2]
return cv2.resize(img, (int(w * size), int(h * size)))
img1 = resize(cv2.imread("dog.png"), 0.8)
img2 = resize(cv2.imread("bulb.png"), 0.8)
pts_count = 20
pts1 = np.arange(pts_count * 2).reshape((pts_count, 2))
pts2 = np.arange(pts_count * 2).reshape((pts_count, 2))
active_pt = np.array([0, 0])
cv2.namedWindow("image 1")
cv2.setMouseCallback('image 1', draw_circle, pts1)
cv2.namedWindow("image 2")
cv2.setMouseCallback('image 2', draw_circle, pts2)
pause = False
while True:
cv2.imshow('image 1', draw_circles(img1, pts1))
cv2.imshow('image 2', draw_circles(img2, pts2))
if not pause:
try:
cv2.imshow("result", warp(img1, img2, pts1, pts2))
except:
pass
key = cv2.waitKey(20)
if key & 0xFF == ord("q"):
break
if key & 0xFF == ord("p"):
pause = not pause
cv2.waitKey(0)
cv2.destroyAllWindows()
Here is a rough demonstration of how it works (sped up x4):
If the real-time warping is too slow on your computer, simply press the p key to pause the warp updating, and press it again to resume it.

how to seprate black curve fromblack texts in opencv with python

import numpy as np
import cv2
im = cv2.imread("goldstandard.png")
nemo = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
hsv_nemo = cv2.cvtColor(nemo, cv2.COLOR_RGB2HSV)
dictionaryHSV = {
"greenCombo": [[30, 126, 87], [70, 255, 250]],
'red': [[0, 92, 212], [10, 265, 255]],
'blue': [[110, 7, 214], [130, 255, 255]],
'black': [[0, 0, 0], [10, 10, 40]],
'another1': [[20, 245, 151], [40, 255, 231]],
'pink': [[140, 126, 215], [160, 146, 255]]
}
for r1, r2 in dictionaryHSV.values():
lower = np.array(r1)
upper = np.array(r2)
mask = cv2.inRange(hsv_nemo, lower, upper)
# cv2.imshow("masked",mask)
# cv2.waitKey(0)
nm = np.ones((nemo.shape[0], nemo.shape[1], nemo.shape[2]), dtype=np.uint8)
for i in range(nm.shape[0]):
for j in range(nm.shape[1]):
nm[i][j] = (255, 255, 255)
result = cv2.bitwise_and(nm, nm, mask=mask)
cv2.imshow("mappped", result)
cv2.waitKey(0)
i have curve plot images and i want to separate all curves based on color i am getting a problem when i come across black curve i get black curve along with black text in the plot i want to only get the curve not the text. I used color ranges in "H.S.V" color-space to recognize colors. Thanks in advance.
Extract region inside square.
Remove all non black pixels.
Find all contours.
Select a biggest contour - it will be your curve.

How can I use warpperspective on separate parts of the same image?

Let's say I have an image of a book cover that I want to "flatten". To do so it seems like I would need to perform 2 perspective transforms: one just for the front cover and one just for the back cover:
What would be the most efficient way to do this?
Using a 600x600 pixel image homograpy-test.jpg:
import cv2
import numpy as np
#load image
img = cv2.imread('homography-test.jpg', cv2.IMREAD_COLOR)
#corners of book covers (before)
frontCoverPtsBefore = np.array([[32, 48], [279, 136], [247, 430], [39, 281]], dtype="float32")
backCoverPtsBefore = np.array([[279, 136], [474, 36], [463, 316], [247, 430]], dtype="float32")
#corners of book covers (after)
frontCoverPtsAfter = np.array([[0, 0], [299, 0], [299, 599], [0, 599]], dtype="float32")
backCoverPtsAfter = np.array([[300, 0], [599, 0], [599, 599], [300, 599]], dtype="float32")
#get the transformation matrices for both covers
M_front = cv2.getPerspectiveTransform(frontCoverPtsBefore, frontCoverPtsAfter)
M_back = cv2.getPerspectiveTransform(backCoverPtsBefore, backCoverPtsAfter)
#warpPerspective both images
img_front = cv2.warpPerspective(img, M_front, (600, 600))
img_back = cv2.warpPerspective(img, M_back, (600, 600))
#copy half of the warped back cover into the warped front cover
np.copyto(img_front[:, 300:, :], img_back[:, 300:, :])
#display before and after
cv2.imshow('img', img)
cv2.imshow('img_front', img_front)
cv2.waitKey(0)
cv2.destroyAllWindows()
Before and After:

Saving RGBA image with PIL.Image.frombuffer()

I need to save a transparent image made from a numpy array. I can save the image with:
img = Image.fromarray(data, 'RGB')
But I need it to be transparent so I tried to save it with :
img = Image.fromarray(data, 'RGBA')
Then I get this error :
File "/home/pi/Documents/Projet/GetPos.py", line 51, in click
img = Image.fromarray(data, 'RGBA')
File "/usr/lib/python2.7/dist-packages/PIL/Image.py", line 2217, in
fromarray
return frombuffer(mode, size, obj, "raw", rawmode, 0, 1)
File "/usr/lib/python2.7/dist-packages/PIL/Image.py", line 2162, in
frombuffer
core.map_buffer(data, size, decoder_name, None, 0, args)
ValueError: buffer is not large enough
I made some research but everythings looks very complicated for the simple thing I'm trying to do...
Does anyone can help me on this one ?
Here's my complete code ( I'm pretty new to python :) ):
mouse = pymouse.PyMouse()
posX, posY = mouse.position()
print(mouse.position())
w, h = 1920, 1080
data = np.zeros((h, w, 3), dtype=np.uint8)
for x in range(posX-20, posX+20):
if x > 1679:
data[posY, w-1] = [255, 0, 0]
else:
data[posY, x] = [255, 0, 0]
for y in range(posY-20, posY+20):
if y > 1049:
data[h-1, posX] = [255, 0, 0]
else:
data[y, posX] = [255, 0, 0]
img = Image.fromarray(data, 'RGBA')
##img = Image.frombuffer('RGBA', [1080, 1920], data, "raw", 'RGBA', 0, 1)
img.save('my.png')
In order to save a transparant image, you need to have a fourth value per pixel called the alpha channel, which determines the opacity of your pixel. (RGBA stands for red, green, blue and alpha.) So the only thing that has to be changed in your code is essentialy providing that 4th alpha value using tuples of 4 values instead of 3 for a pixel. Setting the 4th value to 255 means it's completely visible, 0 would make it a 100% transparant. In the following example I simply set every pixel that you were drawing red completely visible, the others will be transparent:
mouse = pymouse.PyMouse()
posX, posY = mouse.position()
w, h = 1920, 1080
data = np.zeros((h, w, 4), dtype=np.uint8)
for x in range(posX-20, posX+20):
if x > 1679:
data[posY, w-1] = [255, 0, 0, 255]
else:
data[posY, x] = [255, 0, 0, 255]
for y in range(posY-20, posY+20):
if y > 1049:
data[h-1, posX] = [255, 0, 0, 255]
else:
data[y, posX] = [255, 0, 0, 255]
img = Image.fromarray(data, 'RGBA')
img.save('my.png')

How to change pixel color in Python

How do you change just the color of some pixels from an image that are not in a predefined list ?
I tried something like this:
from PIL import Image
picture = Image.open("// location")
imshow (picture)
_colors = [[0, 128, 0], [128, 128, 0], [128, 128, 128], [192, 128, 0], [128, 64, 0], [0, 192, 0], [128, 64, 128], [0, 0, 0]]
width, height = picture.size
for x in range(0, width-1):
for y in range(0, height-1):
current_color = picture.getpixel( (x,y) )
if current_color!= _colors[0] and current_color!= _colors[1] and current_color!= _colors[2] and current_color!= _colors[3] and current_color!= _colors[4] and current_color!= _colors[5] and current_color!= _colors[6] and current_color!= _colors[7]:
picture.putpixel( (x,y), (0, 0, 0))
imshow (picture)
I want to make just some pixels black, but somehow this would return a black image altogether
This line :
if current_color!= _colors[0] and current_color!= _colors[1] and current_color!= _colors[2] and current_color!= _colors[3] and current_color!= _colors[4] and current_color!= _colors[5] and current_color!= _colors[6] and current_color!= _colors[7]:
always returns True, so you iterate over the whole picture, changing it to black. getpixel returns a tuple :
>>> print picture.getpixel((1, 1))
(79, 208, 248)
and you compare it to a list( [0,128,0]). They are not the same:
>>> (1,2,3) == [1,2,3]
False
change colors to a list of tuples rather than a list of lists.
keep the type of pixel data the same and shorten that if statement with an "in"
import Image
filename ="name.jpg"
picture = Image.open(filename, 'r')
_colors = [(0, 128, 0), (128, 128, 0), (128, 128, 128), (192, 128, 0), (128, 64, 0), (0, 192, 0), (128, 64, 128), (0, 0, 0)]
width, height = picture.size
for x in range(0, width):
for y in range(0, height):
current_color = picture.getpixel((x,y))
if current_color in _colors:
picture.putpixel((x,y), (0, 0, 0))
picture.show()

Categories

Resources