Related
Description of what the function is required to do
{
int res = strtol(arguments[2], NULL, 10);
int number_of_elements = strtol(arguments[1], NULL, 10);
for(int i = 2; i <= number_of_elements; i++)
{
if(*arguments[number_of_elements + i] == '+')
{
res += *arguments[i + 1];
}
else if(*arguments[number_of_elements + i] == '-')
{
res -= *arguments[i + 1];
}
else if(*arguments[number_of_elements + i] == '*')
{
res *= *arguments[i + 1];
}
else if(*arguments[number_of_elements + i] == '/')
{
res /= *arguments[i + 1];
}
}
return res;
}
That was my solution in C for the problem which is not working although I tested the same logic in python and it was working fine.
Here is my solution in python:
command = args[0]
number_of_elements = args[1]
res = args[2]
for i in range(2, number_of_elements + 1):
if args[number_of_elements + i] == '+':
res += args[i + 1]
print(f"{res} {args[number_of_elements + i]} {args[i + 1]} = {res + args[i+1]}")
elif args[number_of_elements + i] == '-':
res -= args[i + 1]
print(f"{res} {args[number_of_elements + i]} {args[i + 1]} = {res - args[i+1]}")
elif args[number_of_elements + i] == '*':
res *= args[i + 1]
print(f"{res} {args[number_of_elements + i]} {args[i + 1]} = {res - args[i+1]}")
elif args[number_of_elements + i] == '/':
res //= args[i + 1]
print(f"{res} {args[number_of_elements + i]} {args[i + 1]} = {res - args[i+1]}")
print(res)
So, since this is the first time for dealing with C what is wrong with my code I don't seem to get it why to returns wrong values although it's running without any errors.
I have the following code in C++ that uses the Eigen library, need help to translate to python (numpy)
Initialization
double b = 20.0;
Eigen::Vector3d C(1.0/10.2, 1.0/10.2, 1/30);
Eigen::MatrixXd U(5200, 3);
int i = 0;
for (double x = 10.2/2.0; x < 200; x += 10) {
for (double y = 10.2/2.0; y < 200; y += 10) {
for (double t = 0; t <= 360; t += 30) {
U(i, 0) = x;
U(i, 1) = y;
U(i, 2) = psi;
i += 1;
}
}
}
Function:
Eigen::VectorXd operator()(const Eigen::VectorXd& s) {
Eigen::VectorXd p(length());
p(0) = s[0];
p(1) = s[1];
p(2) = s[2];
p(3) = s[3];
for (int i = 0; i < U.rows(); i++) {
p(i + 4) = b*exp(-0.5*(s.tail(U.cols()) - U.row(i).transpose()).dot(C*(s.tail(U.cols())
- U.row(i).transpose())));
if (p(i + 4) < 0.1) {
p(i + 4) = 0;
}
}
return p;
}
Python version
Initialization:
my_x = 10.2/2.0
my_y = 10.2/2.0
my_p = 0
xx = []
while my_x < 200:
xx.append(my_x)
my_x += 10
yy = []
while my_y < 200:
yy.append(my_y)
my_y += 10
pps = []
while my_psi <= 360:
pps.append(my_p)
my_p+=30
U =[]
for x in xx:
for y in yy:
for p in pps:
U.append([x,y,p])
U = numpy.matrix(U)
C = numpy.array([1.0/10.2, 1.0/10.2, 1.0/30.0])
b = 20.0
The Function
Instead of operator() I will call the function doSomething()
def doSomething(s): # Where s is a numpy array (1-d vector)
p[0:4] = s[0:4]
for i in range (U.shape[0]):
s_dash = -0.5*(s - U[i].T)
s_ddash = C*s
s_dddash = s_dash.dot(s_ddash) - U[i].T
p[i+4] = b * numpy.exp(s_dddash)
if p[i+4] < 0.1: p[i+4] = 0
What I am confused:
In the C++ implementation, I think p[i+4] is supposed to be a single value
In my python version, I get a p[i+4] as square matrix
Each p[i+4] is a zero matrix.
I am unable to decipher my mistake. Please help!
I extracted the contours of an image, that you can see here:
However, it has some noise.
How can I smooth the noise? I did a close up to make clearer what I want to meant
Original image that I've used:
Code:
rMaskgray = cv2.imread('redmask.jpg', cv2.CV_LOAD_IMAGE_GRAYSCALE)
(thresh, binRed) = cv2.threshold(rMaskgray, 50, 255, cv2.THRESH_BINARY)
Rcontours, hier_r = cv2.findContours(binRed,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE)
r_areas = [cv2.contourArea(c) for c in Rcontours]
max_rarea = np.max(r_areas)
CntExternalMask = np.ones(binRed.shape[:2], dtype="uint8") * 255
for c in Rcontours:
if(( cv2.contourArea(c) > max_rarea * 0.70) and (cv2.contourArea(c)< max_rarea)):
cv2.drawContours(CntExternalMask,[c],-1,0,1)
cv2.imwrite('contour1.jpg', CntExternalMask)
Try an upgrade to OpenCV 3.1.0. After some code adaptations for the new version as shown below, I tried it out with OpenCV version 3.1.0 and did not see any of the effects you are describing.
import cv2
import numpy as np
print cv2.__version__
rMaskgray = cv2.imread('5evOn.jpg', 0)
(thresh, binRed) = cv2.threshold(rMaskgray, 50, 255, cv2.THRESH_BINARY)
_, Rcontours, hier_r = cv2.findContours(binRed,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE)
r_areas = [cv2.contourArea(c) for c in Rcontours]
max_rarea = np.max(r_areas)
CntExternalMask = np.ones(binRed.shape[:2], dtype="uint8") * 255
for c in Rcontours:
if(( cv2.contourArea(c) > max_rarea * 0.70) and (cv2.contourArea(c)< max_rarea)):
cv2.drawContours(CntExternalMask,[c],-1,0,1)
cv2.imwrite('contour1.jpg', CntExternalMask)
I don't know if is it ok to provide Java code - but I implemented Gaussian smoothing for openCV contour. Logic and theory is taken from here https://www.morethantechnical.com/2012/12/07/resampling-smoothing-and-interest-points-of-curves-via-css-in-opencv-w-code/
package CurveTools;
import org.apache.log4j.Logger;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Point;
import java.util.ArrayList;
import java.util.List;
import static org.opencv.core.CvType.CV_64F;
import static org.opencv.imgproc.Imgproc.getGaussianKernel;
class CurveSmoother {
private double[] g, dg, d2g, gx, dx, d2x;
private double gx1, dgx1, d2gx1;
public double[] kappa, smoothX, smoothY;
public double[] contourX, contourY;
/* 1st and 2nd derivative of 1D gaussian */
void getGaussianDerivs(double sigma, int M) {
int L = (M - 1) / 2;
double sigma_sq = sigma * sigma;
double sigma_quad = sigma_sq * sigma_sq;
dg = new double[M];
d2g = new double[M];
g = new double[M];
Mat tmpG = getGaussianKernel(M, sigma, CV_64F);
for (double i = -L; i < L + 1.0; i += 1.0) {
int idx = (int) (i + L);
g[idx] = tmpG.get(idx, 0)[0];
// from http://www.cedar.buffalo.edu/~srihari/CSE555/Normal2.pdf
dg[idx] = -i * g[idx] / sigma_sq;
d2g[idx] = (-sigma_sq + i * i) * g[idx] / sigma_quad;
}
}
/* 1st and 2nd derivative of smoothed curve point */
void getdX(double[] x, int n, double sigma, boolean isOpen) {
int L = (g.length - 1) / 2;
gx1 = dgx1 = d2gx1 = 0.0;
for (int k = -L; k < L + 1; k++) {
double x_n_k;
if (n - k < 0) {
if (isOpen) {
//open curve - mirror values on border
x_n_k = x[-(n - k)];
} else {
//closed curve - take values from end of curve
x_n_k = x[x.length + (n - k)];
}
} else if (n - k > x.length - 1) {
if (isOpen) {
//mirror value on border
x_n_k = x[n + k];
} else {
x_n_k = x[(n - k) - x.length];
}
} else {
x_n_k = x[n - k];
}
gx1 += x_n_k * g[k + L]; //gaussians go [0 -> M-1]
dgx1 += x_n_k * dg[k + L];
d2gx1 += x_n_k * d2g[k + L];
}
}
/* 0th, 1st and 2nd derivatives of whole smoothed curve */
void getdXcurve(double[] x, double sigma, boolean isOpen) {
gx = new double[x.length];
dx = new double[x.length];
d2x = new double[x.length];
for (int i = 0; i < x.length; i++) {
getdX(x, i, sigma, isOpen);
gx[i] = gx1;
dx[i] = dgx1;
d2x[i] = d2gx1;
}
}
/*
compute curvature of curve after gaussian smoothing
from "Shape similarity retrieval under affine transforms", Mokhtarian & Abbasi 2002
curvex - x position of points
curvey - y position of points
kappa - curvature coeff for each point
sigma - gaussian sigma
*/
void computeCurveCSS(double[] curvex, double[] curvey, double sigma, boolean isOpen) {
int M = (int) Math.round((10.0 * sigma + 1.0) / 2.0) * 2 - 1;
assert (M % 2 == 1); //M is an odd number
getGaussianDerivs(sigma, M);//, g, dg, d2g
double[] X, XX, Y, YY;
getdXcurve(curvex, sigma, isOpen);
smoothX = gx.clone();
X = dx.clone();
XX = d2x.clone();
getdXcurve(curvey, sigma, isOpen);
smoothY = gx.clone();
Y = dx.clone();
YY = d2x.clone();
kappa = new double[curvex.length];
for (int i = 0; i < curvex.length; i++) {
// Mokhtarian 02' eqn (4)
kappa[i] = (X[i] * YY[i] - XX[i] * Y[i]) / Math.pow(X[i] * X[i] + Y[i] * Y[i], 1.5);
}
}
/* find zero crossings on curvature */
ArrayList<Integer> findCSSInterestPoints() {
assert (kappa != null);
ArrayList<Integer> crossings = new ArrayList<>();
for (int i = 0; i < kappa.length - 1; i++) {
if ((kappa[i] < 0.0 && kappa[i + 1] > 0.0) || kappa[i] > 0.0 && kappa[i + 1] < 0.0) {
crossings.add(i);
}
}
return crossings;
}
public void polyLineSplit(MatOfPoint pl) {
contourX = new double[pl.height()];
contourY = new double[pl.height()];
for (int j = 0; j < contourX.length; j++) {
contourX[j] = pl.get(j, 0)[0];
contourY[j] = pl.get(j, 0)[1];
}
}
public MatOfPoint polyLineMerge(double[] xContour, double[] yContour) {
assert (xContour.length == yContour.length);
MatOfPoint pl = new MatOfPoint();
List<Point> list = new ArrayList<>();
for (int j = 0; j < xContour.length; j++)
list.add(new Point(xContour[j], yContour[j]));
pl.fromList(list);
return pl;
}
MatOfPoint smoothCurve(MatOfPoint curve, double sigma) {
int M = (int) Math.round((10.0 * sigma + 1.0) / 2.0) * 2 - 1;
assert (M % 2 == 1); //M is an odd number
//create kernels
getGaussianDerivs(sigma, M);
polyLineSplit(curve);
getdXcurve(contourX, sigma, false);
smoothX = gx.clone();
getdXcurve(contourY, sigma, false);
smoothY = gx;
Logger.getRootLogger().info("Smooth curve len: " + smoothX.length);
return polyLineMerge(smoothX, smoothY);
}
}
I'm working on a solver for a differential equation for a particle smulation using Pyopencl.
To solve this equation each particle must access it's neighbors information.
The arrays I'm using are numpy complex64 arrays each with 7 elements.
When accessing the neighbors, the program returns the error:
clWaitForEvents failed: out of resources
My OpenCl code is the following. I guess most of it isn't related to this error but i'll post it anyway because it might help somehow:
#define complex_ctr(x, y) (float2)(x, y)
#define complex_add(a, b) complex_ctr((a).x + (b).x, (a).y + (b).y)
#define complex_mul(a, b) complex_ctr(mad(-(a).y, (b).y, (a).x * (b).x), mad((a).y, (b).x, (a).x * (b).y))
#define complex_mul_scalar(a, b) complex_ctr((a).x * (b), (a).y * (b))
#define complex_div_scalar(a, b) complex_ctr((a).x / (b), (a).y / (b))
#define conj(a) complex_ctr((a).x, -(a).y)
#define conj_transp(a) complex_ctr(-(a).y, (a).x)
#define conj_transp_and_mul(a, b) complex_ctr(-(a).y * (b), (a).x * (b))
#define complex_real(a) a.x
#define complex_imag(a) a.y
#define complex_unit (float2)(0, 1)
constant int M=10;
constant float L=1e-09;
constant float p0=1.0;
constant float delta=1.0;
constant float gama=1.0;
constant float omc=1.0;
constant float k_p=1.0;
constant float om_p=1.0;
constant float v = 0.001;
constant float b = 1.0;
constant float dt=0.01;
void f(__global float2 *X,
__global float2 *K,
int id,
uint W,
float t){
float exp_arg;
float2 p11, p22, p33, p21, p31, p32, op, aux, ar, al, p;
p11 = X[id*W];
p22 = X[id*W+1];
p33 = X[id*W+2];
p21 = X[id*W+3];
p31 = X[id*W+4];
p32 = X[id*W+5];
al = X[(id-1)*W+6];
ar = X[(id+1)*W+6];
op = p0 * complex_mul(X[id*W+6], complex_unit);
aux = p22 * gama/2 + complex_mul(op, p22) + conj(p22) * gama/2 + complex_mul(op, conj(p22));
K[id*W] = aux;
aux = (-p22*gama - complex_mul(op, p21) + complex_mul(p32, complex_unit)*omc
- conj(p22)*gama - complex_mul(op, conj(p21)) + complex_mul(conj(p32), complex_unit)*omc);
K[id*W+1] = aux;
aux = p22*gama/2 - complex_mul(p32, complex_unit)*omc + conj(p22)*gama/2 - complex_mul(conj(p32), complex_unit)*omc;
K[id*W+2] = aux;
aux = complex_mul(op, p11) - complex_mul(op, p22) - p21*gama + complex_mul(p21, complex_unit)*delta + complex_mul(p31, complex_unit)*omc;
K[id*W+3] = aux;
aux = complex_mul(p21, complex_unit)*omc + complex_mul(p31, complex_unit)*delta - complex_mul(op, p32);
K[id*W+4] = aux;
aux = (complex_mul(p22, complex_unit)*omc - complex_mul(p33, complex_unit)*omc - complex_mul(op, p31) - p32*gama);
K[id*W+5] = aux;
exp_arg = k_p * L * id - om_p * t;
p = complex_mul(b*p0*p21*complex_ctr(cos(exp_arg), sin(exp_arg)), complex_unit);
aux = (X[(id-1)*W+6] + X[(id+1)*W+6]);
aux = aux + p;
K[id*W+6] = aux;
}
__kernel void RK4Step(__global float2 *X,
__global float2 *K,
__global float2 *Xs,
__global float2 *Xm,
uint W,
float t){
const int gid_x = get_global_id(0);
int idx = 0;
//computation of k1
f(X, K, gid_x, W, t);
for(int i=0; i<W; i++)
{
idx = gid_x*W+i;
Xs[idx] = X[idx] + dt*K[idx]/6;
Xm[idx] = X[idx] + dt*K[idx]/2;
}
//computation of k2
f(Xm, K, gid_x, W, t);
for(int i=0; i<W; i++)
{
idx = gid_x*W+i;
Xs[idx] = Xs[idx] + dt*K[idx]/3;
Xm[idx] = X[idx] + dt*K[idx]/2;
}
//computation of k3
f(Xm, K, gid_x, W, t);
for(int i=0; i<W; i++)
{
idx = gid_x*W+i;
Xs[idx] = Xs[idx] + dt*K[idx]/3;
Xm[idx] = X[idx] + dt*K[idx];
}
//computation of k4
f(Xm, K, gid_x, W, t);
for(int i=0; i<W; i++)
{
idx = gid_x*W+i;
Xs[idx] = Xs[idx] + dt*K[idx]/6;
}
//update photon
for(int i=0; i<W; i++)
{
idx = gid_x*W+i;
X[idx] = Xs[idx];
}
}
If i comment this line:
aux = (X[(id-1)*W+6] + X[(id+1)*W+6]);
The code runs through with no errors, but if I uncomment it, i get the error i described.
The python code that calls this kernel is the following:
import pyopencl as cl
import numpy as np
from pylab import *
import matplotlib.pyplot as plt
import time
"""
Solve the problem
Xi' = M1*Xi + M2*Xi~
M1 and M2 are 6*6 Matrixes which elements are complex numbers
Xi in the form [P11i, P22i, P33i, P21i, P31i, P32i, Ai] where Pxyi is a complex number
"""
########################################################
# #
#'_h' buffers are host buffers. '_d' are device buffers#
# #
########################################################
#Initialization of the device and workspace
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)
MF = cl.mem_flags
# Constants
M = 2000 # Number of atoms
L = np.float32(0.000000001) # Atom Spacing
N = 1000 # Number of time intervals
dt = np.float32(0.1) # Time interval
Timeline = np.arange(0.0, N, dt).astype(np.float32)
p0 = np.float32(1.0) # constant P0 [OMP = P0*Ai]
delta = np.float32(1.0) # constant DELTA
gama = np.float32(1.0) # constant GAMA
omc = np.float32(1.0) # constant OMC
# Writing the source code with the constants declared by the user
text = ""
##text = "__constant int M=" + str(M) + "; \n"
##text += "__constant float L=" + str(L) + "; \n"
##text += "__constant float dt=" + str(dt) + "; \n"
##text += "__constant float p0=" + str(p0) + "; \n"
##text += "__constant float delta=" + str(delta) + "; \n"
##text += "__constant float gama=" + str(gama) + "; \n"
##text += "__constant float omc=" + str(omc) + "; \n"
f1 = open("precode.cl", "r")
f2 = open("kernel.cl", "r")
f3 = open("source.cl",'w+')
precode = f1.read()
kernel = f2.read()
f3.write(precode + text + kernel)
f1.close()
f2.close()
f3.close()
#Initial Conditions
A_h = (np.arange(M) + 1j*np.zeros(M)).astype(np.complex64)
A_h = np.exp(-((A_h-M/2.0)/(0.05 * M))**2)*np.exp(1j * 200.0 * A_h /M)
P11_h = (np.random.randn(M) + 1j*np.random.randn(M)).astype(np.complex64)
P22_h = (np.random.randn(M) + 1j*np.random.randn(M)).astype(np.complex64)
P33_h = (np.random.randn(M) + 1j*np.random.randn(M)).astype(np.complex64)
P21_h = (np.random.randn(M) + 1j*np.random.randn(M)).astype(np.complex64)
P31_h = (np.random.randn(M) + 1j*np.random.randn(M)).astype(np.complex64)
P32_h = (np.random.randn(M) + 1j*np.random.randn(M)).astype(np.complex64)
W = np.uint32(7) # The row width to compute the index inside the kernel
X_h = []
for i in range(M):
X_h.append( np.array([P11_h[i], P22_h[i], P33_h[i], P21_h[i], P31_h[i], P32_h[i], A_h[i]]).astype(np.complex64) )
X_h = np.array(X_h).astype(np.complex64)
K_h = np.empty_like(X_h)
Xs_h = np.empty_like(X_h)
Xm_h = np.empty_like(X_h)
A_h = X_h[:,6]
figure(1)
plt.plot(np.real(A_h))
plt.plot(np.abs(A_h))
# Allocation of required buffers on the device
X_d = cl.Buffer(ctx, MF.READ_WRITE | MF.COPY_HOST_PTR, hostbuf=X_h)
K_d = cl.Buffer(ctx, MF.READ_WRITE | MF.COPY_HOST_PTR, hostbuf=K_h)
Xs_d = cl.Buffer(ctx, MF.READ_WRITE | MF.COPY_HOST_PTR, hostbuf=Xs_h)
Xm_d = cl.Buffer(ctx, MF.READ_WRITE | MF.COPY_HOST_PTR, hostbuf=Xm_h)
f = open("source.cl", "r")
source = f.read()
f.close()
prg = cl.Program(ctx, source).build()
print "Begin Calculation"
start_time = time.time()
for t in Timeline:
completeevent = prg.RK4Step(queue, (M,), None, X_d, K_d, Xs_d, Xm_d, W, t)
completeevent.wait()
cl.enqueue_copy(queue, X_h, X_d)
end_time = time.time()
print "All done"
print "Calculation took " + str(end_time - start_time) + " seconds"
A_h = X_h[:,6]
figure(2)
plt.plot(np.real(A_h))
plt.plot(np.abs(A_h))
##plt.show()
Some code is commented because I'm still working on it but it's minor stuff just to get things a bit cleaner.
I can't understand why this happens. I've tried something similiar but with a much simpler code and the neighbors access goes just fine as I intended.
For examples, when I run this module:
import pyopencl as cl
import numpy as np
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)
MF = cl.mem_flags
M = 3
zero = np.complex64(0.0)
X1_h = np.array([1 + 1j*2, 2 + 1j*3, 3 + 1j*4]).astype(np.complex64)
X2_h = np.array([1 + 1j*2, 2 + 1j*3, 3 + 1j*4]).astype(np.complex64)
X3_h = np.array([1 + 1j*2, 2 + 1j*3, 3 + 1j*4]).astype(np.complex64)
Y1_h = np.array([4 + 1j*5, 5 + 1j*6, 6 + 1j*7]).astype(np.complex64)
Y2_h = np.array([4 + 1j*5, 5 + 1j*6, 6 + 1j*7]).astype(np.complex64)
Y3_h = np.array([4 + 1j*5, 5 + 1j*6, 6 + 1j*7]).astype(np.complex64)
aux_h = np.complex64(1 + 1j*1)
RES_h = np.empty_like(X1_h)
dados_h = []
for i in range(3):
dados_h.append(np.array([X1_h[i], X2_h[i], X3_h[i], Y1_h[i], Y2_h[i], Y3_h[i]]).astype(np.complex64))
dados_h = np.array(dados_h).astype(np.complex64)
print dados_h
aux_d = cl.Buffer(ctx, MF.READ_WRITE | MF.COPY_HOST_PTR, hostbuf=aux_h)
dados_d = cl.Buffer(ctx, MF.READ_WRITE | MF.COPY_HOST_PTR, hostbuf=dados_h)
RES_d = cl.Buffer(ctx, MF.READ_WRITE | MF.COPY_HOST_PTR, hostbuf = RES_h)
Source = """
__kernel void soma( __global float2 *dados, __global float2 *res, int rowWidth){
const int gid_x = get_global_id(0);
res[gid_x] = dados[(gid_x-1)*rowWidth] + dados[(gid_x+1)*rowWidth];
}
"""
prg = cl.Program(ctx, Source).build()
completeEvent = prg.soma(queue, (M,), None, dados_d, RES_d, np.int32(6))
completeEvent.wait()
cl.enqueue_copy(queue, RES_h, RES_d)
print "GPU RES"
print RES_h
the result i get is:
[[ 1.+2.j 1.+2.j 1.+2.j 4.+5.j 4.+5.j 4.+5.j]
[ 2.+3.j 2.+3.j 2.+3.j 5.+6.j 5.+6.j 5.+6.j]
[ 3.+4.j 3.+4.j 3.+4.j 6.+7.j 6.+7.j 6.+7.j]]
GPU RES
[ 2.+3.j 4.+6.j 2.+3.j]
which is exactly what i expected.
Can anyone give me some help on what is happening here? It's probably something simple but I can't find what's wrong.
One additional info: This happens only when i run the code on my GTX970. I have a laptop with an old ATI card that handles the code above just fine with no errors, which got me even more confused on this whole thing.
PS: Sorry for the long post
If id=0 and W=7 then you use negative index value to access element of 'X' array:
aux = (X[(id-1)*W+6] + X[(id+1)*W+6]);
which for id=0 and W=7 is:
aux = (X[-1] + X[13]);
From my experience a code with error like this one may produce still good results on some GPUs therefore I always test my opencl code using different GPU vendors. Especially opencl validation on CPU seems to be very sensitive to such errors.
I'm trying to generate an infinite map, as such. I'm doing this in Python, and I can't get the noise libraries to correctly work (they don't seem to ever find my VS2010, and doing it in raw Python would be way too slow). As such, I'm trying to use the Diamond-Square Algorithm.
Would it be possible, in some way, to make this technically infinite?
If not, should I just go back to attempting to get one of the Python noise bindings to work?
This can be done. Divide up your landscape into "tiles", and apply the midpoint displacement algorithm (as I prefer to call it) within each tile.
Each tile must be big enough so that the height at one corner does not significantly depend on the height in another. In that way, you can create and destroy tiles on the fly, setting the height at newly appearing corners to an independent random value.
That value (and the randomness within the tile as well) must be seeded from the tile's position, so that you get the same tile each time.
The latest version of the noise module (at http://pypi.python.org/pypi/noise/1.0b3) mentions that it "fixed problems compiling with Visual C++ on Windows" - you might want to try it again. It installs and works properly for me (Python 2.7.1, MinGW, Windows 7).
If you arrange your tiles in an x,y grid and seed the random number generator for each tile like random.seed((x,y)), then every time you return to the same patch of world it will re-create the same terrain.
With the diamond-square algorithm, two sides of each tile depend on the adjoining tiles; however the dependence does not propagate all the way across the tile. If you let each tile depend on the tiles preceding it (ie above and to the left) and write a create_fake_tile function which assumes that all the preceding-tile values are 0, you get a "bad" tile in which the right column and bottom row are the correct values on which the next tile depends. If you draw each screen starting with the tile row and column preceding the first row and column on screen, then the visible portion of your world will be correct.
Can you apply midpoint displacement from the bottom up? Say you're working on a discrete grid, and you want to generate an MxN region. Get yourself a weighting function w(i). Start by applying a random displacement with weight w(0) to each point. Then apply a random displacement with weight w(1) to every other point, and propagate the displacement to intervening points. Then do every fourth point with w(2), again propagating. You can now generate a grid of any size, without having any starting assumption about the size.
If there's some N for which w(i > N) = 0, then you can stop generating when you hit it - which is rather important if you want the generation to ever terminate! You probably want a w function that starts at 1, increases to some value, and then falls off to zero; the increasing bit models the power-law roughness of terrain up to 100-km or so scales, and the decreasing bit models the fact that whole planets are more or less spherical. If you were doing Mars rather than Earth, you'd want w(i) to go further, because of the Tharsis bulge.
Now replace the random function with a random-looking but deterministic function of the point coordinates (feed the coordinates into a SHA1 hash, for example). Now, whenever you generate some particular part of the grid, it will look the same.
You should be able to do diamond-square in much the same way as this; you just need to alternate the shape of the displacements.
I solved the Diamond Squared algorithm for infinite landscapes.
function diamondSquaredMap(x, y, width, height, iterations) {
var map = fieldDiamondSquared(x, y, x+width, y+height, iterations);
var maxdeviation = getMaxDeviation(iterations);
for (var j = 0; j < width; j++) {
for (var k = 0; k < height; k++) {
map[j][k] = map[j][k] / maxdeviation;
map[j][k] = (map[j][k] + 1) / 2;
}
}
return map;
function create2DArray(d1, d2) {
var x = new Array(d1),
i = 0,
j = 0;
for (i = 0; i < d1; i += 1) {
x[i] = new Array(d2);
}
return x;
}
function fieldDiamondSquared(x0, y0, x1, y1, iterations) {
if (x1 < x0) { return null; }
if (y1 < y0) { return null; }
var finalwidth = x1 - x0;
var finalheight = y1 - y0;
var finalmap = create2DArray(finalwidth, finalheight);
if (iterations === 0) {
for (var j = 0; j < finalwidth; j++) {
for (var k = 0; k < finalheight; k++) {
finalmap[j][k] = displace(iterations,x0+j,y0+k) ;
}
}
return finalmap;
}
var ux0 = Math.floor(x0 / 2) - 1;
var uy0 = Math.floor(y0 / 2) - 1;
var ux1 = Math.ceil(x1 / 2) + 1;
var uy1 = Math.ceil(y1 / 2) + 1;
var uppermap = fieldDiamondSquared(ux0, uy0, ux1, uy1, iterations-1);
var uw = ux1 - ux0;
var uh = uy1 - uy0;
var cx0 = ux0 * 2;
var cy0 = uy0 * 2;
var cw = uw*2-1;
var ch = uh*2-1;
var currentmap = create2DArray(cw,ch);
for (var j = 0; j < uw; j++) {
for (var k = 0; k < uh; k++) {
currentmap[j*2][k*2] = uppermap[j][k];
}
}
var xoff = x0 - cx0;
var yoff = y0 - cy0;
for (var j = 1; j < cw-1; j += 2) {
for (var k = 1; k < ch-1; k += 2) {
currentmap[j][k] = ((currentmap[j - 1][k - 1] + currentmap[j - 1][k + 1] + currentmap[j + 1][k - 1] + currentmap[j + 1][k + 1]) / 4) + displace(iterations,cx0+j,cy0+k);
}
}
for (var j = 1; j < cw-1; j += 2) {
for (var k = 2; k < ch-1; k += 2) {
currentmap[j][k] = ((currentmap[j - 1][k] + currentmap[j + 1][k] + currentmap[j][k - 1] + currentmap[j][k + 1]) / 4) + displace(iterations,cx0+j,cy0+k);
}
}
for (var j = 2; j < cw-1; j += 2) {
for (var k = 1; k < ch-1; k += 2) {
currentmap[j][k] = ((currentmap[j - 1][k] + currentmap[j + 1][k] + currentmap[j][k - 1] + currentmap[j][k + 1]) / 4) + displace(iterations,cx0+j,cy0+k);
}
}
for (var j = 0; j < finalwidth; j++) {
for (var k = 0; k < finalheight; k++) {
finalmap[j][k] = currentmap[j+xoff][k+yoff];
}
}
return finalmap;
}
// Random function to offset
function displace(iterations, x, y) {
return (((PRH(iterations,x,y) - 0.5)*2)) / (iterations+1);
}
function getMaxDeviation(iterations) {
var dev = 0.5 / (iterations+1);
if (iterations <= 0) return dev;
return getMaxDeviation(iterations-1) + dev;
}
//This function returns the same result for given values but should be somewhat random.
function PRH(iterations,x,y) {
var hash;
x &= 0xFFF;
y &= 0xFFF;
iterations &= 0xFF;
hash = (iterations << 24);
hash |= (y << 12);
hash |= x;
var rem = hash & 3;
var h = hash;
switch (rem) {
case 3:
hash += h;
hash ^= hash << 32;
hash ^= h << 36;
hash += hash >> 22;
break;
case 2:
hash += h;
hash ^= hash << 22;
hash += hash >> 34;
break;
case 1:
hash += h;
hash ^= hash << 20;
hash += hash >> 2;
}
hash ^= hash << 6;
hash += hash >> 10;
hash ^= hash << 8;
hash += hash >> 34;
hash ^= hash << 50;
hash += hash >> 12;
return (hash & 0xFFFF) / 0xFFFF;
}
};
//CANVAS CONTROL
window.onload = terrainGeneration;
function terrainGeneration() {
"use strict";
var mapDimension,
roughness,
iterations,
mapCanvas = document.getElementById('canvas');
var update = document.getElementById('update');
var xpos = 0;
var ypos = 0;
mapDimension = 512;
mapCanvas.width = mapDimension;
mapCanvas.height = mapDimension;
var updatefunction = function() {
var elIterations = document.getElementById('iterations');
iterations = parseInt(elIterations.value, 10);
iterations = iterations || 6;
MoveMap(10,0);
}
update.onclick = updatefunction;
updatefunction();
function MoveMap(dx, dy) {
xpos -= dx;
ypos -= dy;
var map = diamondSquaredMap(xpos, ypos, mapDimension, mapDimension, iterations);
drawMap(mapDimension, "canvas", map);
}
var m = this;
m.map = document.getElementById("canvas");
m.width = mapDimension;
m.height = mapDimension;
m.hoverCursor = "auto";
m.dragCursor = "url(), default";
m.scrollTime = 300;
m.mousePosition = new Coordinate;
m.mouseLocations = [];
m.velocity = new Coordinate;
m.mouseDown = false;
m.timerId = -1;
m.timerCount = 0;
m.viewingBox = document.createElement("div");
m.viewingBox.style.cursor = m.hoverCursor;
m.map.parentNode.replaceChild(m.viewingBox, m.map);
m.viewingBox.appendChild(m.map);
m.viewingBox.style.overflow = "hidden";
m.viewingBox.style.width = m.width + "px";
m.viewingBox.style.height = m.height + "px";
m.viewingBox.style.position = "relative";
m.map.style.position = "absolute";
function drawMap(size, canvasId, mapData) {
var canvas = document.getElementById(canvasId),
ctx = canvas.getContext("2d"),
x = 0,
y = 0,
colorFill,
img = ctx.createImageData(canvas.height, canvas.width);
for (x = 0; x < size; x++) {
for (y = 0; y < size; y++) {
colorFill = {r: 0, g: 0, b: 0};
var standardShade = Math.floor(mapData[x][y] * 250);
colorFill = {r: standardShade, g: standardShade, b: standardShade};
var pData = (x + (y * canvas.width)) * 4;
img.data[pData] = colorFill.r;
img.data[pData + 1] = colorFill.g;
img.data[pData + 2] = colorFill.b;
img.data[pData + 3] = 255;
}
}
ctx.putImageData(img, 0, 0);
}
function AddListener(element, event, f) {
if (element.attachEvent) {
element["e" + event + f] = f;
element[event + f] = function() {
element["e" + event + f](window.event)
};
element.attachEvent("on" + event, element[event + f])
} else
element.addEventListener(event, f, false)
}
function Coordinate(startX, startY) {
this.x = startX;
this.y = startY;
}
var MouseMove = function(b) {
var e = b.clientX - m.mousePosition.x;
var d = b.clientY - m.mousePosition.y;
MoveMap(e, d);
m.mousePosition.x = b.clientX;
m.mousePosition.y = b.clientY
};
/**
* mousedown event handler
*/
AddListener(m.viewingBox, "mousedown", function(e) {
m.viewingBox.style.cursor = m.dragCursor;
// Save the current mouse position so we can later find how far the
// mouse has moved in order to scroll that distance
m.mousePosition.x = e.clientX;
m.mousePosition.y = e.clientY;
// Start paying attention to when the mouse moves
AddListener(document, "mousemove", MouseMove);
m.mouseDown = true;
event.preventDefault ? event.preventDefault() : event.returnValue = false;
});
/**
* mouseup event handler
*/
AddListener(document, "mouseup", function() {
if (m.mouseDown) {
var handler = MouseMove;
if (document.detachEvent) {
document.detachEvent("onmousemove", document["mousemove" + handler]);
document["mousemove" + handler] = null;
} else {
document.removeEventListener("mousemove", handler, false);
}
m.mouseDown = false;
if (m.mouseLocations.length > 0) {
var clickCount = m.mouseLocations.length;
m.velocity.x = (m.mouseLocations[clickCount - 1].x - m.mouseLocations[0].x) / clickCount;
m.velocity.y = (m.mouseLocations[clickCount - 1].y - m.mouseLocations[0].y) / clickCount;
m.mouseLocations.length = 0;
}
}
m.viewingBox.style.cursor = m.hoverCursor;
});
}
<html><head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Canvas Terrain Generator</title>
<link rel="stylesheet" href="terrain.css" type="text/css">
<style type="text/css"></style><style type="text/css"></style></head>
<body>
Click and Pan.<br>
<div style="cursor: auto; overflow: hidden; width: 512px; height: 512px; position: relative;"><canvas id="canvas" width="512" height="512" style="position: absolute;"></canvas></div>
<br>
<form>
<fieldset>
<legend>Height Map Properties</legend>
<ol class="options">
<li>
<input type="text" name="iterations" id="iterations">
<label for="iterations">
Iterations(6)
</label>
</li>
</ol>
</fieldset>
<input type="button" value="Update" id="update">
</form>
</body></html>
https://jsfiddle.net/Tatarize/1Lrj3s2v/3/
Click and Drag jsfiddle
And actually found this question doing my due diligence. Yes. Though the answers provided here are mostly wrong it totally can be done. Conceptually what you need to do is view each iteration of the algorithm as an infinite field and the base case as an infinite field of perfectly random numbers. So each iteration is a diamond squared version of the previous one.
And to solve a range of say tile [100-200][100-200] at iteration 7, what you need is the entire block half that size (~a quarter that size h*w) at iteration 6 plus one extra edge on each side. So if you have a function that solves for a given tile:
getTerrain(x0,y0,x1,y1,iteration)... you can solve this for that tile if you have [49,101][49,101] at iteration 6. Then you simply apply diamond squared everywhere you can which won't work at the edges but will work everywhere else, and provide you with exactly enough data to solve for the tile [100-200][100-200] at iteration 7.
To get that tile at iteration 6 it will request [23-52][23-52] from iteration 5. And this will continue until iteration 0 just gives you [-1,3][-1,3] which will be 16 perfectly random values. If you requested a tile so large that iteration 0 didn't yet reach that size and position, you'll just need a different sliver which is fine because you're just making them up anyway.
In this way you get rid of the seeding step completely, simplify the algorithm, make it infinite, make it take a reasonable memory footprint. Using a deterministic pseudorandom number hashed from the coords and it will let you generate and regenerate the identical tiles on the fly, because you actually generated the upper lower iterations and just did so in a focused manner.
My blog has more information on it,
http://godsnotwheregodsnot.blogspot.com/2013/11/field-diamond-squared-fractal-terrain.html
In reality most of the complication of the algorithm comes from having the base case four points in a loop, as this is not close to the simplest case. And it's apparently escaped most people that you could have even simplified that by doing 1 point in a loop (though this is still pointlessly complex). Or anything that makes the algorithm seem to have at least 4x4 points. You could even start with 4x4 points iterate once, drop any row or column with an unknown value (all the edges), then have a 5x5 block, then a 7x7 block then an 11x11 block... (2n-3) x (2n-3).
In short, if you have an infinite field for your base case, you can actually have an infinite field, the iterations just determine how blended your stuff is. And if you use something deterministic for the pseudorandom injected offset, you pretty much have a very quick infinite landscape generator.
and here's a demonstration of it in javascript,
http://tatarize.nfshost.com/FieldDiamondSquare.htm
Here's an implementation in javascript. It simply gives you a view of the correct field at that iteration, position, and size. The above linked example uses this code in a movable canvas. It stores no data and recalculates each frame.
function diamondSquaredMap(x, y, width, height, iterations) {
var map = fieldDiamondSquared(x, y, x+width, y+height, iterations);
var maxdeviation = getMaxDeviation(iterations);
for (var j = 0; j < width; j++) {
for (var k = 0; k < height; k++) {
map[j][k] = map[j][k] / maxdeviation;
}
}
return map;
function create2DArray(d1, d2) {
var x = new Array(d1),
i = 0,
j = 0;
for (i = 0; i < d1; i += 1) {
x[i] = new Array(d2);
}
return x;
}
function fieldDiamondSquared(x0, y0, x1, y1, iterations) {
if (x1 < x0) { return null; }
if (y1 < y0) { return null; }
var finalwidth = x1 - x0;
var finalheight = y1 - y0;
var finalmap = create2DArray(finalwidth, finalheight);
if (iterations === 0) {
for (var j = 0; j < finalwidth; j++) {
for (var k = 0; k < finalheight; k++) {
finalmap[j][k] = displace(iterations,x0+j,y0+k) ;
}
}
return finalmap;
}
var ux0 = Math.floor(x0 / 2) - 1;
var uy0 = Math.floor(y0 / 2) - 1;
var ux1 = Math.ceil(x1 / 2) + 1;
var uy1 = Math.ceil(y1 / 2) + 1;
var uppermap = fieldDiamondSquared(ux0, uy0, ux1, uy1, iterations-1);
var uw = ux1 - ux0;
var uh = uy1 - uy0;
var cx0 = ux0 * 2;
var cy0 = uy0 * 2;
var cw = uw*2-1;
var ch = uh*2-1;
var currentmap = create2DArray(cw,ch);
for (var j = 0; j < uw; j++) {
for (var k = 0; k < uh; k++) {
currentmap[j*2][k*2] = uppermap[j][k];
}
}
var xoff = x0 - cx0;
var yoff = y0 - cy0;
for (var j = 1; j < cw-1; j += 2) {
for (var k = 1; k < ch-1; k += 2) {
currentmap[j][k] = ((currentmap[j - 1][k - 1] + currentmap[j - 1][k + 1] + currentmap[j + 1][k - 1] + currentmap[j + 1][k + 1]) / 4) + displace(iterations,cx0+j,cy0+k);
}
}
for (var j = 1; j < cw-1; j += 2) {
for (var k = 2; k < ch-1; k += 2) {
currentmap[j][k] = ((currentmap[j - 1][k] + currentmap[j + 1][k] + currentmap[j][k - 1] + currentmap[j][k + 1]) / 4) + displace(iterations,cx0+j,cy0+k);
}
}
for (var j = 2; j < cw-1; j += 2) {
for (var k = 1; k < ch-1; k += 2) {
currentmap[j][k] = ((currentmap[j - 1][k] + currentmap[j + 1][k] + currentmap[j][k - 1] + currentmap[j][k + 1]) / 4) + displace(iterations,cx0+j,cy0+k);
}
}
for (var j = 0; j < finalwidth; j++) {
for (var k = 0; k < finalheight; k++) {
finalmap[j][k] = currentmap[j+xoff][k+yoff];
}
}
return finalmap;
}
// Random function to offset
function displace(iterations, x, y) {
return (((PRH(iterations,x,y) - 0.5)*2)) / (iterations+1);
}
function getMaxDeviation(iterations) {
var dev = 0.5 / (iterations+1);
if (iterations <= 0) return dev;
return getMaxDeviation(iterations-1) + dev;
}
//This function returns the same result for given values but should be somewhat random.
function PRH(iterations,x,y) {
var hash;
x &= 0xFFF;
y &= 0xFFF;
iterations &= 0xFF;
hash = (iterations << 24);
hash |= (y << 12);
hash |= x;
var rem = hash & 3;
var h = hash;
switch (rem) {
case 3:
hash += h;
hash ^= hash << 32;
hash ^= h << 36;
hash += hash >> 22;
break;
case 2:
hash += h;
hash ^= hash << 22;
hash += hash >> 34;
break;
case 1:
hash += h;
hash ^= hash << 20;
hash += hash >> 2;
}
hash ^= hash << 6;
hash += hash >> 10;
hash ^= hash << 8;
hash += hash >> 34;
hash ^= hash << 50;
hash += hash >> 12;
return (hash & 0xFFFF) / 0xFFFF;
}
};
Updated to add, I went on from this, and made my own noise algorithm based on the same scoped field algorithm here, Here's the Jsfiddle for it.
https://jsfiddle.net/rkdzau7o/
You can click and drag the noise around.