Steps of tf.summary.* operations in TensorBoard are always 0 - python

When I'm training my model with TensorFlow 2.3, I want to visualize some intermediate tensors calculated using the weight in the computation graph of my customized tf.keras.layers.Layer.
So I use tf.summary.image() to record these tensors and visualize them as images like this:
class CustomizedLayer(tf.keras.layers.Layer):
def call(self, inputs, training=None):
# ... some code ...
tf.summary.image(name="some_weight_map", data=some_weight_map)
# ... some code ...
But in TensorBoard, no matter how many steps passed, there is only one image of step 0 shown.
And I tried to set the parameter step of tf.summary.image() to the value obtained from tf.summary.experimental.get_step():
tf.summary.image(name="weight_map", data=weight_map, step=tf.summary.experimental.get_step())
And update the step by calling tf.summary.experimental.set_step from a customized Callback using a tf.Variable like codes shown below:
class SummaryCallback(tf.keras.callbacks.Callback):
def __init__(self, step_per_epoch):
super().__init__()
self.global_step = tf.Variable(initial_value=0, trainable=False, name="global_step")
self.global_epoch = 0
self.step_per_epoch = step_per_epoch
tf.summary.experimental.set_step(self.global_step)
def on_batch_end(self, batch, logs=None):
self.global_step = batch + self.step_per_epoch * self.global_epoch
tf.summary.experimental.set_step(self.global_step)
# whether the line above is commented, calling tf.summary.experimental.get_step() in computation graph code always returns 0.
# tf.print(self.global_step)
def on_epoch_end(self, epoch, logs=None):
self.global_epoch += 1
This Callback's instance is passed in the argument callbacks in model.fit() function.
But the value tf.summary.experimental.get_step() returned is still 0.
The TensorFlow document of "tf.summary.experimental.set_step()" says:
when using this with #tf.functions, the step value will be captured at the time the function is traced, so changes to the step outside the function will not be reflected inside the function unless using a tf.Variable step.
Accroding to the document, I am already using a Variable to store the steps, but it's changes are still not reflected inside the function (or keras.Model).
Note: My code produces expected results in TensorFlow 1.x with just a simple line of tf.summary.image() before I migrate it to TensorFlow 2.
So I want to know if my approach is wrong in TensorFlow 2?
In TF2, how can I get training steps inside the computation graph?
Or there is other solution to summarize tensors (as scalar, image, etc.) inside a model in TensorFlow 2?

I found this issue has been reported on Github repository of Tensorflow: https://github.com/tensorflow/tensorflow/issues/43568
This is caused by using tf.summary in model while tf.keras.callbacks.TensorBoard callback is also enabled, and the step will always be zero. The issue reporter gives a temporary solution.
To fix it, inherit the tf.keras.callbacks.TensorBoard class and overwrite the on_train_begin method and on_test_begin method like this:
class TensorBoardFix(tf.keras.callbacks.TensorBoard):
"""
This fixes incorrect step values when using the TensorBoard callback with custom summary ops
"""
def on_train_begin(self, *args, **kwargs):
super(TensorBoardFix, self).on_train_begin(*args, **kwargs)
tf.summary.experimental.set_step(self._train_step)
def on_test_begin(self, *args, **kwargs):
super(TensorBoardFix, self).on_test_begin(*args, **kwargs)
tf.summary.experimental.set_step(self._val_step)
And use this fixed callback class in model.fit():
tensorboard_callback = TensorBoardFix(log_dir=log_dir, histogram_freq=1, write_graph=True, update_freq=1)
model.fit(dataset, epochs=200, callbacks=[tensorboard_callback])
This solve my problem and now I can get proper step inside my model by calling tf.summary.experimental.get_step().
(This issue may be fixed in later version of TensorFlow)

Related

optimizer.step() Not updating Model Weights/Parameters

I'm currently working on a solution via PyTorch. I'm not going to share the exact solution but I will provide code that reproduces the issue I'm having.
I have a model defined as follows:
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
self.fc1 = nn.Linear(10,4)
def foward(self,x):
return nn.functional.relu(self.fc1(x))
Then I create a instance: my_model = Net(). Next I create an Adam optimizer as such:
optim = Adam(my_model.parameters())
# create a random input
inputs = torch.tensor(np.array([1,1,1,1,1,2,2,2,2,2]),dtype=torch.float32,requires_grad=True)
# get the outputs
outputs = my_model(inputs)
# compute gradients / backprop via
outputs.backward(gradient=torch.tensor([1.,1.,1.,5.]))
# store parameters before optimizer step
before_step = list(my_model.parameters())[0].detach().numpy()
# update parameters via
optim.step()
# collect parameters again
after_step = list(my_model.parameters())[0].detach().numpy()
# Print if parameters are the same or not
print(np.array_equal(before_step,after_step)) # Prints True
I provided my models parameters to the Adam optimizer, so I'm not exactly sure why the parameters aren't updating. I know in most cases one uses a loss function, however I cannot do that in my case but I assumed if I specified model paramters to the optimizers, it would know to connect the two.
Anyone know why the parameters aren't getting updated?
The problem is with detach (docs).
As noted at the bottom:
Returned Tensor shares the same storage with the original one. In-place modifications on either of them will be seen, and may trigger errors in correctness checks
So that is exactly what's happening here. To correctly compare the parameters, you need to clone (docs) them to get a real copy.
list(my_model.parameters())[0].clone().detach().numpy()
On a side note, it can be helpful if you check the gradients after optim.step() with print(list(my_model.parameters())[0].grad) to check if the graph is intact. Also, don't forget to call optim.zero_grad().

tensorflow 2 how to print tensor value inside tensorflow.keras.layers.Layer

I am using tensorflow 2.3.0.
I implemented my own Layer by inheritting the tf.keras.layers.Layer. I implemented my own computation inside the call function of my own Layer. Like the demo code below.
Now I want to print tensor values inside the call functions. I tried tf.print, but nothing was shown. How to print the actual tensor values along with the training. Thanks advance.
class MyLayer(tf.keras.layers.Layer):
def call(self, inputs):
x=func1(inputs)
tf.print(x) # not working!
x=func2(x)
tf.print(x) # not working!
I used the estimator api to train the model.

Memory leak for custom tensorflow training using #tf.function

I am trying to write my own training loop for TF2/Keras, following the official Keras walkthrough. The vanilla version works like a charm, but when I try to add the #tf.function decorator to my training step, some memory leak grabs all my memory and I lose control of my machine, does anyone know what is going on?.
The important parts of the code look like this:
#tf.function
def train_step(x, y):
with tf.GradientTape() as tape:
logits = siamese_network(x, training=True)
loss_value = loss_fn(y, logits)
grads = tape.gradient(loss_value, siamese_network.trainable_weights)
optimizer.apply_gradients(zip(grads, siamese_network.trainable_weights))
train_acc_metric.update_state(y, logits)
return loss_value
#tf.function
def test_step(x, y):
val_logits = siamese_network(x, training=False)
val_acc_metric.update_state(y, val_logits)
val_prec_metric.update_state(y_batch_val, val_logits)
val_rec_metric.update_state(y_batch_val, val_logits)
for epoch in range(epochs):
step_time = 0
epoch_time = time.time()
print("Start of {} epoch".format(epoch))
for step, (x_batch_train, y_batch_train) in enumerate(train_ds):
if step > steps_epoch:
break
loss_value = train_step(x_batch_train, y_batch_train)
train_acc = train_acc_metric.result()
train_acc_metric.reset_states()
for val_step,(x_batch_val, y_batch_val) in enumerate(test_ds):
if val_step>validation_steps:
break
test_step(x_batch_val, y_batch_val)
val_acc = val_acc_metric.result()
val_prec = val_prec_metric.result()
val_rec = val_rec_metric.result()
val_acc_metric.reset_states()
val_prec_metric.reset_states()
val_rec_metric.reset_states()
If I comment on the #tf.function lines, the memory leak doesn't occur, but the step time is 3 times slower. My guess is that somehow the graph is bean created again within each epoch or something like that, but I have no idea how to solve it.
This is the tutorial I am following: https://keras.io/guides/writing_a_training_loop_from_scratch/
tl;dr;
TensorFlow may be generating a new graph for each unique set of argument values passed into the decorated functions. Make sure you are passing consistently-shaped Tensor objects to test_step and train_step instead of python objects.
Details
This is a stab in the dark. While I've never tried #tf.function, I did find the following warnings in the documentation:
tf.function also treats any pure Python value as opaque objects, and builds a separate graph for each set of Python arguments that it encounters.
and
Caution: Passing python scalars or lists as arguments to tf.function will always build a new graph. To avoid this, pass numeric arguments as Tensors whenever possible
Finally:
A Function determines whether to reuse a traced ConcreteFunction by computing a cache key from an input's args and kwargs. A cache key is a key that identifies a ConcreteFunction based on the input args and kwargs of the Function call, according to the following rules (which may change): The key generated for a tf.Tensor is its shape and dtype. The key generated for a tf.Variable is a unique variable id. The key generated for a Python primitive (like int, float, str) is its value. The key generated for nested dicts, lists, tuples, namedtuples, and attrs is the flattened tuple of leaf-keys (see nest.flatten). (As a result of this flattening, calling a concrete function with a different nesting structure than the one used during tracing will result in a TypeError). For all other Python types the key is unique to the object. This way a function or method is traced independently for each instance it is called with.
What I get from all this is that if you don't pass in a consistently-sized Tensor object to your #tf.function-ified function (perhaps you use Python collections or primitives instead), it is likely that you are creating a new graph version of your function with every distinct argument value you pass in. I'm guessing this could create the memory explosion behavior you're seeing. I can't tell how your test_ds and train_ds objects are being created, but you might want to make sure that they are created such that enumerate(blah_ds) returns tensors like in the tutorial, or at least convert the values to tensors before passing to your test_step and train_step functions.

Accessing training data during tensorflow graph execution

I'd like to use pre-trained sentence embeddings in my tensorflow graph execution model. The embeddings are available dynamically from a function call, which takes in an array of sentences and outputs an array of sentence embeddings. This function uses a pre-trained pytorch model so has to remain separate from the tensorflow model I'm training:
def get_pretrained_embeddings(sentences):
return pretrained_pytorch_model.encode(sentences)
My tensorflow model looks like this:
class SentenceModel(tf.keras.Model):
def __init__(self):
super().__init__()
def call(self, sentences):
embedding_layer = tf.keras.layers.Embedding(
10_000,
256,
embeddings_initializer=tf.keras.initializers.Constant(get_pretrained_embeddings(sentences)),
trainable=False,
)
sentence_text_embedding = tf.keras.Sequential([
embedding_layer,
tf.keras.layers.GlobalAveragePooling1D(),
])
return sentence_text_embedding,
But when I try to train this model using
cached_train = train.shuffle(100_000).batch(1024)
model.fit(cached_train)
my embeddings_initializer call gets the error:
OperatorNotAllowedInGraphError: iterating over `tf.Tensor` is not allowed: AutoGraph did convert this function. This might indicate you are trying to use an unsupported feature.
I assume this is because tensorflow is trying to compile the graph using symbolic data. How can I get my external function, which relies on the current training data batch, to work with tensorflow's graph training?
Tensorflow compiles models to an execution graph before performing the actual training process. The obvious side-effect that clues us into this is if we have a regular Python print() statement in e.g. our call() method, it will only get executed once as Tensorflow runs through your code to construct the execution graph, which it will later convert to native code.
The other side effect of this is that cannot use anything that isn't a tensor of some description when training. By 'tensor' here, all of the following can be considered a tensor:
The input value of your call() method (obviously)
A tf.Sequential
A tf.keras.Model/tf.keras.layers.Layer subclass
A SparseTensor
A tf.constant()
....probably more I haven't listed here.
To this end, you would need to convert your PyTorch model to a Tensorflow one to be able to reference it in a subclass of tf.keras.Model/tf.keras.layers.Layer.
As a side note, if you do find you need to iterate a tensor, you should just be able to iterate it on the 1st dimension (i.e. the batch size) like so:
for part in some_tensor:
pass
If you want to iterate on some other dimension, I recommend doing a tf.unstack(some_tensor, axis=AXIS_NUMBER_HERE) first and iterate over the result thereof.

How to apply Optimizer on Variable in Chainer?

Here is an example in Pytorch:
optimizer = optim.Adam([modifier_var], lr=0.0005)
And here in Tensorflow:
self.train = self.optimizer.minimize(self.loss, var_list=[self.modifier])
But Chainer's optimizers only can use on 'Link', how can I apply Optimizer on Variable in Chainer?
In short, there is no way to directly assign chainer.Variable (even nor chainer.Parameter) to chainer.Optimizer.
The following is some redundant explanation.
First, I re-define Variable and Parameter to avoid confusion.
Variable is (1) torch.Tensor in PyTorch v4, (2) torch.autograd.Variable in PyTorch v3, and (3) chainer.Variable in Chainer v4.
Variable is an object who holds two tensors; .data and .grad. It is the necessary and sufficient condition, so Variable is not necessarily a learnable parameter, which is a target of the optimizer.
In both libraries, there is another class Parameter, which is similar but not the same with Variable. Parameter is torch.autograd.Parameter in Pytorch and chainer.Parameter in Chainer.
Parameter must be a learnable parameter and should be optimized.
Therefore, there should be no case to register Variable (not Parameter) to Optimizer (although PyTorch allows to register Variable to Optimizer: this is just for backward compatibility).
Second, in PyTorch torch.nn.Optimizer directly optimizes Parameter, but in Chainer chainer.Optimizer DOES NOT optimize Parameter: instead, chainer.UpdateRule does. The Optimizer just registers UpdateRules to Parameters in a Link.
Therefore, it is only natural that chainer.Optimizer does not receive Parameter as its arguments, because it is just a "delivery-man" of UpdateRule.
If you want to attach different UpdateRule for each Parameter, you should directly create an instance of UpdateRule subclass, and attach it to the Parameter.
Below is an example to learn regression task by MyChain MLP model using Adam optimizer in Chainer.
from chainer import Chain, Variable
# Prepare your model (neural network) as `Link` or `Chain`
class MyChain(Chain):
def __init__(self):
super(MyChain, self).__init__(
l1=L.Linear(None, 30),
l2=L.Linear(None, 30),
l3=L.Linear(None, 1)
)
def __call__(self, x):
h = self.l1(x)
h = self.l2(F.sigmoid(h))
return self.l3(F.sigmoid(h))
model = MyChain()
# Then you can instantiate optimizer
optimizer = chainer.optimizers.Adam()
# Register model to optimizer (to indicate which parameter to update)
optimizer.setup(model)
# Calculate loss, and update parameter as follows.
def lossfun(x, y):
loss = F.mean_squared_error(model(x), y)
return loss
# this iteration is "training", to fit the model into desired function.
for i in range(300):
optimizer.update(lossfun, x, y)
So in summary, you need to setup the model, after that you can use update function to calculate loss and update model's parameter.
The above code comes from here
Also, there are other way to write training code using Trainer module. For more detailed tutorial of Chainer, please refer below
chainer-handson
deep-learning-tutorial-with-chainer

Categories

Resources