Is it possible to read binary MATLAB .mat files in Python?
I've seen that SciPy has alleged support for reading .mat files, but I'm unsuccessful with it. I installed SciPy version 0.7.0, and I can't find the loadmat() method.
An import is required, import scipy.io...
import scipy.io
mat = scipy.io.loadmat('file.mat')
Neither scipy.io.savemat, nor scipy.io.loadmat work for MATLAB arrays version 7.3. But the good part is that MATLAB version 7.3 files are hdf5 datasets. So they can be read using a number of tools, including NumPy.
For Python, you will need the h5py extension, which requires HDF5 on your system.
import numpy as np
import h5py
f = h5py.File('somefile.mat','r')
data = f.get('data/variable1')
data = np.array(data) # For converting to a NumPy array
First save the .mat file as:
save('test.mat', '-v7')
After that, in Python, use the usual loadmat function:
import scipy.io as sio
test = sio.loadmat('test.mat')
There is a nice package called mat4py which can easily be installed using
pip install mat4py
It is straightforward to use (from the website):
Load data from a MAT-file
The function loadmat loads all variables stored in the MAT-file into a simple Python data structure, using only Python’s dict and list objects. Numeric and cell arrays are converted to row-ordered nested lists. Arrays are squeezed to eliminate arrays with only one element. The resulting data structure is composed of simple types that are compatible with the JSON format.
Example: Load a MAT-file into a Python data structure:
from mat4py import loadmat
data = loadmat('datafile.mat')
The variable data is a dict with the variables and values contained in the MAT-file.
Save a Python data structure to a MAT-file
Python data can be saved to a MAT-file, with the function savemat. Data has to be structured in the same way as for loadmat, i.e. it should be composed of simple data types, like dict, list, str, int, and float.
Example: Save a Python data structure to a MAT-file:
from mat4py import savemat
savemat('datafile.mat', data)
The parameter data shall be a dict with the variables.
Having MATLAB 2014b or newer installed, the MATLAB engine for Python could be used:
import matlab.engine
eng = matlab.engine.start_matlab()
content = eng.load("example.mat", nargout=1)
Reading the file
import scipy.io
mat = scipy.io.loadmat(file_name)
Inspecting the type of MAT variable
print(type(mat))
#OUTPUT - <class 'dict'>
The keys inside the dictionary are MATLAB variables, and the values are the objects assigned to those variables.
There is a great library for this task called: pymatreader.
Just do as follows:
Install the package: pip install pymatreader
Import the relevant function of this package: from pymatreader import read_mat
Use the function to read the matlab struct: data = read_mat('matlab_struct.mat')
use data.keys() to locate where the data is actually stored.
The keys will usually look like: dict_keys(['__header__', '__version__', '__globals__', 'data_opp']). Where data_opp will be the actual key which stores the data. The name of this key can ofcourse be changed between different files.
Last step - Create your dataframe: my_df = pd.DataFrame(data['data_opp'])
That's it :)
There is also the MATLAB Engine for Python by MathWorks itself. If you have MATLAB, this might be worth considering (I haven't tried it myself but it has a lot more functionality than just reading MATLAB files). However, I don't know if it is allowed to distribute it to other users (it is probably not a problem if those persons have MATLAB. Otherwise, maybe NumPy is the right way to go?).
Also, if you want to do all the basics yourself, MathWorks provides (if the link changes, try to google for matfile_format.pdf or its title MAT-FILE Format) a detailed documentation on the structure of the file format. It's not as complicated as I personally thought, but obviously, this is not the easiest way to go. It also depends on how many features of the .mat-files you want to support.
I've written a "small" (about 700 lines) Python script which can read some basic .mat-files. I'm neither a Python expert nor a beginner and it took me about two days to write it (using the MathWorks documentation linked above). I've learned a lot of new stuff and it was quite fun (most of the time). As I've written the Python script at work, I'm afraid I cannot publish it... But I can give some advice here:
First read the documentation.
Use a hex editor (such as HxD) and look into a reference .mat-file you want to parse.
Try to figure out the meaning of each byte by saving the bytes to a .txt file and annotate each line.
Use classes to save each data element (such as miCOMPRESSED, miMATRIX, mxDOUBLE, or miINT32)
The .mat-files' structure is optimal for saving the data elements in a tree data structure; each node has one class and subnodes
To read mat file to pandas dataFrame with mixed data types
import scipy.io as sio
mat=sio.loadmat('file.mat')# load mat-file
mdata = mat['myVar'] # variable in mat file
ndata = {n: mdata[n][0,0] for n in mdata.dtype.names}
Columns = [n for n, v in ndata.items() if v.size == 1]
d=dict((c, ndata[c][0]) for c in Columns)
df=pd.DataFrame.from_dict(d)
display(df)
Apart from scipy.io.loadmat for v4 (Level 1.0), v6, v7 to 7.2 matfiles and h5py.File for 7.3 format matfiles, there is anther type of matfiles in text data format instead of binary, usually created by Octave, which can't even be read in MATLAB.
Both of scipy.io.loadmat and h5py.File can't load them (tested on scipy 1.5.3 and h5py 3.1.0), and the only solution I found is numpy.loadtxt.
import numpy as np
mat = np.loadtxt('xxx.mat')
Can also use the hdf5storage library. official documentation here for details on matlab version support.
import hdf5storage
label_file = "./LabelTrain.mat"
out = hdf5storage.loadmat(label_file)
print(type(out)) # <class 'dict'>
from os.path import dirname, join as pjoin
import scipy.io as sio
data_dir = pjoin(dirname(sio.__file__), 'matlab', 'tests', 'data')
mat_fname = pjoin(data_dir, 'testdouble_7.4_GLNX86.mat')
mat_contents = sio.loadmat(mat_fname)
You can use above code to read the default saved .mat file in Python.
After struggling with this problem myself and trying other libraries (I have to say mat4py is a good one as well but with a few limitations) I have built this library ("matdata2py") that can handle most variable types and most importantly for me the "string" type. The .mat file needs to be saved in the -V7.3 version. I hope this can be useful for the community.
Installation:
pip install matdata2py
How to use this lib:
import matdata2py as mtp
To load the Matlab data file:
Variables_output = mtp.loadmatfile(file_Name, StructsExportLikeMatlab = True, ExportVar2PyEnv = False)
print(Variables_output.keys()) # with ExportVar2PyEnv = False the variables are as elements of the Variables_output dictionary.
with ExportVar2PyEnv = True you can see each variable separately as python variables with the same name as saved in the Mat file.
Flag descriptions
StructsExportLikeMatlab = True/False structures are exported in dictionary format (False) or dot-based format similar to Matlab (True)
ExportVar2PyEnv = True/False export all variables in a single dictionary (True) or as separate individual variables into the python environment (False)
scipy will work perfectly to load the .mat files.
And we can use the get() function to convert it to a numpy array.
mat = scipy.io.loadmat('point05m_matrix.mat')
x = mat.get("matrix")
print(type(x))
print(len(x))
plt.imshow(x, extent=[0,60,0,55], aspect='auto')
plt.show()
To Upload and Read mat files in python
Install mat4py in python.On successful installation we get:
Successfully installed mat4py-0.5.0.
Importing loadmat from mat4py.
Save file actual location inside a variable.
Load mat file format to a data value using python
pip install mat4py
from mat4py import loadmat
boston = r"E:\Downloads\boston.mat"
data = loadmat(boston, meta=False)
Related
I want to store multiple GeoTiff files in one HDF5 file to use it for further analysis since the function I am supposed to use can just deal with HDF5 (so basically like a raster stack in R but stored in a HDF5). I have to use Python. I am relatively new to HDF5 format (and geoanalysis in Python generally) and don't really know how to approach this issue. Especially keeping the geolocation/projection inforation seems tricky to me. So far I tried:
import h5py
import rasterio
r1 = rasterio.open("filename.tif")
r2 = rasterio.open("filename2.tif")
with h5py.File('path/test.h5', 'w') as hdf:
hdf.create_dataset('GeoTiff1', data=r1)
hdf.create_dataset('GeoTiff2', data=r2)
Yielding the following errror:
TypeError: Object dtype dtype('O') has no native HDF5 equivalent
I am pretty sure this not at all the correct approach and I'm happy about any suggestions.
What you can try is to do this:
import numpy as np
spec_dtype = h5py.special_dtype(vlen=np.dtype('float64'))
Just make a spec_dtype variable with float64 type then apply this to create_dataset:
with h5py.File('path/test.h5', 'w') as hdf:
hdf.create_dataset('GeoTiff1', data=r1,, dtype=spec_dtype)
hdf.create_dataset('GeoTiff2', data=r2,, dtype=spec_dtype)
Apply these and hopefully it will work.
Using HDFql in Python, your use-case could be solved as follows:
import HDFql
HDFql.execute("SHOW FILE SIZE filename.tif, filename2.tif")
HDFql.cursor_next()
HDFql.execute("CREATE DATASET path/test.h5 GeoTiff1 AS OPAQUE(%d) VALUES FROM BINARY FILE filename.tif" % HDFql.cursor_get_bigint())
HDFql.cursor_next()
HDFql.execute("CREATE DATASET path/test.h5 GeoTiff2 AS OPAQUE(%d) VALUES FROM BINARY FILE filename2.tif" % HDFql.cursor_get_bigint())
I have few lists which i want to save it to a *.mat file. But according to scipy.io.savemat command documentation i Need to create a dictionary with the lists and then use the command to save it to a *.mat file.
If i save it according to the way mentioned in the docs the mat file will have structure with variables as the Arrays which i used in the dictionary. Now i have a Problem here, I have another program (which is not editable) will use the mat files and load them to plot some Graphs from the data. The program cannot process the structure because it is written in a way where if it loads a mat files and then it will directly process the Arrays in it.
So is there a way to save the mat file without using dictionaries? Please see the Image for more understanding
Thanks
This is the sample algorithm i used to save my *.mat file
import os
os.getcwd()
os.chdir(os.getcwd())
import scipy.io as sio
x=[1,2,3,4,5]
y=[234,5445,778] #can be 1000 lists
data={}
data['x']=x
data['y']=y
sio.savemat('test.mat',{'interpolated_data':data})
How about
scipy.io.savemat('interpolated_data_max_compare.mat',
{'NA1_X_order10_ACCE_ms2': np.zeros((3000,1)),
'NA1_X_order10_DISP_mm': np.ones((3000,1))})
Should work fine...
According to the code you added in your question, instead of sio.savemat('...', {'interpolated_data':data}), just save
sio.savemat('...', data)
and you should be fine: data is already a dictionary you don't need to add an extra level with {'interpolated_data': data} when saving.
You could use the Writing primitives directly
import scipy.io.matlab as ml
f=open("something.mat","wb")
mw=ml.mio5.MatFile5Writer(f)
mw.put_variables({"testVar":22})
I need to be able to quickly read lots of netCDF variables in python (1 variable per file). I'm finding that the Dataset function in netCDF4 library is rather slow compared to reading utilities in other languages (e.g., IDL).
My variables have shape of (2600,5200) and type float. They don't seem that big to me (filesize = 52Mb).
Here is my code:
import numpy as np
from netCDF4 import Dataset
import time
file = '20151120-235839.netcdf'
t0=time.time()
openFile = Dataset(file,'r')
raw_data = openFile.variables['MergedReflectivityQCComposite']
data = np.copy(raw_data)
openFile.close()
print time.time-t0
It takes about 3 seconds to read one variable (one file). I think the main slowdown is np.copy. raw_data is <type 'netCDF4.Variable'>, thus the copy. Is this the best/fastest way to do netCDF reads in python?
Thanks.
The power of Numpy is that you can create views into the exiting data in memory via the metadata it retains about the data. So a copy will always be slower than a view, via pointers. As JCOidl says it's not clear why you don't just use:
raw_data = openFile.variables['MergedReflectivityQCComposite'][:]
For more info see SciPy Cookbook and SO View onto a numpy array?
I'm not sure what to say about the np.copy operation (which is indeed slow), but I find that the PyNIO module from UCAR works well for both NetCDF and HDF files. This will place data into a numpy array:
import Nio
f = Nio.open_file(file, format="netcdf")
data = f.variables['MergedReflectivityQCComposite'][:]
f.close()
Testing your code versus the PyNIO code on a ndfCDF file I have resulted in 1.1 seconds for PyNIO, versus 3.1 seconds for the netCDF4 module. Your results may vary; worth a look though.
You can use xarray for that.
%matplotlib inline
import xarray as xr
### Single netcdf file ###
ds = xr.open_dataset('path/file.nc')
### Opening multiple NetCDF files and concatenating them by time ####
ds = xr.open_mfdatset('path/*.nc', concat_dim='time
To read the variable you can simply type ds.MergedReflectivityQCCompositeor ds.['MergedReflectivityQCComposite'][:]
You can also use xr.load_dataset but I find that it uses up more space than the open function. For xr.open_mfdataset, you can also chunk along the dimensions of the file if you want. There are other options for both functions and you might be interested to learn more about it in the xarray documentation.
I have a bunch of .RData time-series files and would like to load them directly into Python without first converting the files to some other extension (such as .csv). Any ideas on the best way to accomplish this?
As an alternative for those who would prefer not having to install R in order to accomplish this task (r2py requires it), there is a new package "pyreadr" which allows reading RData and Rds files directly into python without dependencies.
It is a wrapper around the C library librdata, so it is very fast.
You can install it easily with pip:
pip install pyreadr
As an example you would do:
import pyreadr
result = pyreadr.read_r('/path/to/file.RData') # also works for Rds
# done! let's see what we got
# result is a dictionary where keys are the name of objects and the values python
# objects
print(result.keys()) # let's check what objects we got
df1 = result["df1"] # extract the pandas data frame for object df1
The repo is here: https://github.com/ofajardo/pyreadr
Disclaimer: I am the developer of this package.
People ask this sort of thing on the R-help and R-dev list and the usual answer is that the code is the documentation for the .RData file format. So any other implementation in any other language is hard++.
I think the only reasonable way is to install RPy2 and use R's load function from that, converting to appropriate python objects as you go. The .RData file can contain structured objects as well as plain tables so watch out.
Linky: http://rpy.sourceforge.net/rpy2/doc-2.4/html/
Quicky:
>>> import rpy2.robjects as robjects
>>> robjects.r['load'](".RData")
objects are now loaded into the R workspace.
>>> robjects.r['y']
<FloatVector - Python:0x24c6560 / R:0xf1f0e0>
[0.763684, 0.086314, 0.617097, ..., 0.443631, 0.281865, 0.839317]
That's a simple scalar, d is a data frame, I can subset to get columns:
>>> robjects.r['d'][0]
<IntVector - Python:0x24c9248 / R:0xbbc6c0>
[ 1, 2, 3, ..., 8, 9, 10]
>>> robjects.r['d'][1]
<FloatVector - Python:0x24c93b0 / R:0xf1f230>
[0.975648, 0.597036, 0.254840, ..., 0.891975, 0.824879, 0.870136]
Jupyter Notebook Users
If you are using Jupyter notebook, you need to do 2 steps:
Step 1: go to http://www.lfd.uci.edu/~gohlke/pythonlibs/#rpy2 and download Python interface to the R language (embedded R) in my case I will use rpy2-2.8.6-cp36-cp36m-win_amd64.whl
Put this file in the same working directory you are currently in.
Step 2: Go to your Jupyter notebook and write the following commands
# This is to install rpy2 library in Anaconda
!pip install rpy2-2.8.6-cp36-cp36m-win_amd64.whl
and then
# This is important if you will be using rpy2
import os
os.environ['R_USER'] = 'D:\Anaconda3\Lib\site-packages\rpy2'
and then
import rpy2.robjects as robjects
from rpy2.robjects import pandas2ri
pandas2ri.activate()
This should allow you to use R functions in python. Now you have to import the readRDS as follow
readRDS = robjects.r['readRDS']
df = readRDS('Data1.rds')
df = pandas2ri.ri2py(df)
df.head()
Congratulations! now you have the Dataframe you wanted
However, I advise you to save it in pickle file for later time usage in python as
df.to_pickle('Data1')
So next time you may simply use it by
df1=pd.read_pickle('Data1')
Well, I couple years ago I had the same problem as you. I wanted to read .RData files from a library that I was developing. I considered using RPy2, but that would have forced me to release my library with a GPL license, which I did not want to do.
"pyreadr" didn't even exist then. Also, the datasets which I wanted to load were not in a standardized format as a data.frame.
I came to this question and read Spacedman answer. In particular, I saw the line
So any other implementation in any other language is hard++.
as a challenge, and implemented the package rdata in a couple of days as a result. This is a very small pure Python implementation of a .RData parser and converter, able to suit my needs until now. The steps of parsing the original objects and converting to apropriate Python objects are separated, so that users could use a different conversion if they want. Moreover, users can add constructors for custom R classes.
This is an usage example:
>>> import rdata
>>> parsed = rdata.parser.parse_file(rdata.TESTDATA_PATH / "test_vector.rda")
>>> converted = rdata.conversion.convert(parsed)
>>> converted
{'test_vector': array([1., 2., 3.])}
As I said, I developed this package and have been used since without problems, but I did not bother to give it visibility as I did not document it properly. This has recently changed and now the documentation is mostly ok, so here it is for anyone interested:
https://github.com/vnmabus/rdata
There is a third party library called rpy, and you can use this library to load .RData files. You can get this via a pip install pip instally rpy will do the trick, if you don't have rpy, then I suggest that you take a look at how to install it. Otherwise, you can simple do:
from rpy import *
r.load("file name here")
EDIT:
It seems like I'm a little old school there,s rpy2 now, so you can use that.
Try this
!pip install pyreadr
Then
result = pyreadr.read_r('/content/nGramsLite.RData')
# objects
print(result.keys()) # let's check what objects we got
>>>odict_keys(['ngram1', 'ngram2', 'ngram3', 'ngram4'])
df1 = result["ngram1"]
df1.head()
Done!!
I'm wondering if anyone knows a Python package that allows you to save numpy arrays/recarrays in the .dta format of the statistical data analysis software Stata. This would really speed up a few steps in a system I have.
The scikits.statsmodels package includes a reader for Stata data files, which relies in part on PyDTA as pointed out by #Sven. In particular, genfromdta() will return an ndarray, e.g.
from Python 2.7/statsmodels 0.3.1:
>>> import scikits.statsmodels.api as sm
>>> arr = sm.iolib.genfromdta('/Applications/Stata12/auto.dta')
>>> type(arr)
<type 'numpy.ndarray'>
The savetxt() function can be used in turn to save an array as a text file, which can be imported in Stata. For example, we can export the above as
>>> sm.iolib.savetxt('auto.txt', arr, fmt='%2s', delimiter=",")
and read it in Stata without a dictionary file as follows:
. insheet using auto.txt, clear
I believe a *.dta reader should be added in the near future.
The only Python library for STATA interoperability I could find merely provides read-only access to .dta files. The R foreign library however provides a function write.dta, and RPy provides a Python interface to R. Maybe the combination of these tools can help you.
pandas DataFrame objects now have a "to_stata" method. So you can do for instance
import pandas as pd
df = pd.read_stata('my_data_in.dta')
df.to_stata('my_data_out.dta')
DISCLAIMER: the first step is quite slow (in my test, around 1 minute for reading a 51 MB dta - also see this question), and the second produces a file which can be way larger than the original one (in my test, the size goes from 51 MB to 111MB). This answer may look less elegant, but it is probably more efficient.