How to plot time only of pandas datetime64[ns] attribute - python

I have a dataframe of a long time range in format datetime64[ns] and a int value
Data looks like this:
MIN_DEP DELAY
0 2018-01-01 05:09:00 0
1 2018-01-01 05:13:00 0
2 2018-01-01 05:39:00 0
3 2018-01-01 05:43:00 0
4 2018-01-01 06:12:00 34
... ... ...
77005 2020-09-30 23:42:00 0
77006 2020-09-30 23:43:00 0
77007 2020-09-30 23:43:00 43
77008 2020-10-01 00:18:00 0
77009 2020-10-01 00:59:00 0
[77010 rows x 2 columns]
MIN_DEP datetime64[ns]
DELAY int64
dtype: object
Target is to plot all the data in just a 00:00 - 24:00 range on the x-axis, no dates anymore.
As i try to plot it, the timeline is 00:00 at any point. How to fix this?
import matplotlib.dates as mdates
fig, ax = plt.subplots()
ax.plot(pd_to_stat['MIN_DEP'],pd_to_stat['DELAY'])
xfmt = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(xfmt)
plt.show()
tried to convert the timestamps before to dt.time and plot it then
pd_to_stat['time'] = pd.to_datetime(pd_to_stat['MIN_DEP'], format='%H:%M').dt.time
fig, ax = plt.subplots()
ax.plot(pd_to_stat['time'],pd_to_stat['DELAY'])
plt.show()
Plot does not allow to do that:
TypeError: float() argument must be a string or a number, not 'datetime.time'

According to your requirement, I guess you don't need the dates and as well as the seconds field in your timestamp. So you need a little bit of preprocessing at first.
Remove the seconds field using the code below
dataset['MIN_DEP'] = dataset['MIN_DEP'].strftime("%H:%M")
Then you can remove the date from your timestamp in the following manner
dataset['MIN_DEP'] = pd.Series([val.time() for val in dataset['MIN_DEP']])
Then you can plot your data in the usual manner.

This seems to work now. I did not recognise, the plot was still splitting up in dates. To work around I hat to replace all the dates with the same date and plottet it hiding the date using DateFormatter
import matplotlib.dates as mdates
pd_to_stat['MIN_DEP'] = pd_to_stat['MIN_DEP'].map(lambda t: t.replace(year=2020, month=1, day=1))
fig, ax = plt.subplots()
ax.plot(pd_to_stat['MIN_DEP'],pd_to_stat['DELAY'])
xfmt = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(xfmt)
plt.show()

Related

ploting histogram with timedelta series

I have some series of data, which is a timedelta data type. I wanted to plot these timedelta into a bar diagram where the y axis should only be marked in hours instead of some other format. Previously, when I was trying with a line plot in matplotlib, it showed some not understandable numbers. The following is the sample of my timedelta series of pandas:
date
2020-04-11 0 days 02:00:00
2020-04-12 0 days 03:00:00
2020-04-13 0 days 02:00:00
2020-04-14 0 days 03:00:00
2020-04-15 0 days 01:00:00
2020-04-16 0 days 03:00:00
Freq: D, dtype: timedelta64[ns]
When I am trying to plot it in matplotlib, it results in a plot with y axis values look weird to me.
Please help me to work out with the plots, where the y-axis tick labels should be in 01:00, 02:00 like format.
Eagerly waiting for some of the help.
A possible way is to convert the deltas in seconds and define a FuncFormatter.
This is my test series and my final plot:
2020-04-11 02:00:00
2020-04-12 03:00:00
2020-04-13 05:00:00
dtype: timedelta64[ns]
def delta(x, pos):
out = str(datetime.timedelta(seconds=x) )
return out
fig = plt.figure()
ax = fig.gca()
form = matplotlib.ticker.FuncFormatter(delta)
ax.yaxis.set_major_formatter(form)
ax.plot(s.index, s/np.timedelta64(1,'s'))
ax.set_yticks(s/np.timedelta64(1,'s'))
ax.set_xticks(s.index)
plt.show()

how to plot only with the dates inside my df and not all the dates

I have this following df :
date values
2020-08-06 08:00:00 5
2020-08-06 09:00:00 10
2020-08-06 10:00:00 0
2020-08-17 08:00:00 8
2020-08-17 09:00:00 15
I want to plot this df so I do : df.set_index('date')['values'].plot(kind='line') but it shows all the dates between the 6th and the 17th.
How can I plot the graph only with the dates inside my df ?
I assume that date column is of datetime type.
To draw for selected dates only, the index must be built on
the principle "number of day from a unique list + hour".
But to suppress the default x label ticks, you have to define
your own, e.g. each 8 h in each date to be drawn.
Start from converting your DataFrame as follows:
idx = df['date'].dt.normalize().unique()
dateMap = pd.Series(np.arange(idx.size) * 24, index=idx)
df.set_index(df.date.dt.date.map(dateMap) + df.date.dt.hour, inplace=True)
df.index.rename('HourNo', inplace=True); df
Now, for your data sample, it has the following content:
date values
HourNo
8 2020-08-06 08:00:00 5
9 2020-08-06 09:00:00 10
10 2020-08-06 10:00:00 0
32 2020-08-17 08:00:00 8
33 2020-08-17 09:00:00 15
Then generate your plot and x ticks positions and labels:
fig, ax = plt.subplots(tight_layout=True)
df.loc[:, 'values'].plot(style='o-', rot=30, ax=ax)
xLoc = np.arange(0, dateMap.index.size * 24, 8)
xLbl = pd.concat([ pd.Series(d + pd.timedelta_range(start=0, freq='8H',
periods=3)) for d in dateMap.index ]).dt.strftime('%Y-%m-%d\n%H:%M')
plt.xticks(ticks=xLoc, labels=xLbl, ha='right')
ax.set_xlabel('Date')
ax.set_ylabel('Value')
ax.set_title('Set the proper heading')
ax.grid()
plt.show()
I added also the grid.
The result is:
And the final remark: Avoid column names which are the same as existing
Pandas methods or arrtibutes (e.g. values).
Sometimes it is the cause of "stupid" errors (you intend to refer to
a column, but you actually refer to a metod or attribute).

How to plot data, time on x-axis not datetime

id timestamp energy
0 a 2012-03-18 10:00:00 0.034
1 b 2012-03-20 10:30:00 0.052
2 c 2013-05-29 11:00:00 0.055
3 d 2014-06-20 01:00:00 0.028
4 a 2015-02-10 12:00:00 0.069
I want to plot these data like below.
just time on x-axis, not date nor datetime.
because I want to see the values per each hour.
https://i.stack.imgur.com/u73eJ.png
but this code plot like this.
plt.plot(df['timestamp'], df['energy'])
https://i.stack.imgur.com/yd6NL.png
I tried some codes but they just format the X data hide date part and plot like second graph.
+ df['timestamp'] is datetime type.
what should I do? Thanks.
you can convert your datetime into time, if your df["timestamp"] is already in datetime format then
df["time"] = df["timestamp"].map(lambda x: x.time())
plt.plot(df['time'], df['energy'])
if df["timestamp"] is of type string then you can add one more line in front as df["timestamp"] = pd.to_datetime(df["timestamp"])
Update: look like matplotlib does not accept time types, just convert to string
df["time"] = df["timestamp"].map(lambda x: x.strftime("%H:%M"))
plt.scatter(df['time'], df['energy'])
First check, if type of df["timestamp"] is in datetime format.
if not
import pandas as pd
time = pd.to_datetime(df["timestamp"])
print(type(time))
Then,
import matplotlib.pyplot as plt
values = df['energy']
plt.plot_date(dates , values )
plt.xticks(rotation=45)
plt.show()

Smart way of creating multiple graphs using matplotlib

I have an excel worksheet, let us say its name is 'ws_actual'. The data looks as below.
Project Name Date Paid Actuals Item Amount Cumulative Sum
A 2016-04-10 00:00:00 124.2 124.2
A 2016-04-27 00:00:00 2727.5 2851.7
A 2016-05-11 00:00:00 2123.58 4975.28
A 2016-05-24 00:00:00 2500 7475.28
A 2016-07-07 00:00:00 38374.6 45849.88
A 2016-08-12 00:00:00 2988.14 48838.02
A 2016-09-02 00:00:00 23068 71906.02
A 2016-10-31 00:00:00 570.78 72476.8
A 2016-11-09 00:00:00 10885.75 83362.55
A 2016-12-08 00:00:00 28302.95 111665.5
A 2017-01-19 00:00:00 4354.3 116019.8
A 2017-02-28 00:00:00 3469.77 119489.57
A 2017-03-29 00:00:00 267.75 119757.32
B 2015-04-27 00:00:00 2969.93 2969.93
B 2015-06-02 00:00:00 118.8 3088.73
B 2015-06-18 00:00:00 2640 5728.73
B 2015-06-26 00:00:00 105.6 5834.33
B 2015-09-03 00:00:00 11879.7 17714.03
B 2015-10-22 00:00:00 5303.44 23017.47
B 2015-11-08 00:00:00 52000 75017.47
B 2015-11-25 00:00:00 2704.13 77721.6
B 2016-03-09 00:00:00 59752.85 137474.45
B 2016-03-13 00:00:00 512.73 137987.18
.
.
.
Let us say there are many many more projects including A and B with Date Paid and Amount information. I would like to create a plot by project where x axis is 'Date Paid' and y axis is 'Cumulative Sum', but when I just implement the following code, it just combines every project and plot every 'Cumulative Sum' at one graph. I wonder if I need to divide the table by project, save each, and then bring one by one to plot the graph. It is a lot of work, so I am wondering if there is a smarter way to do so. Please help me, genius.
import pandas as pd
import matplotlib.pyplot as plt
ws_actual = pd.read_excel(actual_file[0], sheet_name=0)
ax = ws_actual.plot(x='Date Paid', y='Cumulative Sum', color='g')
Right now you are connecting all of the points, regardless of group. A simple loop will work here allowing you to group the DataFrame and then plot each group as a separate curve. If you want you can define your own colorcycle if you have a lot of groups, so that colors do not repeat.
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(8,8))
for id, gp in ws_actual.groupby('Project Name'):
gp.plot(x='Date Paid', y='Cumulative Sum', ax=ax, label=id)
plt.show()
You could just iterate the projects:
for proj in ws_actual['Project'].unique():
ws_actual[ws_actual['Project'] == proj].plot(x='Date Paid', y='Cumulative Sum', color='g')
plt.show()
Or check out seaborn for an easy way to make a facet grid for which you can set a rows variable. Something along the lines of:
import seaborn as sns
g = sns.FacetGrid(ws_actual, row="Project")
g = g.map(plt.scatter, "Date Paid", "Cumulative Sum", edgecolor="w")

pandas/matplotlib datetime tick labels

I have a pandas dataframe with datetime values including microseconds:
column1 column2
time
1900-01-01 10:39:52.887916 19363.876 19362.7575
1900-01-01 10:39:53.257916 19363.876 19362.7575
1900-01-01 10:39:53.808007 19363.876 19362.7575
1900-01-01 10:39:53.827894 19363.876 19362.7575
1900-01-01 10:39:54.277931 19363.876 19362.7575
I plot the dataframe as follows:
def plot(df):
ax = df.plot(y='column1', figsize=(20, 8))
df.plot(y='column2', ax=ax)
ax.get_yaxis().get_major_formatter().set_useOffset(False)
mpl.pyplot.show()
Notice on the image below that the microseconds are displayed as %f rather than their actual value.
That is, instead of 10:39:52.887916 it displays 10:39:52.%f
How can I display the actual microseconds in the tick labels (even if it's only a few significant digits)?
You should be able to set the major ticks to the format you want, using set_major_formatter:
In [14]:
import matplotlib as mpl
import matplotlib.dates
df = pd.DataFrame({'column1': [1,2,3,4],
'column2': [2,3,4,5]},
index =pd.to_datetime([1e8,2e8,3e8,4e8]))
def plot(df):
ax = df.plot(y='column1', figsize=(20, 8))
df.plot(y='column2', ax=ax)
ax.get_yaxis().get_major_formatter().set_useOffset(False)
ax.get_xaxis().set_major_formatter(matplotlib.dates.DateFormatter('%H:%M:%S.%f'))
#mpl.pyplot.show()
return ax
print df
column1 column2
1970-01-01 00:00:00.100000 1 2
1970-01-01 00:00:00.200000 2 3
1970-01-01 00:00:00.300000 3 4
1970-01-01 00:00:00.400000 4 5
If the problem do go away, then I think somewhere in the code the formatter format is specified incorrectly, namely %%f instead of %f, which returns a literal '%' character.

Categories

Resources