Related
I am trying to access a specific key in a nest dictionary, then match its value to a string in a list. If the string in the list contains the string in the dictionary value, I want to override the dictionary value with the list value. below is an example.
my_list = ['string1~', 'string2~', 'string3~', 'string4~', 'string5~', 'string6~']
my_iterable = {'A':'xyz',
'B':'string6',
'C':[{'B':'string4', 'D':'123'}],
'E':[{'F':'321', 'B':'string1'}],
'G':'jkl'
}
The key I'm looking for is B, the objective is to override string6 with string6~, string4 with string4~, and so on for all B keys found in the my_iterable.
I have written a function to compute the Levenshtein distance between two strings, but I am struggling to write an efficient ways to override the values of the keys.
def find_and_replace(key, dictionary, original_list):
for k, v in dictionary.items():
if k == key:
#function to check if original_list item contains v
yield v
elif isinstance(v, dict):
for result in find_and_replace(key, v, name_list):
yield result
elif isinstance(v, list):
for d in v:
if isinstance(d, dict):
for result in find_and_replace(key, d, name_list):
yield result
if I call
updated_dict = find_and_replace('B', my_iterable, my_list)
I want updated_dict to return the below:
{'A':'xyz',
'B':'string6~',
'C':[{'B':'string4~', 'D':'123'}],
'E':[{'F':'321', 'B':'string1~'}],
'G':'jkl'
}
Is this the right approach to the most efficient solution, and how can I modify it to return a dictionary with the updated values for B?
You can use below code. I have assumed the structure of input dict to be same throughout the execution.
# Input List
my_list = ['string1~', 'string2~', 'string3~', 'string4~', 'string5~', 'string6~']
# Input Dict
# Removed duplicate key "B" from the dict
my_iterable = {'A':'xyz',
'B':'string6',
'C':[{'B':'string4', 'D':'123'}],
'E':[{'F':'321', 'B':'string1'}],
'G':'jkl',
}
# setting search key
search_key = "B"
# Main code
for i, v in my_iterable.items():
if i == search_key:
if not isinstance(v,list):
search_in_list = [i for i in my_list if v in i]
if search_in_list:
my_iterable[i] = search_in_list[0]
else:
try:
for j, k in v[0].items():
if j == search_key:
search_in_list = [l for l in my_list if k in l]
if search_in_list:
v[0][j] = search_in_list[0]
except:
continue
# print output
print (my_iterable)
# Result -> {'A': 'xyz', 'B': 'string6~', 'C': [{'B': 'string4~', 'D': '123'}], 'E': [{'F': '321', 'B': 'string1~'}], 'G': 'jkl'}
Above can has scope of optimization using list comprehension or using
a function
I hope this helps and counts!
In some cases, if your nesting is kind of complex you can treat the dictionary like a json string and do all sorts of replacements. Its probably not what people would call very pythonic, but gives you a little more flexibility.
import re, json
my_list = ['string1~', 'string2~', 'string3~', 'string4~', 'string5~', 'string6~']
my_iterable = {'A':'xyz',
'B':'string6',
'C':[{'B':'string4', 'D':'123'}],
'E':[{'F':'321', 'B':'string1'}],
'G':'jkl'}
json_str = json.dumps(my_iterable, ensure_ascii=False)
for val in my_list:
json_str = re.sub(re.compile(f"""("[B]":\\W?")({val[:-1]})(")"""), r"\1" + val + r"\3", json_str)
my_iterable = json.loads(json_str)
print(my_iterable)
I want to replace keys name of a dictionary by passing a mapping dict with a function that replace also nested keys.
The issue is that I have multiple keys named 'id' in nested dictionary and I want to rename these 'id' with specific names.
Initial dictionnary:
initial_dict = {'id': 1, 'netAmount': 10.2, 'modifiedOn': '2017-01-01',
'statusId': 3, 'approvalStateId': 3, 'approvalState': {'id': 3,'name':'Approved'}}
Mapping dict:
mapping_dict = {'id': 'pr_id', 'netAmount': 'net_amount', 'modifiedOn': 'modified_date',
'statusId': 'status_id', 'approvalStateId': 'approval_id','approvalState':{'id':'approv_id'}}
Desired output of the dictionary:
output_dict = {'pr_id': 1, 'net_amount': 10.2, 'modified_date': '2017-01-01',
'status_id': 3, 'approval_id': 3, 'approvalState': {'approv_id': 3, 'name': 'Approved'}}
What I did is this but it only replace keys of the first level of the dict and if I try to set nested keys in the mapping dict, I get an error.
def map_fields(obj):
new_obj = {}
mapping_dict = {'id': 'pr_id', 'netAmount': 'net_amount', 'modifiedOn': 'modified_date',
'statusId': 'status_id', 'approvalStateId': 'approval_id','approvalState':{'id':'approv_id'}}
for key in obj.keys():
if key in mapping_dict:
new_key = mapping_dict[key]
else:
new_key = key
new_obj[new_key] = obj[key]
return new_obj
Do you have any idea how to do it?
Thanks
You need a recursive function to be able to step up through the nested dictionaries. The key is that when recursing, you need to pass both the child dictionary, and the child mapping dictionary.
Note that the structure of your mapping dict is specific to this problem, and doesn't allow you to change the key of a nested dictionary - you'd need to restructure how you store the mapping to achieve that.
The following should do what you want (print statements added to help follow the logic when it runs):
def map_fields(init_dict, map_dict, res_dict=None):
res_dict = res_dict or {}
for k, v in init_dict.items():
print("Key: ", k)
if isinstance(v, dict):
print("value is a dict - recursing")
v = map_fields(v, map_dict[k])
elif k in map_dict.keys():
print("Remapping:", k, str(map_dict[k]))
k = str(map_dict[k])
res_dict[k] = v
return res_dict
print(map_fields(initial_dict, mapping_dict))
Also if you want the same result but do not want to use a nested mapping dict such as :
mapping_dict = {'id': 'pr_id', 'netAmount': 'net_amount', 'modifiedOn': 'modified_date',
'statusId': 'status_id', 'approvalStateId': 'approval_id', 'id':'approv_id'}
(ie 'id'/'approv_id' is not nested in 'approvalState')
You can use the slightly different function:
def map_fields(init_dict, map_dict, res_dict=None):
res_dict = res_dict or {}
for k, v in init_dict.items():
if isinstance(v, dict):
v = map_fields(v, map_dict)
if k in map_dict.keys():
k = str(map_dict[k])
res_dict[k] = v
return res_dict
This can be especially useful if the key 'approvalState' was also to map (to something like 'resultState', ie if your result needed to be:
output_dict = {'pr_id': 1, 'net_amount': 10.2, 'modified_date': '2017-01-01',
'status_id': 3, 'approval_id': 3, 'resultState': {'approv_id': 3, 'name': 'Approved'}}
In which case, you would just have had to add the key/value pair 'approvalState'/'resultState' in your mapping dict.
Given a dictionary like so:
my_map = {'a': 1, 'b': 2}
How can one invert this map to get:
inv_map = {1: 'a', 2: 'b'}
Python 3+:
inv_map = {v: k for k, v in my_map.items()}
Python 2:
inv_map = {v: k for k, v in my_map.iteritems()}
Assuming that the values in the dict are unique:
Python 3:
dict((v, k) for k, v in my_map.items())
Python 2:
dict((v, k) for k, v in my_map.iteritems())
If the values in my_map aren't unique:
Python 3:
inv_map = {}
for k, v in my_map.items():
inv_map[v] = inv_map.get(v, []) + [k]
Python 2:
inv_map = {}
for k, v in my_map.iteritems():
inv_map[v] = inv_map.get(v, []) + [k]
To do this while preserving the type of your mapping (assuming that it is a dict or a dict subclass):
def inverse_mapping(f):
return f.__class__(map(reversed, f.items()))
Try this:
inv_map = dict(zip(my_map.values(), my_map.keys()))
(Note that the Python docs on dictionary views explicitly guarantee that .keys() and .values() have their elements in the same order, which allows the approach above to work.)
Alternatively:
inv_map = dict((my_map[k], k) for k in my_map)
or using python 3.0's dict comprehensions
inv_map = {my_map[k] : k for k in my_map}
Another, more functional, way:
my_map = { 'a': 1, 'b':2 }
dict(map(reversed, my_map.items()))
We can also reverse a dictionary with duplicate keys using defaultdict:
from collections import Counter, defaultdict
def invert_dict(d):
d_inv = defaultdict(list)
for k, v in d.items():
d_inv[v].append(k)
return d_inv
text = 'aaa bbb ccc ddd aaa bbb ccc aaa'
c = Counter(text.split()) # Counter({'aaa': 3, 'bbb': 2, 'ccc': 2, 'ddd': 1})
dict(invert_dict(c)) # {1: ['ddd'], 2: ['bbb', 'ccc'], 3: ['aaa']}
See here:
This technique is simpler and faster than an equivalent technique using dict.setdefault().
This expands upon the answer by Robert, applying to when the values in the dict aren't unique.
class ReversibleDict(dict):
# Ref: https://stackoverflow.com/a/13057382/
def reversed(self):
"""
Return a reversed dict, with common values in the original dict
grouped into a list in the returned dict.
Example:
>>> d = ReversibleDict({'a': 3, 'c': 2, 'b': 2, 'e': 3, 'd': 1, 'f': 2})
>>> d.reversed()
{1: ['d'], 2: ['c', 'b', 'f'], 3: ['a', 'e']}
"""
revdict = {}
for k, v in self.items():
revdict.setdefault(v, []).append(k)
return revdict
The implementation is limited in that you cannot use reversed twice and get the original back. It is not symmetric as such. It is tested with Python 2.6. Here is a use case of how I am using to print the resultant dict.
If you'd rather use a set than a list, and there could exist unordered applications for which this makes sense, instead of setdefault(v, []).append(k), use setdefault(v, set()).add(k).
Combination of list and dictionary comprehension. Can handle duplicate keys
{v:[i for i in d.keys() if d[i] == v ] for k,v in d.items()}
A case where the dictionary values is a set. Like:
some_dict = {"1":{"a","b","c"},
"2":{"d","e","f"},
"3":{"g","h","i"}}
The inverse would like:
some_dict = {vi: k for k, v in some_dict.items() for vi in v}
The output is like this:
{'c': '1',
'b': '1',
'a': '1',
'f': '2',
'd': '2',
'e': '2',
'g': '3',
'h': '3',
'i': '3'}
For instance, you have the following dictionary:
my_dict = {'a': 'fire', 'b': 'ice', 'c': 'fire', 'd': 'water'}
And you wanna get it in such an inverted form:
inverted_dict = {'fire': ['a', 'c'], 'ice': ['b'], 'water': ['d']}
First Solution. For inverting key-value pairs in your dictionary use a for-loop approach:
# Use this code to invert dictionaries that have non-unique values
inverted_dict = dict()
for key, value in my_dict.items():
inverted_dict.setdefault(value, list()).append(key)
Second Solution. Use a dictionary comprehension approach for inversion:
# Use this code to invert dictionaries that have unique values
inverted_dict = {value: key for key, value in my_dict.items()}
Third Solution. Use reverting the inversion approach (relies on the second solution):
# Use this code to invert dictionaries that have lists of values
my_dict = {value: key for key in inverted_dict for value in my_map[key]}
Lot of answers but didn't find anything clean in case we are talking about a dictionary with non-unique values.
A solution would be:
from collections import defaultdict
inv_map = defaultdict(list)
for k, v in my_map.items():
inv_map[v].append(k)
Example:
If initial dict my_map = {'c': 1, 'd': 5, 'a': 5, 'b': 10}
then, running the code above will give:
{5: ['a', 'd'], 1: ['c'], 10: ['b']}
I found that this version is more than 10% faster than the accepted version of a dictionary with 10000 keys.
d = {i: str(i) for i in range(10000)}
new_d = dict(zip(d.values(), d.keys()))
In addition to the other functions suggested above, if you like lambdas:
invert = lambda mydict: {v:k for k, v in mydict.items()}
Or, you could do it this way too:
invert = lambda mydict: dict( zip(mydict.values(), mydict.keys()) )
I think the best way to do this is to define a class. Here is an implementation of a "symmetric dictionary":
class SymDict:
def __init__(self):
self.aToB = {}
self.bToA = {}
def assocAB(self, a, b):
# Stores and returns a tuple (a,b) of overwritten bindings
currB = None
if a in self.aToB: currB = self.bToA[a]
currA = None
if b in self.bToA: currA = self.aToB[b]
self.aToB[a] = b
self.bToA[b] = a
return (currA, currB)
def lookupA(self, a):
if a in self.aToB:
return self.aToB[a]
return None
def lookupB(self, b):
if b in self.bToA:
return self.bToA[b]
return None
Deletion and iteration methods are easy enough to implement if they're needed.
This implementation is way more efficient than inverting an entire dictionary (which seems to be the most popular solution on this page). Not to mention, you can add or remove values from your SymDict as much as you want, and your inverse-dictionary will always stay valid -- this isn't true if you simply reverse the entire dictionary once.
If the values aren't unique, and you're a little hardcore:
inv_map = dict(
(v, [k for (k, xx) in filter(lambda (key, value): value == v, my_map.items())])
for v in set(my_map.values())
)
Especially for a large dict, note that this solution is far less efficient than the answer Python reverse / invert a mapping because it loops over items() multiple times.
This handles non-unique values and retains much of the look of the unique case.
inv_map = {v:[k for k in my_map if my_map[k] == v] for v in my_map.itervalues()}
For Python 3.x, replace itervalues with values.
I am aware that this question already has many good answers, but I wanted to share this very neat solution that also takes care of duplicate values:
def dict_reverser(d):
seen = set()
return {v: k for k, v in d.items() if v not in seen or seen.add(v)}
This relies on the fact that set.add always returns None in Python.
Here is another way to do it.
my_map = {'a': 1, 'b': 2}
inv_map= {}
for key in my_map.keys() :
val = my_map[key]
inv_map[val] = key
dict([(value, key) for key, value in d.items()])
Function is symmetric for values of type list; Tuples are coverted to lists when performing reverse_dict(reverse_dict(dictionary))
def reverse_dict(dictionary):
reverse_dict = {}
for key, value in dictionary.iteritems():
if not isinstance(value, (list, tuple)):
value = [value]
for val in value:
reverse_dict[val] = reverse_dict.get(val, [])
reverse_dict[val].append(key)
for key, value in reverse_dict.iteritems():
if len(value) == 1:
reverse_dict[key] = value[0]
return reverse_dict
Since dictionaries require one unique key within the dictionary unlike values, we have to append the reversed values into a list of sort to be included within the new specific keys.
def r_maping(dictionary):
List_z=[]
Map= {}
for z, x in dictionary.iteritems(): #iterate through the keys and values
Map.setdefault(x,List_z).append(z) #Setdefault is the same as dict[key]=default."The method returns the key value available in the dictionary and if given key is not available then it will return provided default value. Afterward, we will append into the default list our new values for the specific key.
return Map
Fast functional solution for non-bijective maps (values not unique):
from itertools import imap, groupby
def fst(s):
return s[0]
def snd(s):
return s[1]
def inverseDict(d):
"""
input d: a -> b
output : b -> set(a)
"""
return {
v : set(imap(fst, kv_iter))
for (v, kv_iter) in groupby(
sorted(d.iteritems(),
key=snd),
key=snd
)
}
In theory this should be faster than adding to the set (or appending to the list) one by one like in the imperative solution.
Unfortunately the values have to be sortable, the sorting is required by groupby.
Try this for python 2.7/3.x
inv_map={};
for i in my_map:
inv_map[my_map[i]]=i
print inv_map
def invertDictionary(d):
myDict = {}
for i in d:
value = d.get(i)
myDict.setdefault(value,[]).append(i)
return myDict
print invertDictionary({'a':1, 'b':2, 'c':3 , 'd' : 1})
This will provide output as : {1: ['a', 'd'], 2: ['b'], 3: ['c']}
A lambda solution for current python 3.x versions:
d1 = dict(alice='apples', bob='bananas')
d2 = dict(map(lambda key: (d1[key], key), d1.keys()))
print(d2)
Result:
{'apples': 'alice', 'bananas': 'bob'}
This solution does not check for duplicates.
Some remarks:
The lambda construct can access d1 from the outer scope, so we only
pass in the current key. It returns a tuple.
The dict() constructor accepts a list of tuples. It
also accepts the result of a map, so we can skip the conversion to a
list.
This solution has no explicit for loop. It also avoids using a list comprehension for those who are bad at math ;-)
Taking up the highly voted answer starting If the values in my_map aren't unique:, I had a problem where not only the values were not unique, but in addition, they were a list, with each item in the list consisting again of a list of three elements: a string value, a number, and another number.
Example:
mymap['key1'] gives you:
[('xyz', 1, 2),
('abc', 5, 4)]
I wanted to switch only the string value with the key, keeping the two number elements at the same place. You simply need another nested for loop then:
inv_map = {}
for k, v in my_map.items():
for x in v:
# with x[1:3] same as x[1], x[2]:
inv_map[x[0]] = inv_map.get(x[0], []) + [k, x[1:3]]
Example:
inv_map['abc'] now gives you:
[('key1', 1, 2),
('key1', 5, 4)]
This works even if you have non-unique values in the original dictionary.
def dict_invert(d):
'''
d: dict
Returns an inverted dictionary
'''
# Your code here
inv_d = {}
for k, v in d.items():
if v not in inv_d.keys():
inv_d[v] = [k]
else:
inv_d[v].append(k)
inv_d[v].sort()
print(f"{inv_d[v]} are the values")
return inv_d
I would do it that way in python 2.
inv_map = {my_map[x] : x for x in my_map}
Not something completely different, just a bit rewritten recipe from Cookbook. It's futhermore optimized by retaining setdefault method, instead of each time getting it through the instance:
def inverse(mapping):
'''
A function to inverse mapping, collecting keys with simillar values
in list. Careful to retain original type and to be fast.
>> d = dict(a=1, b=2, c=1, d=3, e=2, f=1, g=5, h=2)
>> inverse(d)
{1: ['f', 'c', 'a'], 2: ['h', 'b', 'e'], 3: ['d'], 5: ['g']}
'''
res = {}
setdef = res.setdefault
for key, value in mapping.items():
setdef(value, []).append(key)
return res if mapping.__class__==dict else mapping.__class__(res)
Designed to be run under CPython 3.x, for 2.x replace mapping.items() with mapping.iteritems()
On my machine runs a bit faster, than other examples here
I'm trying to programmatically set a value in a dictionary, potentially nested, given a list of indices and a value.
So for example, let's say my list of indices is:
['person', 'address', 'city']
and the value is
'New York'
I want as a result a dictionary object like:
{ 'Person': { 'address': { 'city': 'New York' } }
Basically, the list represents a 'path' into a nested dictionary.
I think I can construct the dictionary itself, but where I'm stumbling is how to set the value. Obviously if I was just writing code for this manually it would be:
dict['Person']['address']['city'] = 'New York'
But how do I index into the dictionary and set the value like that programmatically if I just have a list of the indices and the value?
Python
Something like this could help:
def nested_set(dic, keys, value):
for key in keys[:-1]:
dic = dic.setdefault(key, {})
dic[keys[-1]] = value
And you can use it like this:
>>> d = {}
>>> nested_set(d, ['person', 'address', 'city'], 'New York')
>>> d
{'person': {'address': {'city': 'New York'}}}
I took the freedom to extend the code from the answer of Bakuriu. Therefore upvotes on this are optional, as his code is in and of itself a witty solution, which I wouldn't have thought of.
def nested_set(dic, keys, value, create_missing=True):
d = dic
for key in keys[:-1]:
if key in d:
d = d[key]
elif create_missing:
d = d.setdefault(key, {})
else:
return dic
if keys[-1] in d or create_missing:
d[keys[-1]] = value
return dic
When setting create_missing to True, you're making sure to only set already existing values:
# Trying to set a value of a nonexistent key DOES NOT create a new value
print(nested_set({"A": {"B": 1}}, ["A", "8"], 2, False))
>>> {'A': {'B': 1}}
# Trying to set a value of an existent key DOES create a new value
print(nested_set({"A": {"B": 1}}, ["A", "8"], 2, True))
>>> {'A': {'B': 1, '8': 2}}
# Set the value of an existing key
print(nested_set({"A": {"B": 1}}, ["A", "B"], 2))
>>> {'A': {'B': 2}}
Here's another option:
from collections import defaultdict
recursivedict = lambda: defaultdict(recursivedict)
mydict = recursivedict()
I originally got this from here: Set nested dict value and create intermediate keys.
It is quite clever and elegant if you ask me.
First off, you probably want to look at setdefault.
As a function I'd write it as
def get_leaf_dict(dct, key_list):
res=dct
for key in key_list:
res=res.setdefault(key, {})
return res
This would be used as:
get_leaf_dict( dict, ['Person', 'address', 'city']) = 'New York'
This could be cleaned up with error handling and such. Also using *args rather than a single key-list argument might be nice; but the idea is that
you can iterate over the keys, pulling up the appropriate dictionary at each level.
Here is my simple solution: just write
terms = ['person', 'address', 'city']
result = nested_dict(3, str)
result[terms] = 'New York' # as easy as it can be
You can even do:
terms = ['John', 'Tinkoff', '1094535332'] # account in Tinkoff Bank
result = nested_dict(3, float)
result[terms] += 2375.30
Now the backstage:
from collections import defaultdict
class nesteddict(defaultdict):
def __getitem__(self, key):
if isinstance(key, list):
d = self
for i in key:
d = defaultdict.__getitem__(d, i)
return d
else:
return defaultdict.__getitem__(self, key)
def __setitem__(self, key, value):
if isinstance(key, list):
d = self[key[:-1]]
defaultdict.__setitem__(d, key[-1], value)
else:
defaultdict.__setitem__(self, key, value)
def nested_dict(n, type):
if n == 1:
return nesteddict(type)
else:
return nesteddict(lambda: nested_dict(n-1, type))
The dotty_dict library for Python 3 can do this. See documentation, Dotty Dict for more clarity.
from dotty_dict import dotty
dot = dotty()
string = '.'.join(['person', 'address', 'city'])
dot[string] = 'New York'
print(dot)
Output:
{'person': {'address': {'city': 'New York'}}}
Use these pair of methods
def gattr(d, *attrs):
"""
This method receives a dict and list of attributes to return the innermost value of the give dict
"""
try:
for at in attrs:
d = d[at]
return d
except:
return None
def sattr(d, *attrs):
"""
Adds "val" to dict in the hierarchy mentioned via *attrs
For ex:
sattr(animals, "cat", "leg","fingers", 4) is equivalent to animals["cat"]["leg"]["fingers"]=4
This method creates necessary objects until it reaches the final depth
This behaviour is also known as autovivification and plenty of implementation are around
This implementation addresses the corner case of replacing existing primitives
https://gist.github.com/hrldcpr/2012250#gistcomment-1779319
"""
for attr in attrs[:-2]:
# If such key is not found or the value is primitive supply an empty dict
if d.get(attr) is None or isinstance(d.get(attr), dict):
d[attr] = {}
d = d[attr]
d[attrs[-2]] = attrs[-1]
Here's a variant of Bakuriu's answer that doesn't rely on a separate function:
keys = ['Person', 'address', 'city']
value = 'New York'
nested_dict = {}
# Build nested dictionary up until 2nd to last key
# (Effectively nested_dict['Person']['address'] = {})
sub_dict = nested_dict
for key_ind, key in enumerate(keys[:-1]):
if not key_ind:
# Point to newly added piece of dictionary
sub_dict = nested_dict.setdefault(key, {})
else:
# Point to newly added piece of sub-dictionary
# that is also added to original dictionary
sub_dict = sub_dict.setdefault(key, {})
# Add value to last key of nested structure of keys
# (Effectively nested_dict['Person']['address']['city'] = value)
sub_dict[keys[-1]] = value
print(nested_dict)
>>> {'Person': {'address': {'city': 'New York'}}}
This is a pretty good use case for a recursive function. So you can do something like this:
def parse(l: list, v: str) -> dict:
copy = dict()
k, *s = l
if len(s) > 0:
copy[k] = parse(s, v)
else:
copy[k] = v
return copy
This effectively pops off the first value of the passed list l as a key for the dict copy that we initialize, then runs the remaining list through the same function, creating a new key under that key until there's nothing left in the list, whereupon it assigns the last value to the v param.
This is much easier in Perl:
my %hash;
$hash{"aaa"}{"bbb"}{"ccc"}=1; # auto creates each of the intermediate levels
# of the hash (aka: dict or associated array)
Given a dictionary like so:
my_map = {'a': 1, 'b': 2}
How can one invert this map to get:
inv_map = {1: 'a', 2: 'b'}
Python 3+:
inv_map = {v: k for k, v in my_map.items()}
Python 2:
inv_map = {v: k for k, v in my_map.iteritems()}
Assuming that the values in the dict are unique:
Python 3:
dict((v, k) for k, v in my_map.items())
Python 2:
dict((v, k) for k, v in my_map.iteritems())
If the values in my_map aren't unique:
Python 3:
inv_map = {}
for k, v in my_map.items():
inv_map[v] = inv_map.get(v, []) + [k]
Python 2:
inv_map = {}
for k, v in my_map.iteritems():
inv_map[v] = inv_map.get(v, []) + [k]
To do this while preserving the type of your mapping (assuming that it is a dict or a dict subclass):
def inverse_mapping(f):
return f.__class__(map(reversed, f.items()))
Try this:
inv_map = dict(zip(my_map.values(), my_map.keys()))
(Note that the Python docs on dictionary views explicitly guarantee that .keys() and .values() have their elements in the same order, which allows the approach above to work.)
Alternatively:
inv_map = dict((my_map[k], k) for k in my_map)
or using python 3.0's dict comprehensions
inv_map = {my_map[k] : k for k in my_map}
Another, more functional, way:
my_map = { 'a': 1, 'b':2 }
dict(map(reversed, my_map.items()))
We can also reverse a dictionary with duplicate keys using defaultdict:
from collections import Counter, defaultdict
def invert_dict(d):
d_inv = defaultdict(list)
for k, v in d.items():
d_inv[v].append(k)
return d_inv
text = 'aaa bbb ccc ddd aaa bbb ccc aaa'
c = Counter(text.split()) # Counter({'aaa': 3, 'bbb': 2, 'ccc': 2, 'ddd': 1})
dict(invert_dict(c)) # {1: ['ddd'], 2: ['bbb', 'ccc'], 3: ['aaa']}
See here:
This technique is simpler and faster than an equivalent technique using dict.setdefault().
This expands upon the answer by Robert, applying to when the values in the dict aren't unique.
class ReversibleDict(dict):
# Ref: https://stackoverflow.com/a/13057382/
def reversed(self):
"""
Return a reversed dict, with common values in the original dict
grouped into a list in the returned dict.
Example:
>>> d = ReversibleDict({'a': 3, 'c': 2, 'b': 2, 'e': 3, 'd': 1, 'f': 2})
>>> d.reversed()
{1: ['d'], 2: ['c', 'b', 'f'], 3: ['a', 'e']}
"""
revdict = {}
for k, v in self.items():
revdict.setdefault(v, []).append(k)
return revdict
The implementation is limited in that you cannot use reversed twice and get the original back. It is not symmetric as such. It is tested with Python 2.6. Here is a use case of how I am using to print the resultant dict.
If you'd rather use a set than a list, and there could exist unordered applications for which this makes sense, instead of setdefault(v, []).append(k), use setdefault(v, set()).add(k).
Combination of list and dictionary comprehension. Can handle duplicate keys
{v:[i for i in d.keys() if d[i] == v ] for k,v in d.items()}
A case where the dictionary values is a set. Like:
some_dict = {"1":{"a","b","c"},
"2":{"d","e","f"},
"3":{"g","h","i"}}
The inverse would like:
some_dict = {vi: k for k, v in some_dict.items() for vi in v}
The output is like this:
{'c': '1',
'b': '1',
'a': '1',
'f': '2',
'd': '2',
'e': '2',
'g': '3',
'h': '3',
'i': '3'}
For instance, you have the following dictionary:
my_dict = {'a': 'fire', 'b': 'ice', 'c': 'fire', 'd': 'water'}
And you wanna get it in such an inverted form:
inverted_dict = {'fire': ['a', 'c'], 'ice': ['b'], 'water': ['d']}
First Solution. For inverting key-value pairs in your dictionary use a for-loop approach:
# Use this code to invert dictionaries that have non-unique values
inverted_dict = dict()
for key, value in my_dict.items():
inverted_dict.setdefault(value, list()).append(key)
Second Solution. Use a dictionary comprehension approach for inversion:
# Use this code to invert dictionaries that have unique values
inverted_dict = {value: key for key, value in my_dict.items()}
Third Solution. Use reverting the inversion approach (relies on the second solution):
# Use this code to invert dictionaries that have lists of values
my_dict = {value: key for key in inverted_dict for value in my_map[key]}
Lot of answers but didn't find anything clean in case we are talking about a dictionary with non-unique values.
A solution would be:
from collections import defaultdict
inv_map = defaultdict(list)
for k, v in my_map.items():
inv_map[v].append(k)
Example:
If initial dict my_map = {'c': 1, 'd': 5, 'a': 5, 'b': 10}
then, running the code above will give:
{5: ['a', 'd'], 1: ['c'], 10: ['b']}
I found that this version is more than 10% faster than the accepted version of a dictionary with 10000 keys.
d = {i: str(i) for i in range(10000)}
new_d = dict(zip(d.values(), d.keys()))
In addition to the other functions suggested above, if you like lambdas:
invert = lambda mydict: {v:k for k, v in mydict.items()}
Or, you could do it this way too:
invert = lambda mydict: dict( zip(mydict.values(), mydict.keys()) )
I think the best way to do this is to define a class. Here is an implementation of a "symmetric dictionary":
class SymDict:
def __init__(self):
self.aToB = {}
self.bToA = {}
def assocAB(self, a, b):
# Stores and returns a tuple (a,b) of overwritten bindings
currB = None
if a in self.aToB: currB = self.bToA[a]
currA = None
if b in self.bToA: currA = self.aToB[b]
self.aToB[a] = b
self.bToA[b] = a
return (currA, currB)
def lookupA(self, a):
if a in self.aToB:
return self.aToB[a]
return None
def lookupB(self, b):
if b in self.bToA:
return self.bToA[b]
return None
Deletion and iteration methods are easy enough to implement if they're needed.
This implementation is way more efficient than inverting an entire dictionary (which seems to be the most popular solution on this page). Not to mention, you can add or remove values from your SymDict as much as you want, and your inverse-dictionary will always stay valid -- this isn't true if you simply reverse the entire dictionary once.
If the values aren't unique, and you're a little hardcore:
inv_map = dict(
(v, [k for (k, xx) in filter(lambda (key, value): value == v, my_map.items())])
for v in set(my_map.values())
)
Especially for a large dict, note that this solution is far less efficient than the answer Python reverse / invert a mapping because it loops over items() multiple times.
This handles non-unique values and retains much of the look of the unique case.
inv_map = {v:[k for k in my_map if my_map[k] == v] for v in my_map.itervalues()}
For Python 3.x, replace itervalues with values.
I am aware that this question already has many good answers, but I wanted to share this very neat solution that also takes care of duplicate values:
def dict_reverser(d):
seen = set()
return {v: k for k, v in d.items() if v not in seen or seen.add(v)}
This relies on the fact that set.add always returns None in Python.
Here is another way to do it.
my_map = {'a': 1, 'b': 2}
inv_map= {}
for key in my_map.keys() :
val = my_map[key]
inv_map[val] = key
dict([(value, key) for key, value in d.items()])
Function is symmetric for values of type list; Tuples are coverted to lists when performing reverse_dict(reverse_dict(dictionary))
def reverse_dict(dictionary):
reverse_dict = {}
for key, value in dictionary.iteritems():
if not isinstance(value, (list, tuple)):
value = [value]
for val in value:
reverse_dict[val] = reverse_dict.get(val, [])
reverse_dict[val].append(key)
for key, value in reverse_dict.iteritems():
if len(value) == 1:
reverse_dict[key] = value[0]
return reverse_dict
Since dictionaries require one unique key within the dictionary unlike values, we have to append the reversed values into a list of sort to be included within the new specific keys.
def r_maping(dictionary):
List_z=[]
Map= {}
for z, x in dictionary.iteritems(): #iterate through the keys and values
Map.setdefault(x,List_z).append(z) #Setdefault is the same as dict[key]=default."The method returns the key value available in the dictionary and if given key is not available then it will return provided default value. Afterward, we will append into the default list our new values for the specific key.
return Map
Fast functional solution for non-bijective maps (values not unique):
from itertools import imap, groupby
def fst(s):
return s[0]
def snd(s):
return s[1]
def inverseDict(d):
"""
input d: a -> b
output : b -> set(a)
"""
return {
v : set(imap(fst, kv_iter))
for (v, kv_iter) in groupby(
sorted(d.iteritems(),
key=snd),
key=snd
)
}
In theory this should be faster than adding to the set (or appending to the list) one by one like in the imperative solution.
Unfortunately the values have to be sortable, the sorting is required by groupby.
Try this for python 2.7/3.x
inv_map={};
for i in my_map:
inv_map[my_map[i]]=i
print inv_map
def invertDictionary(d):
myDict = {}
for i in d:
value = d.get(i)
myDict.setdefault(value,[]).append(i)
return myDict
print invertDictionary({'a':1, 'b':2, 'c':3 , 'd' : 1})
This will provide output as : {1: ['a', 'd'], 2: ['b'], 3: ['c']}
A lambda solution for current python 3.x versions:
d1 = dict(alice='apples', bob='bananas')
d2 = dict(map(lambda key: (d1[key], key), d1.keys()))
print(d2)
Result:
{'apples': 'alice', 'bananas': 'bob'}
This solution does not check for duplicates.
Some remarks:
The lambda construct can access d1 from the outer scope, so we only
pass in the current key. It returns a tuple.
The dict() constructor accepts a list of tuples. It
also accepts the result of a map, so we can skip the conversion to a
list.
This solution has no explicit for loop. It also avoids using a list comprehension for those who are bad at math ;-)
Taking up the highly voted answer starting If the values in my_map aren't unique:, I had a problem where not only the values were not unique, but in addition, they were a list, with each item in the list consisting again of a list of three elements: a string value, a number, and another number.
Example:
mymap['key1'] gives you:
[('xyz', 1, 2),
('abc', 5, 4)]
I wanted to switch only the string value with the key, keeping the two number elements at the same place. You simply need another nested for loop then:
inv_map = {}
for k, v in my_map.items():
for x in v:
# with x[1:3] same as x[1], x[2]:
inv_map[x[0]] = inv_map.get(x[0], []) + [k, x[1:3]]
Example:
inv_map['abc'] now gives you:
[('key1', 1, 2),
('key1', 5, 4)]
This works even if you have non-unique values in the original dictionary.
def dict_invert(d):
'''
d: dict
Returns an inverted dictionary
'''
# Your code here
inv_d = {}
for k, v in d.items():
if v not in inv_d.keys():
inv_d[v] = [k]
else:
inv_d[v].append(k)
inv_d[v].sort()
print(f"{inv_d[v]} are the values")
return inv_d
I would do it that way in python 2.
inv_map = {my_map[x] : x for x in my_map}
Not something completely different, just a bit rewritten recipe from Cookbook. It's futhermore optimized by retaining setdefault method, instead of each time getting it through the instance:
def inverse(mapping):
'''
A function to inverse mapping, collecting keys with simillar values
in list. Careful to retain original type and to be fast.
>> d = dict(a=1, b=2, c=1, d=3, e=2, f=1, g=5, h=2)
>> inverse(d)
{1: ['f', 'c', 'a'], 2: ['h', 'b', 'e'], 3: ['d'], 5: ['g']}
'''
res = {}
setdef = res.setdefault
for key, value in mapping.items():
setdef(value, []).append(key)
return res if mapping.__class__==dict else mapping.__class__(res)
Designed to be run under CPython 3.x, for 2.x replace mapping.items() with mapping.iteritems()
On my machine runs a bit faster, than other examples here