Assuming I have the variables:
A = 3
B = 2
C = 1
How can i transform them into diagonal matrices in the following form:
np.diag([1, 1, 1, 0, 0, 0])
Out[0]:
array([[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])
np.diag([0,0,0,1,1,0])
Out[1]:
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0]])
np.diag([0,0,0,0,0,1])
Out[2]:
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1]])
I would like this to be scalable, so for instance with 4 variables a = 500, b = 20, c = 300, d = 200 the size of the matrix will be 500 + 20 + 300 + 200 = 1020.
What is the easiest way to do this?
The obligatory solution with np.einsum, about ~2.25x slower than the accepted answer for the [500,20,200,300] arrays on a 2-core colab instance.
import numpy as np
A = 3
B = 2
C = 1
r = [A,B,C]
m = np.arange(len(r))
np.einsum('ij,kj->ijk', m.repeat(r) == m[:,None], np.eye(np.sum(r), dtype='int'))
Output
array([[[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1]]])
Here's one approach. The resulting array mats contains the matrices you're looking for.
A = 3
B = 2
C = 1
n_list = [A,B,C]
ab_list = np.cumsum([0] + n_list)
ran = np.arange(ab_list[-1])
mats = [np.diag(((a <= ran) & (ran < b)).astype('int'))
for a,b in zip(ab_list[:-1],ab_list[1:])]
for mat in mats:
print(mat,'\n')
Result:
[[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 1 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]]
[[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 0]]
[[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 1]]
Edit: Here's a faster solution that yields the same result
n_list = [A,B,C]
ab_list = np.cumsum([0] + n_list)
total = ab_list[-1]
ran = np.arange(total)
mats = np.zeros((len(n_list),total,total))
for k,p in enumerate(zip(ab_list[:-1],ab_list[1:])):
idx = np.arange(p[0],p[1])
mats[k,idx,idx] = 1
for mat in mats:
print(mat,'\n')
This seems to yield a ~10% speedup over the currently accepted solution
Another with roughly equivalent performance:
n_list = [A,B,C]
m = len(n_list)
ab_list = np.cumsum([0] + n_list)
total = ab_list[-1]
ran = np.arange(total)
mats = np.zeros((m,total,total))
idx = [k for a,b in zip(ab_list[:-1],ab_list[1:]) for k in range(a,b)]
mats[[k for k,n in enumerate(n_list) for _ in range(n)],
idx,idx] = 1
for mat in mats:
print(mat,'\n')
You can achieve even better performance by just allocating the array once, then setting the values all at once by specifying the indices. The indices are fortunately easy to obtain.
import numpy as np
a = [3, 2, 1] # Put your values in a list
s = np.sum(a)
m = np.zeros((len(a), s, s), dtype=int) # Initialize array once
indices = (np.repeat(range(len(a)), a), *np.diag_indices(s, 2)) # Get indices
m[indices] = 1 # Set the diagonals at once
return m
Output:
[[[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 1 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]]
[[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 0]]
[[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 1]]]
Comparing to #Ben Grossmann's answer, with A=3000, B=2000, C=1000 and 100 repeats:
def A():
'''My solution'''
a = [3000, 2000, 1000] # Put your values in a list
s = np.sum(a)
m = np.zeros((len(a), s, s), dtype=int) # Initialize array once
indices = (np.repeat(range(len(a)), a), *np.diag_indices(s, 2)) # Get indices
m[indices] = 1 # Set the diagonals at once
return m
def B():
'''Bens solution'''
A = 3000
B = 2000
C = 1000
n_list = [A,B,C]
ab_list = np.cumsum([0] + n_list)
ran = np.arange(ab_list[-1])
return [np.diag(((a <= ran) & (ran < b)).astype('int')) for a,b in zip(ab_list[:-1], ab_list[1:])]
print(f'Timings:')
timeA = timeit.timeit(A, number=100)
timeB = timeit.timeit(B, number=100)
ratio = timeA / timeB
print(f'This solution: {timeA} seconds')
print(f'Current accepted answer: {timeB} seconds')
if ratio < 1:
print(f'This solution is {1 / ratio} times faster than Bens solution')
else:
print(f'Bens solution is {ratio} times faster than this solution')
Output:
Timings:
This solution: 1.6834218999993027 seconds
Current accepted answer: 5.096610300000066 seconds
This solution is 3.027529997086397 times faster than Bens solution
EDIT: Changed the "indices" algorithm to use np.repeat instead of np.concatenate.
One posible method ( don't think it's optimal but it works):
import numpy as np
a = 3
b = 2
c = 1
values = [a,b,c] #create a list with values
n = sum(values) #calc total length of diagnal
#create an array with cumulative sums but starting from 0 to use as index
idx_vals = np.zeros(len(values)+1,dtype=int)
np.cumsum(values,out=idx_vals[1:]);
#create every diagonal using values, then create diagonal matrices and
#save them in `matrices` list
matrices = []
for idx,v in enumerate(values):
diag = np.zeros(n)
diag[idx_vals[idx]:idx_vals[idx]+v] = np.ones(v)
print(diag)
matrices.append(np.diag(diag))
Yet another possibility:
import numpy as np
# your constants here
constants = [3, 2, 1] # [A, B, C]
size = sum(constants)
cumsum = np.cumsum([0] + constants)
for i in range(len(cumsum) - 1):
inputVector = np.zeros(size, dtype=int)
inputVector[cumsum[i]:cumsum[i+1]] = 1
matrix = np.diag(inputVector)
print(matrix, '\n')
Output:
[[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 1 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]]
[[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 0]]
[[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 1]]
I'm trying to do the Abelian sandpile model using a simple numpy array.
When a 'pile' is 4 >=, then it collapse among its neighbors.
I understand how the "gravity" thing works, but I can't think of a way of making it.
Here's the code to make my array :
import numpy as np
spile = np.zeros((5, 5), dtype=np.uint32)
spile[2, 2] = 16
Which gives me the following :
array([[ 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0],
[ 0, 0, 16, 0, 0],
[ 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0]], dtype=uint32)
Now, I need the "gravity" code that does these steps of calculation :
array([[ 0, 0, 0, 0, 0],
[ 0, 0, 4, 0, 0],
[ 0, 4, 0, 4, 0],
[ 0, 0, 4, 0, 0],
[ 0, 0, 0, 0, 0]], dtype=uint32)
array([[ 0, 0, 1, 0, 0],
[ 0, 2, 1, 2, 0],
[ 1, 1, 0, 1, 1],
[ 0, 2, 1, 2, 0],
[ 0, 0, 1, 0, 0]], dtype=uint32)
The last array is the final result I'm trying to get.
I'm not trying to make you guys code for me, I just need some ideas as I've never ever did such a thing (but feel free to provide a code if you're that kind :p ).
Use np.divmod to identify where the cells tumble and how much tumbles. Then use array slicing to shift the amounts tumbled and add back into the sandpile.
import numpy as np
spile = np.zeros((5, 5), dtype=np.uint32)
spile[2, 2] = 16
def do_add( spile, tumbled ):
""" Updates spile in place """
spile[ :-1, :] += tumbled[ 1:, :] # Shift N and add
spile[ 1:, :] += tumbled[ :-1, :] # Shift S
spile[ :, :-1] += tumbled[ :, 1:] # Shift W
spile[ :, 1:] += tumbled[ :, :-1] # Shift E
def tumble( spile ):
while ( spile > 3 ).any():
tumbled, spile = np.divmod( spile, 4 )
do_add( spile, tumbled )
# print( spile, '\n' ) # Uncomment to print steps
return spile
print( tumble( spile ) )
# or tumble( spile ); print( spile )
# [[0 0 1 0 0]
# [0 2 1 2 0]
# [1 1 0 1 1]
# [0 2 1 2 0]
# [0 0 1 0 0]]
Uncommented print statement prints these results
[[0 0 0 0 0]
[0 0 4 0 0]
[0 4 0 4 0]
[0 0 4 0 0]
[0 0 0 0 0]]
[[0 0 1 0 0]
[0 2 0 2 0]
[1 0 4 0 1]
[0 2 0 2 0]
[0 0 1 0 0]]
[[0 0 1 0 0]
[0 2 1 2 0]
[1 1 0 1 1]
[0 2 1 2 0]
[0 0 1 0 0]]
http://rosettacode.org/wiki/Abelian_sandpile_model
Suppose I have an array
[[0 2 1]
[1 0 1]
[2 1 1]]
and I want to convert it into a tensor of the form
[[[1 0 0]
[0 1 0]
[0 0 0]]
[[0 0 1]
[1 0 1]
[0 1 1]]
[[0 1 0]
[0 0 0]
[1 0 0]]]
Where each depth layer (index i) is a binary mask showing where i appears in the input.
I have written code for this which works correctly but is too slow for any use. Can I replace the loop in this function with another vectorized operation?
def im2segmap(im, depth):
tensor = np.zeros((im.shape[0], im.shape[1], num_classes))
for c in range(depth):
rows, cols = np.argwhere(im==c).T
tensor[c, rows, cols] = 1
return tensor
Use broadcasting -
(a==np.arange(num_classes)[:,None,None]).astype(int)
Or with builtin outer comparison -
(np.equal.outer(range(num_classes),a)).astype(int)
Use uint8 if you have to use an int dtype or keep as boolean by skipping the int conversion altogether for further boost.
Sample run -
In [42]: a = np.array([[0,2,1],[1,0,1],[2,1,1]])
In [43]: num_classes = 3 # or depth
In [44]: (a==np.arange(num_classes)[:,None,None]).astype(int)
Out[44]:
array([[[1, 0, 0],
[0, 1, 0],
[0, 0, 0]],
[[0, 0, 1],
[1, 0, 1],
[0, 1, 1]],
[[0, 1, 0],
[0, 0, 0],
[1, 0, 0]]])
To have the depth/num_classes as the third dim, extend the input array and then compare against the range array -
(a[...,None]==np.arange(num_classes)).astype(int)
(np.equal.outer(im, range(num_classes))).astype(int)
(np.equal.outer(im, range(num_classes))).astype(np.uint8) # lower prec