Numpy float mean calculation precision - python

I happen to have a numpy array of floats:
a.dtype, a.shape
#(dtype('float64'), (32769,))
The values are:
a[0]
#3.699822718929953
all(a == a[0])
True
However:
a.mean()
3.6998227189299517
The mean is off by 15th and 16th figure.
Can anybody show how this difference is accumulated over 30K mean and if there is a way to avoid it?
In case it matters my OS is 64 bit.

Here is a rough approximation of a bound on the maximum error. This will not be representative of average error, and it could be improved with more analysis.
Consider calculating a sum using floating-point arithmetic with round-to-nearest ties-to-even:
sum = 0;
for (i = 0; i < n; ++n)
sum += a[i];
where each a[i] is in [0, m).
Let ULP(x) denote the unit of least precision in the floating-point number x. (For example, in the IEEE-754 binary64 format with 53-bit significands, if the largest power of 2 not greater than |x| is 2p, then ULP(x) = 2p−52. With round-to-nearest, the maximum error in any operation with result x is ½ULP(x).
If we neglect rounding errors, the maximum value of sum after i iterations is i•m. Therefore, a bound on the error in the addition in iteration i is ½ULP(i•m). (Actually zero for i=1, since that case adds to zero, which has no error, but we neglect that for this approximation.) Then the total of the bounds on all the additions is the sum of ½ULP(i•m) for i from 1 to n. This is approximately ½•n•(n+1)/2•ULP(m) = ¼•n•(n+1)•ULP(m). (This is an approximation because it moves i outside the ULP function, but ULP is a discontinuous function. It is “approximately linear,“ but there are jumps. Since the jumps are by factors of two, the approximation can be off by at most a factor of two.)
So, with 32,769 elements, we can say the total rounding error will be at most about ¼•32,769•32,770•ULP(m), about 2.7•108 times the ULP of the maximum element value. The ULP is 2−52 times the greatest power of two not less than m, so that is about 2.7•108•2−52 = 6•10−8 times m.
Of course, the likelihood that 32,768 sums (not 32,769 because the first necessarily has no error) all round in the same direction by chance is vanishingly small but I conjecture one might engineer a sequence of values that gets close to that.
An Experiment
Here is a chart of (in blue) the mean error over 10,000 samples of summing arrays with sizes 100 to 32,800 by 100s and elements drawn randomly from a uniform distribution over [0, 1). The error was calculated by comparing the sum calculated with float (IEEE-754 binary32) to that calculated with double (IEEE-754 binary64). (The samples were all multiples of 2−24, and double has enough precision so that the sum for up to 229 such values is exact.)
The green line is c n √n with c set to match the last point of the blue line. We see it tracks the blue line over the long term. At points where the average sum crosses a power of two, the mean error increases faster for a time. At these points, the sum has entered a new binade, and further additions have higher average errors due to the increased ULP. Over the course of the binade, this fixed ULP decreases relative to n, bringing the blue line back to the green line.

This is due to incapability of float64 type to store the sum of your float numbers with correct precision. In order to get around this problem you need to use a larger data type of course*. Numpy has a longdouble dtype that you can use in such cases:
In [23]: np.mean(a, dtype=np.longdouble)
Out[23]: 3.6998227189299530693
Also, note:
In [25]: print(np.longdouble.__doc__)
Extended-precision floating-point number type, compatible with C
``long double`` but not necessarily with IEEE 754 quadruple-precision.
Character code: ``'g'``.
Canonical name: ``np.longdouble``.
Alias: ``np.longfloat``.
Alias *on this platform*: ``np.float128``: 128-bit extended-precision floating-point number type.
* read the comments for more details.

The mean is (by definition):
a.sum()/a.size
Unfortunately, adding all those values up and dividing accumulates floating point errors. They are usually around the magnitude of:
np.finfo(np.float).eps
Out[]: 2.220446049250313e-16
Yeah, e-16, about where you get them. You can make the error smaller by using higher-accuracy floats like float128 (if your system supports it) but they'll always accumulate whenever you're summing a large number of float together. If you truly want the identity, you'll have to hardcode it:
def mean_(arr):
if np.all(arr == arr[0]):
return arr[0]
else:
return arr.mean()
In practice, you never really want to use == between floats. Generally in numpy we use np.isclose or np.allclose to compare floats for exactly this reason. There are ways around it using other packages and leveraging arcane machine-level methods of calculating numbers to get (closer to) exact equality, but it's rarely worth the performance and clarity hit.

Related

Floating-point errors in cube root of exact cubic input

I found myself needing to compute the "integer cube root", meaning the cube root of an integer, rounded down to the nearest integer. In Python, we could use the NumPy floating-point cbrt() function:
import numpy as np
def icbrt(x):
return int(np.cbrt(x))
Though this works most of the time, it fails at certain input x, with the result being one less than expected. For example, icbrt(15**3) == 14, which comes about because np.cbrt(15**3) == 14.999999999999998. The following finds the first 100,000 such failures:
print([x for x in range(100_000) if (icbrt(x) + 1)**3 == x])
# [3375, 19683, 27000, 50653] == [15**3, 27**3, 30**3, 37**3]
Question: What is special about 15, 27, 30, 37, ..., making cbrt() return ever so slightly below the exact result? I can find no obvious underlying pattern for these numbers.
A few observations:
The story is the same if we switch from NumPy's cbrt() to that of Python's math module, or if we switch from Python to C (not surprising, as I believe that both numpy.cbrt() and math.cbrt() delegate to cbrt() from the C math library in the end).
Replacing cbrt(x) with x**(1/3) (pow(x, 1./3.) in C) leads to many more cases of failure. Let us stick to cbrt().
For the square root, a similar problem does not arise, meaning that
import numpy as np
def isqrt(x):
return int(np.sqrt(x))
returns the correct result for all x (tested up to 100,000,000). Test code:
print([x for x in range(100_000) if (y := np.sqrt(x))**2 != x and (y + 1)**2 <= x])
Extra
As the above icbrt() only seems to fail on cubic input, we can correct for the occasional mistakes by adding a fixup, like so:
import numpy as np
def icbrt(x):
y = int(np.cbrt(x))
if (y + 1)**3 == x:
y += 1
return y
A different solution is to stick to exact integer computation, implementing icbrt() without the use of floating-point numbers. This is discussed e.g. in this SO question. An extra benefit of such approaches is that they are (or can be) faster than using the floating-point cbrt().
To be clear, my question is not about how to write a better icbrt(), but about why cbrt() fails at some specific inputs.
This problem is caused by a bad implementation of cbrt. It is not caused by floating-point arithmetic because floating-point arithmetic is not a barrier to computing the cube root well enough to return an exactly correct result when the exactly correct result is representable in the floating-point format.
For example, if one were to use integer arithmetic to compute nine-fifths of 80, we would expect a correct result of 144. If a routine to compute nine-fifths of a number were implemented as int NineFifths(int x) { return 9/5*x; }, we would blame that routine for being implemented incorrectly, not blame integer arithmetic for not handling fractions. Similarly, if a routine uses floating-point arithmetic to calculate an incorrect result when a correct result is representable, we blame the routine, not floating-point arithmetic.
Some mathematical functions are difficult to calculate, and we accept some amount of error in them. In fact, for some of the routines in the math library, humans have not yet figured out how to calculate them with correct rounding in a known-bounded execution time. So we accept that not every math routine is correctly rounded.
Howver, when the mathematical value of a function is exactly representable in a floating-point format, the correct result can be obtained by faithful rounding rather than correct rounding. So this is a desirable goal for math library functions.
Correctly rounded means the computed result equals the number you would obtain by rounding the exact mathematical result to the nearest representable value.1 Faithfully rounded means the computed result is less than one ULP from the exact mathematical result. An ULP is the unit of least precision, the distance between two adjacent representable numbers.
Correctly rounding a function can be difficult because, in general, a function can be arbitrarily close to a rounding decision point. For round-to-nearest, this is midway between two adjacent representable numbers. Consider two adjacent representable numbers a and b. Their midpoint is m = (a+b)/2. If the mathematical value of some function f(x) is just below m, it should be rounded to a. If it is just above, it should be rounded to b. As we implement f in software, we might compute it with some very small error e. When we compute f(x), if our computed result lies in [m-e, m+e], and we only know the error bound is e, then we cannot tell whether f(x) is below m or above m. And because, in general, a function f(x) can be arbitrarily close to m, this is always a problem: No matter how accurately we compute f, no matter how small we make the error bound e, there is a possibility that our computed value will lie very close to a midpoint m, closer than e, and therefore our computation will not tell us whether to round down or to round up.
For some specific functions and floating-point formats, studies have been made and proofs have been written about how close the functions approach such rounding decision points, and so certain functions like sine and cosine can be implemented with correct rounding with known bounds on the compute time. Other functions have eluded proof so far.
In contrast, faithful rounding is easier to implement. If we compute a function with an error bound less than ½ ULP, then we can always return a faithfully rounded result, one that is within one ULP of the exact mathematical result. Once we have computed some result y, we round that to the nearest representable value2 and return that. Starting with y having error less than ½ ULP, the rounding may add up to ½ ULP more error, so the total error is less than one ULP, which is faithfully rounded.
A benefit of faithful rounding is that a faithfully rounded implementation of a function always produces the exact result when the exact result is representable. This is because the next nearest result is one ULP away, but faithful rounding always has an error less than one ULP. Thus, a faithfully rounded cbrt function returns exact results when they are representable.
What is special about 15, 27, 30, 37, ..., making cbrt() return ever so slightly below the exact result? I can find no obvious underlying pattern for these numbers.
The bad cbrt implementation might compute the cube root by reducing the argument to a value in [1, 8) or similar interval and then applying a precomputed polynomial approximation. Each addition and multiplication in that polynomial may introduce a rounding error as the result of each operation is rounded to the nearest representable value in floating-point format. Additionally, the polynomial has inherent error. Rounding errors behave somewhat like a random process, sometimes rounding up, sometimes down. As they accumulate over several calculations, they may happen to round in different directions and cancel, or they may round in the same direction ad reinforce. If the errors happen to cancel by the end of the calculations, you get an exact result from cbrt. Otherwise, you may get an incorrect result from cbrt.
Footnotes
1 In general, there is a choice of rounding rules. The default and most common is round-to-nearest, ties-to-even. Others include round-upward, round-downward, and round-toward-zero. This answer focuses on round-to-nearest.
2 Inside a mathematical function, numbers may be computed using extended precision, so we may have computed results that are not representable in the destination floating-point format; they will have more precision.

What are the odds of a repeat in numpy.random.rand(n) (assuming perfect randomness)?

For the moment, put aside any issues relating to pseudorandom number generators and assume that numpy.random.rand perfectly samples from the discrete distribution of floating point numbers over [0, 1). What are the odds getting at least two exactly identical floating point numbers in the result of:
numpy.random.rand(n)
for any given value of n?
Mathematically, I think this is equivalent to first asking how many IEEE 754 singles or doubles there are in the interval [0, 1). Then I guess the next step would be to solve the equivalent birthday problem? I'm not really sure. Anyone have some insight?
The computation performed by numpy.random.rand for each element generates a number 0.<53 random bits>, for a total of 2^53 equally likely outputs. (Of course, the memory representation isn't a fixed-point 0.stuff; it's still floating point.) This computation is incapable of producing most binary64 floating-point numbers between 0 and 1; for example, it cannot produce 1/2^60. You can see the code in numpy/random/mtrand/randomkit.c:
double
rk_double(rk_state *state)
{
/* shifts : 67108864 = 0x4000000, 9007199254740992 = 0x20000000000000 */
long a = rk_random(state) >> 5, b = rk_random(state) >> 6;
return (a * 67108864.0 + b) / 9007199254740992.0;
}
(Note that rk_random produces 32-bit outputs, regardless of the size of long.)
Assuming a perfect source of randomness, the probability of repeats in numpy.random.rand(n) is 1-(1-0/k)(1-1/k)(1-2/k)...(1-(n-1)/k), where k=2^53. It's probably best to use an approximation instead of calculating this directly for large values of n. (The approximation may even be more accurate, depending on how the approximation error compares to the rounding error accumulated in a direct computation.)
I think you are correct, this is like the birthday problem.
But you need to decide on the number of possible options. You do this by deciding the precision of your floating point numbers.
For example, if you decide to have a precision of 2 numbers after the dot, then there are 100 options(including zero and excluding 1).
And if you have n numbers then the probability of not having a collision is:
or when given R possible numbers and N data points, the probability of no collision is:
And of collision is 1 - P.
This is because the probability of getting any given number is 1/R. And at any point, the probability of a data point not colliding with prior data points is (R-i)/R for i being the index of the data point. But to get the probability of no data points colliding with each other, we need to multiply all the probabilities of data points not colliding with those prior to them. Applying some algebraic operations, we get the equation above.

Why is numpy.nextafter(0., 1.) != numpy.finfo(float).tiny?

Inspired by this answer, I wonder why numpy.nextafter gives different results for the smallest positive float number from numpy.finfo(float).tiny and sys.float_info.min:
import numpy, sys
nextafter = numpy.nextafter(0., 1.) # 5e-324
tiny = numpy.finfo(float).tiny # 2.2250738585072014e-308
info = sys.float_info.min # 2.2250738585072014e-308
According to the documentations:
numpy.nextafter
Return the next floating-point value after x1 towards x2, element-wise.
finfo(float).tiny
The smallest positive usable number. Type of tiny is an appropriate floating point type.
sys.float_info
A structseq holding information about the float type. It contains low level information about the precision and internal representation. Please study your system's :file:float.h for more information.
Does someone have an explanation for this?
The documentation’s wording on this is bad; “usable” is colloquial and not defined. Apparently tiny is meant to be the smallest positive normal number.
nextafter is returning the actual next representable value after zero, which is subnormal.
Python does not rigidly specify its floating-point properties. Python implementations commonly inherit them from underlying hardware or software, and use of IEEE-754 formats (but not full conformance to IEEE-754 semantics) is common. In IEEE-754, numbers are represented with an implicit leading one bit in the significand1 until the exponent reaches its minimum value for the format, after which the implicit bit is zero instead of one and smaller values are representable only by reducing the significand instead of reducing the exponent. These numbers with the implicit leading zero are the subnormal numbers. They serve to preserve some useful arithmetic properties, such as x-y == 0 if and only if x == y. (Without subnormal numbers, two very small numbers might be different, but their even smaller difference might not be representable because it was below the exponent limit, so computing x-y would round to zero, resulting in code like if (x != y) quotient = t / (x-y) getting a divide-by-zero error.)
Note
1 “Significand” is the term preferred by experts for the fraction portion of a floating-point representation. “Mantissa” is an old term for the fraction portion of a logarithm. Mantissas are logarithmic, while significands are linear.

Does this truely generate a random foating point number? (Python)

For an introduction to Python course, I'm looking at generating a random floating point number in Python, and I have seen a standard recommended code of
import random
lower = 5
upper = 10
range_width = upper - lower
x = random.random() * range_width + lower
for a random floating point from 5 up to but not including 10.
It seems to me that the same effect could be achieved by:
import random
x = random.randrange(5, 10) + random.random()
Since that would give an integer of 5, 6, 7, 8, or 9, and then tack on a decimal to it.
The question I have is would this second code still give a fully even probability distribution, or would it not keep the full randomness of the first version?
According to the documentation then yes random() is indeed a uniform distribution.
random(), which generates a random float uniformly in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator.
So both code examples should be fine. To shorten your code, you can equally do:
random.uniform(5, 10)
Note that uniform(a, b) is simply a + (b - a) * random() so the same as your first example.
The second example depends on the version of Python you're using.
Prior to 3.2 randrange() could produce a slightly uneven distributions.
There is a difference. Your second method is theoretically superior, although in practice it only matters for large ranges. Indeed, both methods will give you a uniform distribution. But only the second method can return all values in the range that are representable as a floating point number.
Since your range is so small, there is no appreciable difference. But still there is a difference, which you can see by considering a larger range. If you take a random real number between 0 and 1, you get a floating-point representation with a given number of bits. Now suppose your range is, say, in the order of 2**32. By multiplying the original random number by this range, you lose 32 bits of precision in the result. Put differently, there will be gaps between the values that this method can return. The gaps are still there when you multiply by 4: You have lost the two least significant bits of the original random number.
The two methods can give different results, but you'll only notice the difference in fairly extreme situations (with very wide ranges). For instance, If you generate random numbers between 0 and 2/sys.float_info.epsilon (9007199254740992.0, or a little more than 9 quintillion), you'll notice that the version using multiplication will never give you any floats with fractional values. If you increase the maximum bound to 4/sys.float_info.epsilon, you won't get any odd integers, only even ones. That's because the 64-bit floating point type Python uses doesn't have enough precision to represent all integers at the upper end of that range, and it's trying to maintain a uniform distribution (so it omits small odd integers and fractional values even though those can be represented in parts of the range).
The second version of the calculation will give extra precision to the smaller random numbers generated. For instance, if you're generating numbers between 0 and 2/sys.float_info.epsilon and the randrange call returned 0, you can use the full precision of the random call to add a fractional part to the number. On the other hand if the randrange returned the largest number in the range (2/sys.float_info.epsilon - 1), very little of the precision of the fraction would be used (the number will round to the nearest integer without any fractional part remaining).
Adding a fractional value also can't help you deal with ranges that are too large for every integer to be represented. If randrange returns only even numbers, adding a fraction usually won't make odd numbers appear (it can in some parts of the range, but not for others, and the distribution may be very uneven). Even for ranges where all integers can be represented, the odds of a specific floating point number appearing will not be entirely uniform, since the smaller numbers can be more precisely represented. Large but imprecise numbers will be more common than smaller but more precisely represented ones.

How to raise an integer to fractional power efficiently?

I have an binary search implemented in python.
Now I want to check if element math.floor(n ^ (1/p)) is in my binary search.
But p is a very, very large number. I wrote using fractions module:
binary_search.search(list,int (n**fractions.Fraction('1'+'/'+str(p))))
But I have an error OverflowError: integer division result too large for a float
How can I take to n to the power, which is a fraction and do it fast?
Unless your values of n are also incredibly large, floor(n^(1/p)) is going to tend toward 1 for "very, very large" values of p. Since you're only interested in the integer portion, you could get away with a simple loop to test if 1^P, 2^p, 3^p and so on are greater than n.
Don't waste time finding exact values if you don't need them.
n^(1/p)=exp(ln(n)/p) ~~ 1+ln(n)/p for big p values
So you can compare p with natural logarithm of n. If the ratio p/ln(n) >> 1 (much larger), then you can use approximation above (which tends to 1)

Categories

Resources