How to divide 24 hours into 96 quarters? - python

I'm trying to come up with some logic to cleanly divide 24 hours into 96 quarters but I can't figure it out. I have a Python Pandas dataframe showing the hours and quarters of each time stamp. It looks like this
Timestamp | Hour | Quarter
----------------------------------------
2020-11-01 05:00:00+01 5 1
2020-11-01 05:15:00+01 5 2
2020-11-01 05:30:00+01 5 3
2020-11-01 05:45:00+01 5 4
2020-11-01 06:00:00+01 6 1
2020-11-01 06:15:00+01 6 2
2020-11-01 06:30:00+01 6 3
2020-11-01 06:45:00+01 6 4
So here it shows the quarters for each hour (every hour has 4 quarters). But now I want to have 96 quarters for the entire day. So I would add a column:
Timestamp | Hour | Quarter | Q's
------------------------------------------------
2020-11-01 05:00:00+01 5 1 21
2020-11-01 05:15:00+01 5 2 22
2020-11-01 05:30:00+01 5 3 23
2020-11-01 05:45:00+01 5 4 24
2020-11-01 06:00:00+01 6 1 25
2020-11-01 06:15:00+01 6 2 26
2020-11-01 06:30:00+01 6 3 27
2020-11-01 06:45:00+01 6 4 28
Because I'm working with timestamps which are timezone sensitive, I can't just do this index wise. Also I don't like for loops. What's the logic here that I am completely missing?

Isn't it simply this?
df["Q's"] = 4 * df["Hour"] + df["Quarter"]

Related

Python Pandas - Time Series Find Index of Previous Row

I am analyzing time series data of one stock to seek the highest price for further analysis, here is the sample dataframe df:
date close high_3days
2021-05-01 20 20
2021-05-02 23 23
2021-05-03 26 26
2021-05-04 24 26
2021-05-05 20 26
2021-05-06 26 26
2021-05-07 22 26
2021-05-08 30 30
2021-05-09 20 30
2021-05-10 20 30
I want to add a new column to find the number of days from previous 3 days high. My logic is seeking the index of the row of previous high, and then subtract it from the index of current row.
Here is the desire output:
date close high_3days days_previous_high
2021-05-01 20 20 0
2021-05-02 23 23 0
2021-05-03 26 26 0
2021-05-04 24 26 1
2021-05-05 20 26 2
2021-05-06 22 26 3
2021-05-07 20 26 4
2021-05-08 30 30 0
2021-05-09 20 30 1
2021-05-10 20 30 2
Could you help to figure the way out~? Thanks guys!
Try creating a boolean index with expanding max, then enumerate each group with groupby cumcount:
df['days_previous_high'] = df.groupby(
df['high_3days'].expanding().max().diff().gt(0).cumsum()).cumcount()
df:
date close high_3days days_previous_high
0 2021-05-01 20 20 0
1 2021-05-02 23 23 0
2 2021-05-03 26 26 0
3 2021-05-04 24 26 1
4 2021-05-05 20 26 2
5 2021-05-06 22 26 3
6 2021-05-07 20 26 4
7 2021-05-08 30 30 0
8 2021-05-09 20 30 1
9 2021-05-10 20 30 2
Explaination:
expanding max is used to determine the current maximum value at each row.
df['high_3days'].expanding().max()
diff can be used to see where the current value exceeds the max.
df['high_3days'].expanding().max().diff()
groups can be created by taking the cumsum of where the diff is greater than 0:
df['high_3days'].expanding().max().diff().gt(0).cumsum()
expanding_max expanding_max_diff expanding_max_gt_0 expanding_max_gt_0_cs
20.0 NaN False 0
23.0 3.0 True 1
26.0 3.0 True 2
26.0 0.0 False 2
26.0 0.0 False 2
26.0 0.0 False 2
26.0 0.0 False 2
30.0 4.0 True 3
30.0 0.0 False 3
30.0 0.0 False 3
Now that rows are grouped, groupby cumcount can be used to enumerate each group:
df.groupby(df['high_3days'].expanding().max().diff().gt(0).cumsum()).cumcount()
0 0
1 0
2 0
3 1
4 2
5 3
6 4
7 0
8 1
9 2
dtype: int64

Group columns based on the headers if they are found in the same list. Pandas Python

So I have a data frame that is something like this
Resource 2020-06-01 2020-06-02 2020-06-03
Name1 8 7 8
Name2 7 9 9
Name3 10 10 10
Imagine that the header is literal all the days of the month. And that there are way more names than just three.
I need to reduce the columns to five. Considering the first column to be the days between 2020-06-01 till 2020-06-05. Then from Saturday till Friday of the same week. Or the last day of the month if it is before Friday. So for June would be these weeks:
week 1: 2020-06-01 to 2020-06-05
week 2: 2020-06-06 to 2020-06-12
week 3: 2020-06-13 to 2020-06-19
week 4: 2020-06-20 to 2020-06-26
week 5: 2020-06-27 to 2020-06-30
I have no problem defining these weeks. The problem is grouping the columns based on them.
I couldn't come up with anything.
Does someone have any ideas about this?
I have to use these code to generate your dataframe.
dates = pd.date_range(start='2020-06-01', end='2020-06-30')
df = pd.DataFrame({
'Name1': np.random.randint(1, 10, size=len(dates)),
'Name2': np.random.randint(1, 10, size=len(dates)),
'Name3': np.random.randint(1, 10, size=len(dates)),
})
df = df.set_index(dates).transpose().reset_index().rename(columns={'index': 'Resource'})
Then, the solution starts from here.
# Set the first column as index
df = df.set_index(df['Resource'])
# Remove the unused column
df = df.drop(columns=['Resource'])
# Transpose the dataframe
df = df.transpose()
# Output:
Resource Name1 Name2 Name3
2020-06-01 00:00:00 3 2 7
2020-06-02 00:00:00 5 6 8
2020-06-03 00:00:00 2 3 6
...
# Bring "Resource" from index to column
df = df.reset_index()
df = df.rename(columns={'index': 'Resource'})
# Add a column "week of year"
df['week_no'] = df['Resource'].dt.weekofyear
# You can simply group by the week no column
df.groupby('week_no').sum().reset_index()
# Output:
Resource week_no Name1 Name2 Name3
0 23 38 42 41
1 24 37 30 43
2 25 38 29 23
3 26 29 40 42
4 27 2 8 3
I don't know what you want to do for the next. If you want your original form, just transpose() it back.
EDIT: OP claimed the week should start from Saturday end up with Friday
# 0: Monday
# 1: Tuesday
# 2: Wednesday
# 3: Thursday
# 4: Friday
# 5: Saturday
# 6: Sunday
df['weekday'] = df['Resource'].dt.weekday.apply(lambda day: 0 if day <= 4 else 1)
df['customised_weekno'] = df['week_no'] + df['weekday']
Output:
Resource Resource Name1 Name2 Name3 week_no weekday customised_weekno
0 2020-06-01 4 7 7 23 0 23
1 2020-06-02 8 6 7 23 0 23
2 2020-06-03 5 9 5 23 0 23
3 2020-06-04 7 6 5 23 0 23
4 2020-06-05 6 3 7 23 0 23
5 2020-06-06 3 7 6 23 1 24
6 2020-06-07 5 4 4 23 1 24
7 2020-06-08 8 1 5 24 0 24
8 2020-06-09 2 7 9 24 0 24
9 2020-06-10 4 2 7 24 0 24
10 2020-06-11 6 4 4 24 0 24
11 2020-06-12 9 5 7 24 0 24
12 2020-06-13 2 4 6 24 1 25
13 2020-06-14 6 7 5 24 1 25
14 2020-06-15 8 7 7 25 0 25
15 2020-06-16 4 3 3 25 0 25
16 2020-06-17 6 4 5 25 0 25
17 2020-06-18 6 8 2 25 0 25
18 2020-06-19 3 1 2 25 0 25
So, you can use customised_weekno for grouping.

Sort pandas csv list with string date

I have read a couple of similar post regarding the issue before, but none of the solutions worked for me. so I got the followed csv :
Score date term
0 72 3 Feb ·   1
1 47 1 Feb ·   1
2 119 6 Feb ·   1
8 101 7 hrs ·   1
9 536 11 min ·   1
10 53 2 hrs ·   1
11 20 11 Feb ·   3
3 15 1 hrs ·   2
4 33 7 Feb ·   1
5 153 4 Feb ·   3
6 34 3 min ·   2
7 26 3 Feb ·   3
I want to sort the csv by date. What's the easiest way to do that ?
You can create 2 helper columns - one for datetimes created by to_datetime and second for timedeltas created by to_timedelta, only necessary format HH:MM:SS, so added Series.replace by regexes, so last is possible sorting by 2 columns by DataFrame.sort_values:
df['date1'] = pd.to_datetime(df['date'], format='%d %b', errors='coerce')
times = df['date'].replace({'(\d+)\s+min': '00:\\1:00',
'\s+hrs': ':00:00'}, regex=True)
df['times'] = pd.to_timedelta(times, errors='coerce')
df = df.sort_values(['times','date1'])
print (df)
Score date term date1 times
6 34 3 min 2 NaT 00:03:00
9 536 11 min 1 NaT 00:11:00
3 15 1 hrs 2 NaT 01:00:00
10 53 2 hrs 1 NaT 02:00:00
8 101 7 hrs 1 NaT 07:00:00
1 47 1 Feb 1 1900-02-01 NaT
0 72 3 Feb 1 1900-02-03 NaT
7 26 3 Feb 3 1900-02-03 NaT
5 153 4 Feb 3 1900-02-04 NaT
2 119 6 Feb 1 1900-02-06 NaT
4 33 7 Feb 1 1900-02-07 NaT
11 20 11 Feb 3 1900-02-11 NaT

How to continue the week number when the year changes using pandas

Example: By using
df['Week_Number'] = df['Date'].dt.strftime('%U')
for 29/12/2019 the week is 52. and this week is from 29/12/2019 to 04/01/2020.
but for 01/01/2020 the week is getting as 00.
I require the week for 01/01/2020 also as 52. and for 05/01/2020 to 11/01/2020 as 53. This need to be continued.
I used a logic to solve the question.
First of all, let's write a function to create an instance of Dataframe involving dates from 2019-12-01 to 2020-01-31 by a function
def create_date_table(start='2019-12-01', end='2020-01-31'):
df = pd.DataFrame({"Date": pd.date_range(start, end)})
df["Week_start_from_Monday"] = df.Date.dt.isocalendar().week
df['Week_start_from_Sunday'] = df['Date'].dt.strftime('%U')
return df
Run the function and observe the Dataframe
date_df=create_date_table()
date_df.head(n=40)
There are two fields in the Dataframe about weeks, Week_start_from_Monday and Week_start_from_Sunday, the difference come from they count Monday or Sunday as the first day of a week.
In this case, Week_start_from_Sunday is the one we need to focus on.
Now we write a function to add a column containing weeks continuing from last year, not reset to 00 when we enter a new year.
def add_continued_week_field(date: Timestamp, df_start_date: str = '2019-12-01') -> int:
start_date = datetime.strptime(df_start_date, '%Y-%m-%d')
year_of_start_date = start_date.year
year_of_date = date.year
week_of_date = date.strftime("%U")
year_diff = year_of_date - year_of_start_date
if year_diff == 0:
continued_week = int(week_of_date)
else:
continued_week = year_diff * 52 + int(week_of_date)
return continued_week
Let's apply the function add_continued_week_field to the dates' Dataframe.
date_df['Week_continue'] = date_df['Date'].apply(add_continued_week_field)
We can see the new added field in the dates' Dataframe
As stated in converting a pandas date to week number, you can use df['Date'].dt.week to get week numbers.
To let it continue you maybe could sum up the last week number with new week-values, something like this? I cannot test this right now...
if(df['Date'].dt.strftime('%U') == 53):
last = df['Date'].dt.strftime('%U')
df['Week_Number'] = last + df['Date'].dt.strftime('%U')
You can do this with isoweek and isoyear.
I don't see how you arrive at the values you present with '%U' so I will assume that you want to map the week starting on Sunday 2019-12-29 ending on 2020-01-04 to 53, and that you want to map the following week to 54 and so on.
For weeks to continue past the year you need isoweek.
isocalendar() provides a tuple with isoweek in the second element and a corresponding unique isoyear in the first element.
But isoweek starts on Monday so we have to add one day so the Sunday is interpreted as Monday and counted to the right week.
2019 is subtracted to have years starting from 0, then every year is multiplied with 53 and the isoweek is added. Finally there is an offset of 1 so you arrive at 53.
In [0]: s=pd.Series(["29/12/2019", "01/01/2020", "05/01/2020", "11/01/2020"])
dts = pd.to_datetime(s,infer_datetime_format=True)
In [0]: (dts + pd.DateOffset(days=1)).apply(lambda x: (x.isocalendar()[0] -2019)*53 + x.isocalendar()[1] -1)
Out[0]:
0 53
1 53
2 54
3 54
dtype: int64
This of course assumes that all iso years have 53 weeks which is not the case, so instead you would want to compute the number of iso weeks per iso year since 2019 and sum those up.
Maybe you are looking for this. I fixed an epoch. If you have dates earlier than 2019, you can choose other epoch.
epoch= pd.Timestamp("2019-12-23")
# Test data:
df=pd.DataFrame({"Date":pd.date_range("22/12/2019",freq="1D",periods=25)})
df["Day_name"]=df.Date.dt.day_name()
# Calculation:
df["Week_Number"]=np.where(df.Date.astype("datetime64").le(epoch), \
df.Date.dt.week, \
df.Date.sub(epoch).dt.days//7+52)
df
Date Day_name Week_Number
0 2019-12-22 Sunday 51
1 2019-12-23 Monday 52
2 2019-12-24 Tuesday 52
3 2019-12-25 Wednesday 52
4 2019-12-26 Thursday 52
5 2019-12-27 Friday 52
6 2019-12-28 Saturday 52
7 2019-12-29 Sunday 52
8 2019-12-30 Monday 53
9 2019-12-31 Tuesday 53
10 2020-01-01 Wednesday 53
11 2020-01-02 Thursday 53
12 2020-01-03 Friday 53
13 2020-01-04 Saturday 53
14 2020-01-05 Sunday 53
15 2020-01-06 Monday 54
16 2020-01-07 Tuesday 54
17 2020-01-08 Wednesday 54
18 2020-01-09 Thursday 54
19 2020-01-10 Friday 54
20 2020-01-11 Saturday 54
21 2020-01-12 Sunday 54
22 2020-01-13 Monday 55
23 2020-01-14 Tuesday 55
24 2020-01-15 Wednesday 55
I got here wanting to know how to label consecutive weeks - I'm not sure if that's exactly what the question is asking but I think it might be. So here is what I came up with:
# Create dataframe with example dates
# It has a datetime index and a column with day of week (just to check that it's working)
dates = pd.date_range('2019-12-15','2020-01-10')
df = pd.DataFrame(dates.dayofweek,index=dates,columns=['dow'])
# Add column
# THESE ARE THE RELEVANT LINES
woy = df.index.weekofyear
numbered = np.cumsum(np.diff(woy,prepend=woy[0])!=0)
# Append for easier comparison
df['week_num'] = numbered
df then looks like this:
dow week_num
2019-12-15 6 0
2019-12-16 0 1
2019-12-17 1 1
2019-12-18 2 1
2019-12-19 3 1
2019-12-20 4 1
2019-12-21 5 1
2019-12-22 6 1
2019-12-23 0 2
2019-12-24 1 2
2019-12-25 2 2
2019-12-26 3 2
2019-12-27 4 2
2019-12-28 5 2
2019-12-29 6 2
2019-12-30 0 3
2019-12-31 1 3
2020-01-01 2 3
2020-01-02 3 3
2020-01-03 4 3
2020-01-04 5 3
2020-01-05 6 3
2020-01-06 0 4
2020-01-07 1 4
2020-01-08 2 4
2020-01-09 3 4
2020-01-10 4 4

Python how to get values in one dataframe from the other dataframe

import pandas as pd
import numpy as np
df1=pd.DataFrame(np.arange(25).reshape((5,5)),index=pd.date_range('2015/01/01',periods=5,freq='D')))
df1['trading_signal']=[1,-1,1,-1,1]
df1
0 1 2 3 4 trading_signal
2015-01-01 0 1 2 3 4 1
2015-01-02 5 6 7 8 9 -1
2015-01-03 10 11 12 13 14 1
2015-01-04 15 16 17 18 19 -1
2015-01-05 20 21 22 23 24 1
and
df2
0 1 2 3 4
Date Time
2015-01-01 22:55:00 0 1 2 3 4
23:55:00 5 6 7 8 9
2015-01-02 00:55:00 10 11 12 13 14
01:55:00 15 16 17 18 19
02:55:00 20 21 22 23 24
how would I get the value of trading_signal from df1 and sent it to df2.
I want an output like this:
0 1 2 3 4 trading_signal
Date Time
2015-01-01 22:55:00 0 1 2 3 4 1
23:55:00 5 6 7 8 9 1
2015-01-02 00:55:00 10 11 12 13 14 -1
01:55:00 15 16 17 18 19 -1
02:55:00 20 21 22 23 24 -1
You need to either merge or join. If you merge you need to reset_index, which is less memory efficient ans slower than using join. Please read the docs on Joining a single index to a multi index:
New in version 0.14.0.
You can join a singly-indexed DataFrame with a level of a
multi-indexed DataFrame. The level will match on the name of the index
of the singly-indexed frame against a level name of the multi-indexed
frame
If you want to use join, you must name the index of df1 to be Date so that it matches the name of the first level of df2:
df1.index.names = ['Date']
df1[['trading_signal']].join(df2, how='right')
trading_signal 0 1 2 3 4
Date Time
2015-01-01 22:55:00 1 0 1 2 3 4
23:55:00 1 5 6 7 8 9
2015-01-02 00:55:00 -1 10 11 12 13 14
01:55:00 -1 15 16 17 18 19
02:55:00 -1 20 21 22 23 24
I'm joining right for a reason, if you don't understand what this means please read Brief primer on merge methods (relational algebra).

Categories

Resources