Why does self variable lose value after method invocation - python

I have this code to implement queue and stack data structures. The QueueT by itself works as desired.
When I call st.push(1), it agreeable calls push(self, v) and this in turn calls the enqueue method.
The issue I am facing is that after the statement self._q1.enqueue(v) is executed, self._q1 does not retain the value v.
Code for class QueueT:
class QueueT:
def __init__(self):
self._CAPACITY = 6
self._data = [None] * self._CAPACITY
self._length = 0
self._first = 0
def enqueue(self, val):
if self.size() == self._CAPACITY:
self._resize(self._CAPACITY * 2)
self.enqueue(val)
else:
new_place = (self._first + self.size()) % self._CAPACITY
self._data[new_place] = val
self._length += 1
def size(self):
return self._length
def _resize(self, new_capacity):
old = self._data
old_capacity = len(old)
self._data = [None] * new_capacity
k = self._first
self._first = 0
for j in range(self._length):
self._data[j] = old[k]
k = (1 + k) % old_capacity
self._CAPACITY = new_capacity
Now code from StackFromQ:
class StackFromQ:
def __init__(self):
self._q1 = QueueT()
self._top = -1
def push(self, v):
self._q1.enqueue(v)
self._top += 1
Caller function:
def stack_of_q():
st = StackFromQ()
st.push(1)
st.push(2)
Finally invocation:
stack_of_q()

Related

A* algorithm TypeError: cannot unpack non-iterable int object

This is the python code which uses A* algorithm for finding solution for 8 puzzle problems, I got some error messages, how can I fix it?(The error message is under the code)
There are several object-oriented programming concepts for Problems class, Node class that are implemented to express the problem solution search that you need to understand in order to make the Python program complete. The priority queue is to make the nodes to be explored to be sorted according to their f-evaluation function score and return the min one as the first node to be searched next.
There is also a memorize function to memorize the heuristic value of state as a look-up table so that you don’t need to calculate the redundant computing of heuristic estimation value, so you can ignore it at this point if you don’t understand.
The components you need to implement is to make the abstract part of the program realizable for 8 -puzzle with the successor methods attached to a problem class which consists of initial state and goal state. Make sure the program can run correctly to generate the solution sequence that move the empty tile so that the 8-puzzle can move "Up", "Down", "Left", "Right", from initial state to goal state.
import math
infinity = math.inf
from itertools import chain
import numpy as np
import bisect
class memoize:
def __init__(self, f, memo={}):
self.f = f
self.memo = {}
def __call__(self, *args):
if not str(args) in self.memo:
self.memo[str(args)] = self.f(*args)
return self.memo[str(args)]
def coordinate(state):
index_state = {}
index = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2]]
for i in range(len(state)):
index_state[state[i]] = index[i]
return index_state
def getInvCount(arr):
inv_count = 0
empty_value = -1
for i in range(0, 9):
for j in range(i + 1, 9):
if arr[j] != empty_value and arr[i] != empty_value and arr[i] > arr[j]:
inv_count += 1
return inv_count
def isSolvable(puzzle) :
inv_count = getInvCount([j for sub in puzzle for j in sub])
return (inv_count % 2 == 0)
def linear(state):
return sum([1 if state[i] != goal[i] else 0 for i in range(9)])
#memoize
def manhattan(state):
index_goal = coordinate(goal)
index_state = coordinate(state)
mhd = 0
for i in range(9):
for j in range(2):
mhd = abs(index_goal[i][j] - index_state[i][j]) + mhd
return mhd
#memoize
def sqrt_manhattan(state):
index_goal = coordinate(goal)
index_state = coordinate(state)
mhd = 0
for i in range(9):
for j in range(2):
mhd = (index_goal[i][j] - index_state[i][j])**2 + mhd
return math.sqrt(mhd)
#memoize
def max_heuristic(state):
score1 = manhattan(state)
score2 = linear(state)
return max(score1, score2)
class PriorityQueueElmt:
def __init__(self,val,e):
self.val = val
self.e = e
def __lt__(self,other):
return self.val < other.val
def value(self):
return self.val
def elem(self):
return self.e
class Queue:
def __init__(self):
pass
def extend(self, items):
for item in items: self.append(item)
class PriorityQueue(Queue):
def __init__(self, order=min, f=None):
self.A=[]
self.order=order
self.f=f
def append(self, item):
queueElmt = PriorityQueueElmt(self.f(item),item)
bisect.insort(self.A, queueElmt)
def __len__(self):
return len(self.A)
def pop(self):
if self.order == min:
return self.A.pop(0).elem()
else:
return self.A.pop().elem()
# Heuristics for 8 Puzzle Problem
class Problem:
def __init__(self, initial, goal=None):
self.initial = initial; self.goal = goal
def successor(self, state):
reachable = []
def get_key(val):
for key, value in index_state.items():
if val == value:
return key
return -1
def candidate(state, Position):
state = state.copy()
zero_index = state.index(0)
swap_index = state.index(get_key(Position))
state[zero_index], state[swap_index] = state[swap_index], state[zero_index]
return state
index_state = coordinate(state)
zero_position = index_state[0]
move_pair = {"left":[zero_position[0], zero_position[1] - 1],
"right":[zero_position[0], zero_position[1] + 1],
"up":[zero_position[0] - 1, zero_position[1]],
"down":[zero_position[0] + 1, zero_position[1]]
}
for action, position in move_pair.items():
#print(action, position)
if get_key(position) != -1:
reachable.append((action, candidate(state, position)))
#print(reachable)
return reachable
def goal_test(self, state):
return state == self.goal
def path_cost(self, c, state1, action, state2):
return c + 1
def value(self):
abstract
class Node:
def __init__(self, state, parent=None, action=None, path_cost=0, depth =0):
self.parent = parent
if parent:
self.depth = parent.depth + 1
else:
self.depth = 0
self.path_cost = path_cost
self.state = state
if action:
self.action = action
else: self.action = "init"
def __repr__(self):
return "Node state:\n " + str(np.array(self.state).reshape(3,3)) +"\n -> action: " + self.action + "\n -> depth: " + str(self.depth)
def path(self):
x, result = self, [self]
while x.parent:
result.append(x.parent)
x = x.parent
return result
def expand(self, problem):
for (act,n) in problem.successor(self.state):
if n not in [node.state for node in self.path()]:
yield Node(n, self, act,
problem.path_cost(self.path_cost, self.state, act, n))
def graph_search(problem, fringe):
closed = {}
fringe.append(Node(problem.initial,depth=0))
while fringe:
node = fringe.pop()
if problem.goal_test(node.state):
return node
if str(node.state) not in closed:
closed[str(node.state)] = True
fringe.extend(node.expand(problem))
return None
def best_first_graph_search(problem, f):
return graph_search(problem, PriorityQueue(min, f))
def astar_search(problem, h = None):
h = h or problem.h
def f(n):
return max(getattr(n, 'f', -infinity), n.path_cost + h(n.state))
return best_first_graph_search(problem, f)
def print_path(path, method):
print("*" * 30)
print("\nPath: (%s distance)" % method)
for i in range(len(path)-1, -1, -1):
print("-" * 15)
print(path[i])
goal = [1, 2, 3, 4, 5, 6, 7, 8, 0]
# Solving the puzzle
puzzle = [7, 2, 4, 5, 0, 6, 8, 3, 1]
if(isSolvable(np.array(puzzle).reshape(3,3))): # even true
# checks whether the initialized configuration is solvable or not
print("Solvable!")
problem = Problem(puzzle,goal)
path = astar_search(problem, manhattan).path()
print_path(path, "manhattan")
path = astar_search(problem, linear).path()
print_path(path, "linear")
path = astar_search(problem, sqrt_manhattan).path()
print_path(path, "sqrt_manhattan")
path = astar_search(problem, max_heuristic).path()
print_path(path, "max_heuristic")
else :
print("Not Solvable!") # non-even false
TypeError Traceback (most recent call last)
<ipython-input-124-2a60ddc8c009> in <module>
9 problem = Problem(puzzle,goal)
10
---> 11 path = astar_search(problem, manhattan).path()
12 print_path(path, "manhattan")
13
<ipython-input-123-caa97275712e> in astar_search(problem, h)
18 def f(n):
19 return max(getattr(n, 'f', -infinity), n.path_cost + h(n.state))
---> 20 return best_first_graph_search(problem, f)
21
22 def print_path(path, method):
<ipython-input-123-caa97275712e> in best_first_graph_search(problem, f)
12
13 def best_first_graph_search(problem, f):
---> 14 return graph_search(problem, PriorityQueue(min, f))
15
16 def astar_search(problem, h = None):
<ipython-input-123-caa97275712e> in graph_search(problem, fringe)
8 if str(node.state) not in closed:
9 closed[str(node.state)] = True
---> 10 fringe.extend(node.expand(problem))
11 return None
12
<ipython-input-121-e5a968bd54f0> in extend(self, items)
18
19 def extend(self, items):
---> 20 for item in items: self.append(item)
21
22 class PriorityQueue(Queue):
<ipython-input-122-db21613469b9> in expand(self, problem)
69
70 def expand(self, problem):
---> 71 for (act,n) in problem.successor(self.state):
72 if n not in [node.state for node in self.path()]:
73 yield Node(n, self, act,
TypeError: cannot unpack non-iterable int object
I got some error messages, how can I fix it?
There is one error message, The pieces of codes you get in the error message are the stack trace, which might help you to know how the execution got at the final point where the error occurred. In this case that is not so important. The essence of the error is this:
for (act,n) in problem.successor(self.state)
TypeError: cannot unpack non-iterable int object
So this means that the successor method returned an int instead of a list.
Looking at the code for successor, I notice that it intends to return a list called reachable, but there is a return statement right in the middle of the code, leaving the largest part of that code unexecuted (so-called "dead code"):
return state
This statement makes no sense where it is positioned. It seems to be an indentation problem: that return belongs inside the function just above it, like this:
def candidate(state, Position):
state = state.copy()
zero_index = state.index(0)
swap_index = state.index(get_key(Position))
state[zero_index], state[swap_index] = state[swap_index], state[zero_index]
return state # <-- indentation!

Byte size not increasing in a dynamic array in Python

import ctypes
import sys
class DynamicArray(object):
def __init__(self):
self.n =
self.capacity = 1
self.A = self.make_array(self.capacity)
def __len__(self):
return self.n
def __getitem__(self,k):
if not 0 <= k <self.n:
return IndexError('K is out of bounds!')
return self.A[k]
def append(self, ele):
if self.n == self.capacity:
self._resize(2*self.capacity)
self.A[self.n] = ele
self.n += 1
def _resize(self,new_cap):
B = self.make_array(new_cap)
for k in range(self.n):
B[k] = self.A[k]
self.A = B
self.capacity = new_cap
def make_array(self,new_cap):
return (new_cap * ctypes.py_object)()
When I use
arr = DynamicArray()
and after inserting about 10 to 20 numbers the byte size remains the same.
This is how I check the size of the array:
sys.getsizeof(arr)
The byte size shows to be 56 throughout.

Problem breaking out of a generator while iterating through a for loop

Assigned to design a linked list class from scratch using a generator to iterate through the list, but I've had a problem debugging this issue:
class LinkedList:
def __init__(self, data = None):
self.node = Node(data)
self.first = self.node
self.last = self.node
self.n = 1
def append(self, data = None):
new = Node(data)
self.last.next = new
self.last = new
self.n += 1
def __iter__(self):
self.index = self.first
return self.generator()
def generator(self):
for i in range(0, self.n):
yield self.index
self.index = self.index.next
One of the tests that the current generator passes is:
for n in a:
print n
# which should and does output
0
1
2
However, it fails to output the proper values in this case
for n in a:
if n == 2:
break
else:
print n
# Outputs 0 1 2, instead of:
0
1
I think my understanding of generators is lacking, and would love any help you guys have to offer!
Your shouldn't use n == 2 as the break-condition.
Try this:
# Assume your defined class `Node.py` like this:
class Node:
def __init__(self, data=None):
self.val = data
self.next = None
# I didn't modify your `LinkedList.py`
class LinkedList:
def __init__(self, data=None):
self.node = Node(data)
self.first = self.node
self.last = self.node
self.n = 1
def append(self, data=None):
new = Node(data)
self.last.next = new
self.last = new
self.n += 1
def __iter__(self):
self.index = self.first
return self.generator()
def generator(self):
for i in range(0, self.n):
yield self.index
self.index = self.index.next
if __name__ == '__main__':
ass = LinkedList(0)
ass.append(1)
ass.append(2)
ass.append(3)
for n in ass:
if n.val == 2: # Notice here
break
else:
print(n.val) # And here

Min stack solution not working for leetcode

I'm trying a leetcode min stack problem and my code is not working, tried finding a solution but can't see what's wrong. It seems to work for most inputs but fails "
["MinStack","push","push","push","top","pop","getMin","pop","getMin","pop","push","top","getMin","push","top","getMin","pop","getMin"]
[[],[2147483646],[2147483646],[2147483647],[],[],[],[],[],[],[2147483647],[],[],[-2147483648],[],[],[],[]]" .
class MinStack:
def __init__(self):
"""
initialize your data structure here.
"""
self.stack = []
self.count = 0
self.minEle = -1
def push(self, x: int) -> None:
if self.count == 0:
self.minEle = x
self.stack.append(x)
elif x < self.minEle:
self.stack.append(2*x - self.minEle)
self.minEle = x
elif x >= self.minEle:
self.stack.append(x)
self.count += 1
def pop(self) -> None:
y = self.stack.pop()
if y < self.minEle:
self.minEle = 2*self.minEle - y
self.count -= 1
def top(self) -> int:
if self.count >=1:
return self.stack[(self.count - 1)]
else:
return 0
def getMin(self) -> int:
return self.minEle
Try:
class MinStack:
def __init__(self):
self.sc = []
self.sm = []
# #param x, an integer
# #return an integer
def push(self, x):
self.sc.append(x)
if x <= self.getMin():
self.sm.append(x)
return x
# #return nothing
def pop(self):
if self.sc.pop() == self.getMin():
self.sm.pop()
# #return an integer
def top(self):
return self.sc[-1]
# #return an integer
def getMin(self):
try:
return self.sm[-1]
except IndexError:
return self.top()
obj = MinStack()
obj.push(-2)
obj.push(0)
obj.push(-3)
print(obj.getMin())
obj.pop()
print(obj.top())
print(obj.getMin())
param_3 = obj.top()
param_4 = obj.getMin()

Circular Queue Structure ( array-backed)

I need some help in writing a python program that will implement a circular queue data structure (array-backed). I've completed a few of the methods already but I'm a bit stumped when it comes to adding and taking things away from the queue, as well as checking the values within it. I believe this is of the first-in-first-out structure. Here's what I have for the body so far
class Queue:
''' Constructor '''
def __init__(self, limit):
self.limit = limit
self.data = [None] * limit
self.queue = []
self.head = -1
self.tail = -1
self.count = 0
def dequeue(self):
if self.count == 0:
raise RuntimeError
else:
self.head = 0
x = self.queue.pop(0)
if self.head == self.tail:
self.head = -1
self.tail = -1
else:
self.tail -= 1
self.count -= 1
#self.head += 1
return x
def enqueue(self, item):
if self.count == self.limit:
raise RuntimeError
else:
self.count += 1
self.queue.append(item)
self.tail += 1
def __str__(self):
return " ".join([str(v) for v in self.queue])
def resize(self, new_limit):
new_q = [None]*self.limit
old_q = self.queue
for i in range(len(old_q)):
new_q[i] = old_q[i]
self.limit = new_limit
self.queue = new_q
def empty(self):
return 0 == self.count
def iter(self):
listt = []
for v in self.queue:
listt.append(v)
return listt
What I 've written thus far makes the most sense to me but if I were to test this with the following code block I'd get an error saying 10 != 4. This code will fail the 9th line of the test, tc.assertEqual(q.data.count(None), 4) I'm unsure why my code is producing the value 10 at this time. What would allow for this class to pass the given test?
from unittest import TestCase
tc = TestCase()
q = Queue(10)
for i in range(6):
q.enqueue(i)
tc.assertEqual(q.data.count(None), 4)
for i in range(5):
q.dequeue()
tc.assertFalse(q.empty())
tc.assertEqual(q.data.count(None), 9)
tc.assertEqual(q.head, q.tail)
tc.assertEqual(q.head, 5)
for i in range(9):
q.enqueue(i)
with tc.assertRaises(RuntimeError):
q.enqueue(10)
for x, y in zip(q, [5] + list(range(9))):
tc.assertEqual(x, y)
I'm pretty sure that all the code using self.queue is wrong. That attribute isn't needed at all. The whole point of the data attribute is to use it to store the values. Use the indexes head and tail to figure out where in data to put things (and where to take them from):
class Queue:
''' Constructor '''
def __init__(self, limit):
self.limit = limit
self.data = [None] * limit
self.head = 0
self.tail = -1
self.count = 0
def dequeue(self):
if self.count == 0:
raise RuntimeError
else:
x = self.data[self.head]
self.head = (self.head + 1) % self.limit
self.count -= 1
return x
def enqueue(self, item):
if self.count == self.limit:
raise RuntimeError
else:
self.count += 1
self.tail = (self.tail + 1) % self.limit
self.data[self.tail] = item
def __str__(self):
return " ".join([str(v) for v in self]) # use __iter__
def resize(self, new_limit):
if new_limit < self.count:
raise RuntimeError
new_data = [None]*new_limit
for i, item in enumerate(self):
new_data[i] = item
self.data = new_data
self.head = 0
self.tail = self.count - 1
def empty(self):
return 0 == self.count
def __bool__(self): # this is better than empty()
return self.count != 0
def __iter__(self): # renamed from iter so you can use it in a for loop
for i in range(self.count):
return self.data[(self.head + i) % self.limit]
You should probably also have a __len__ method.
I'd get an error stating that the Queue class doesn't have a data attribute
I don't have the error you mention when running your test on your code.
If for some reasons you don't want to use built-in collections.deque module, here is an example of how you can implement your own circular buffer:
"""
Example of circular buffer using regular list
"""
class CircularBuffer:
def __init__(self, size):
self.buffer = [None] * size
self.size = size
self.count = 0
self.tail = 0
self.head = 0
#property
def is_empty(self):
return self.count == 0
#property
def is_full(self):
return self.count == self.size
def __len__(self):
return self.count
def add(self, value):
# if buffer is full overwrite the value
if self.is_full:
self.tail = (self.tail + 1) % self.size
else:
self.count += 1
self.buffer[self.head] = value
self.head = (self.head + 1) % self.size
def remove(self):
if self.count == 0:
raise Exception("Circular Buffer is empty")
value = self.buffer[self.tail]
self.tail = (self.tail + 1) % self.size
self.count -= 1
return value
def __iter__(self):
index = self.tail
counter = self.count
while counter > 0:
yield self.buffer[index]
index = (index + 1) % self.size
counter -= 1
def __repr__(self):
return "[]" if self.is_empty else "[" + ",".join(str(i) for i in self) + "]"

Categories

Resources