tf.keras to exe problems - python

i've installed anaconda and trained a neural network using (tf) keras on a windows machine. i'm able to use model.predict within the environment (anaconda navigator and visual code), communicating with the outside world via input and output file. however, none of the tools i tried to create an exe work. pyinstaller complains that there is "no module keras", py2exe mentions something is "beyond top level", while cxfreeze refers to "intel mkl threads". any hints other than to visit the astrologer to tell me when and where to buy a new computer?

Related

Screen freeze when training deep learning model from terminal but not Pycharm

I have an extremely weird issue where if I run pytorch model training from Pycharm, it works fine but when I run the same code on the same environment from terminal, it freezes the screen. All windows become non-interactable. The freeze affects only me, not other users and for them >>top shows that the model is no longer training. The issue is consistent and reproducible across machines, users, and GPU slots.
All dependencies are installed to a conda environment dl_segm_auto. In pycharm I have it selected as the interpreter. Parameters are passed through Run->Edit configuration.
From terminal, I run
conda activate dl_segm_auto
python training.py [parameters]
After the first epoch the entire remote session freezes.
Suggestions greatly appreciated!
The issue was caused by the matplotlib's backend taking over the screen on Linux. Any of the following can solve the problem:
Installing PyQt5 (which changes the python's/environment's default backend)
Running from Pycharm (which uses a backend selector on startup).
Having matplotlib.use('Qt5Agg') (and potentially others) at the start of plotting functions or top-level script.

EXE made from Python file which uses Tensorflow-GPU does not use GPU when deployed

I have a python file which uses tensorflow GPU in it. It uses GPU when i run the file from console using python MyFile.py.
However, when i convert it into exe using pyinstaller, it converts and runs successfully, But it does not use GPU anymore when i run the exe. This happens on a system which was not used for developing MyFile.py. Checking on the same system which was used in development, it uses just 40-50% GPU, which was 90% if i run the python script.
My application even has a small UI made using tkinter.
Though application runs fine on CPU, It is incredibly slow. (I am not using --one-file flag in pyinstaller.) Although having GPU, The application is not using it.
My questions are:
How do I overcome this issue? Do I need to install any CUDA or CuDnn toolkits in my Destination computer?
(Once the main question is solved) Can i use 1050ti in development and 2080ti in destination computer, if the CuDnn and CUDA versions are the same?
Tensorflow Version : 1.14.0 (I know 2.x is out there, but this works perfectly fine for me.)
GPU : GeForce GTX 1050 ti ( In development as well as deployment.)
CUDA Toolkit : 10.0
CuDnn : v7.6.2 for cuda 10.0
pyinstaller version : 3.5
Python version : 3.6.5
As I asnwered also here, according to the GitHub issues in the official repository (here and here for example) CUDA libraries are usually dynamically loaded at run-time and not at link-time, so they are typically not included in the final exe file (or folder) with the result that the generated exe file won't work on a machine without CUDA installed. The solution (please refer to the linked issues too) is to put the DLLs necessary to run the exe in its dist folder (if generated without the --onefile option) or install the CUDA runtime on the target machine.

Is it possible to run tensorflow-gpu on a computer without a GPU or CUDA?

I have two Windows computers, one with and one without a GPU.
I would like to deploy the same python script on both (TensorFlow 1.8 Object Detection), without changing the packaged version of TensorFlow. In other words, I want to run tensorflow-gpu on a CPU.
In the event where my script cannot detect nvcuda.dll, I've tried using a Session config to disable the GPU, like so:
config = tf.ConfigProto(
device_count = {'GPU': 0}
)
and:
with tf.Session(graph=detection_graph, config=config) as sess:
However, this is not sufficient, as TensorFlow still returns the error:
ImportError: Could not find 'nvcuda.dll'. TensorFlow requires that this DLL be installed in a directory that is named in your %PATH% environment variable.
Typically it is installed in 'C:\Windows\System32'. If it is not present, ensure that you have a CUDA-capable GPU with the correct driver installed.
Is there any way to disable checking for a GPU/CUDA entirely and default to CPU?
EDIT: I have read the year-old answer regarding tensorflow-gpu==1.0 on Linux posted here, which suggests this is impossible. I'm interested to know if this is still how tensorflow-gpu is compiled, 9 versions later.

Compiling binary with tensorflow library for cpu: Cannot find cuda library?

In development, I have been using the gpu-accelerated tensorflow
https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.1-cp35-cp35m-linux_x86_64.whl
I am attempting to deploy my trained model along with an application binary for my users. I compile using PyInstaller (3.3.dev0+f0df2d2bb) on python 3.5.2 to create my application into a binary for my users.
For deployment, I install the cpu version, https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.1-cp35-cp35m-linux_x86_64.whl
However, upon successful compilation, I run my program and receive the infamous tensorflow cuda error:
tensorflow.python.framework.errors_impl.NotFoundError:
tensorflow/contrib/util/tensorflow/contrib/cudnn_rnn/python/ops/_cudnn_rnn_ops.so:
cannot open shared object file: No such file or directory
why is it looking for cuda when I've only got the cpu version installed? (Let alone the fact that I'm still on my development machine with cuda, so it should find it anyway. I can use tensorflow-gpu/cuda fine in uncompiled scripts. But this is irrelevant because deployment machines won't have cuda)
My first thought was that somehow I'm importing the wrong tensorflow, but I've not only used pip uninstall tensorflow-gpu but then I also went to delete the tensorflow-gpu in /usr/local/lib/python3.5/dist-packages/
Any ideas what could be happening? Maybe I need to start using a virtual-env..

Tensorflow Retrain on Windows

When I follow the tutorials of "How to Retrain Inception's Final Layer for New Categories", I need to build the retainer like this
bazel build tensorflow/examples/image_retraining:retrain
However, my tensorflow on windows does not have such directory. I am wondering why and how can I solve the problem?
Thank you in advance
In my case tensorflow version is 1.2 and corresponding retrain.py is here.
Download and extract flowers images from here.
Now run the the retrain.py file as
python retrain.py --image_dir=path\to\dir\where\flowers\images\where\extracted --output_lables=retrained_labels.txt --output_graph=retrained_graph.pb
note: the last two arguments in the above command are optional.
Now to test the retrained model:
go the master branch and download the label_image.py code as shown below
Then run python label_image.py --image=image/path/to/test/classfication --graph=retrained_graph.pb --labels=retrained_labels.txt
The result will be like
From the screenshot, it appears that you have installed the TensorFlow PIP package, whereas the instructions in the image retraining tutorial assume that you have cloned the Git repository (and can use bazel to build TensorFlow).
However, fortunately the script (retrain.py) for image retraining is a simple Python script, which you can download and run without building anything. Simply download the copy of retrain.py from the branch of the TensorFlow repository that matches your installed package (e.g. if you've installed TensorFlow 0.12, you can download this version), and you should be able to run it by typing python retrain.py at the Command Prompt.
I had the same problem on windows. My windows could not find script.retrain. I downloaded retrain.py file from tensoflow website at here. Then, copied the file in the tensorflow folder and run the retrain script using Python command.

Categories

Resources