panda's dataframe isn't working in my code - python

I'm trying to scrape twitter data for my thesis work. But in this below's code, dataframe isn't working. I mean, dataframe isn't showing at the output line. How can I modify this code to build my dataframe? Another problem is that I want to scrape data by filtering location. How can I do this?
import tweepy
import re
import pandas as pd
import itertools
import collections
import nltk
from nltk.corpus import stopwords
import matplotlib.pyplot as plt
from textblob import TextBlob
import os
consumer_key = ""
consumer_secret = ""
access_token = ""
access_token_secret = ""
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth,wait_on_rate_limit=True,wait_on_rate_limit_notify=True)
latitude = 56.130367 # geographical centre of search
longitude = -106.346771 # geographical centre of search
max_range = 1
tweets = tweepy.Cursor(api.search,
q="Shopify" + " -filter:retweets",
#geocode = "%f,%f,%dkm" % (latitude,longitude,max_range),
lang="en",
since="2020-01-01").items(10)
for tweet in tweets:
print(tweet.text)
analysis = TextBlob(tweet.text)
print('Date=', tweet.created_at,'Location=', tweet.user.location)
print(analysis.sentiment)
if analysis.sentiment[0] > 0:
print('Positive')
elif analysis.sentiment[0] < 0:
print('Negative')
else:
print('Neutral')
print('====================================================================')
print()
user_data = [[tweet.created_at, remove_characters(tweet.user.name), tweet.user.location,
remove_characters(tweet.text), TextBlob(tweet.text).sentiment[0],
'Positive' if TextBlob(tweet.text).sentiment[0] > 0
else 'Negative' if TextBlob(tweet.text).sentiment[0] < 0
else 'Nuetral']
for tweet in tweets]
tweet_df = pd.DataFrame(data=user_data,
columns=['Created At', "User", 'Location', 'Text', 'Sentiment', 'Polarity', 'favorite_count'])
tweet_df.head(10)

Related

Tweepy returns same tweets when scraping data repeatedly

I am scraping data from Twitter for tweets, since Twitter has a limitation on this, I am scraping 2500 tweets data every 15 minutes, however, I observe that each run after 15 minutes is returning me the same tweets. Is there any way how I can skip the previously scraped tweet data using some offset.
Thank You!
Here is my code:
# Import libraries
from tweepy import OAuthHandler
#from tweepy.streaming import StreamListener
import tweepy
import csv
import pandas as pd
#import re
#from textblob import TextBlob
#import string
#import preprocessor as p
#import os
import time
# Twitter credentials
consumer_key = ''
consumer_secret = ''
access_key = ''
access_secret = ''
# Pass your twitter credentials to tweepy via its OAuthHandler
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_key, access_secret)
api = tweepy.API(auth)
def extract_tweets(search_words,date_since,numTweets):
return(tweepy.Cursor(api.search, q=search_words, lang="en", since=date_since, tweet_mode='extended').items(numTweets))
def scrapetweets(search_words, date_since, numTweets, numRuns):
# Define a pandas dataframe to store the date:
db_tweets = pd.DataFrame(columns = ['username', 'acctdesc', 'location', 'following', 'followers', 'totaltweets', 'usercreatedts', 'tweetcreatedts', 'retweetcount', 'text', 'hashtags'])
#db_tweets = pd.DataFrame()
for i in range(numRuns):
tweets = extract_tweets(search_words,date_since,numTweets)
# Store these tweets into a python list
tweet_list = [tweet for tweet in tweets]
print(len(tweet_list))
noTweets = 0
for tweet in tweet_list:
username = tweet.user.screen_name
acctdesc = tweet.user.description
location = tweet.user.location
following = tweet.user.friends_count
followers = tweet.user.followers_count
totaltweets = tweet.user.statuses_count
usercreatedts = tweet.user.created_at
tweetcreatedts = tweet.created_at
retweetcount = tweet.retweet_count
hashtags = tweet.entities['hashtags']
lst=[]
for h in hashtags:
lst.append(h['text'])
try:
text = tweet.retweeted_status.full_text
except AttributeError: # Not a Retweet
text = tweet.full_text
itweet = [username,acctdesc,location,following,followers,totaltweets,usercreatedts,tweetcreatedts,retweetcount,text,lst]
db_tweets.loc[len(db_tweets)] = itweet
noTweets += 1
print(noTweets,itweet)
#filename = "tweets.csv"
#with open(filename, "a", newline='') as fp:
# wr = csv.writer(fp, dialect='excel')
# wr.writerow(itweet)
print('no. of tweets scraped for run {} is {}'.format(i + 1, noTweets))
if i+1 != numRuns:
time.sleep(920)
filename = "tweets.csv"
# Store dataframe in csv with creation date timestamp
db_tweets.to_csv(filename, mode='a', index = False)
# Initialise these variables:
search_words = "#India OR #COVID-19"
date_since = "2020-04-29"
#date_until = "2020-05-01"
numTweets = 2500
numRuns = 10
# Call the function scrapetweets
program_start = time.time()
scrapetweets(search_words, date_since, numTweets, numRuns)
program_end = time.time()
print('Scraping has completed!')
print('Total time taken to scrape is {} minutes.'.format(round(program_end - program_start)/60, 2))
I referred to a blog on medium for this purpose.
you can add a variable as validator an store it to a file that may be a tweetid.txt
and each time you run the script, you open di tweetid.txt
if tweetid same in tweet id in txt, you pass it.

Tweepy still not returning full text despite using extended text feature

I am using tweepy to download tweets about a particular topic but nobody which tutorial I follow I cannot get the tweet to output as a full tweet. There is always an ellipse that cuts it off after a certain number of characters.
Here is the code I am using
import json
import tweepy
from tweepy import OAuthHandler
import csv
import sys
from twython import Twython
nonBmpMap = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd)
with open ('Twitter_Credentials.json') as cred_data:
info = json.load(cred_data)
consumer_Key = info['Consumer_Key']
consumer_Secret = info['Consumer_Secret']
access_Key = info['Access_Key']
access_Secret = info['Access_Secret']
maxTweets = int(input('Enter the Number of tweets that you want to extract '))
userTopic = input('What topic do you want to search for ')
topic = ('"' + userTopic + '"')
tweetCount = 0
auth = OAuthHandler(consumer_Key, consumer_Secret)
auth.set_access_token(access_Key, access_Secret)
api = tweepy.API(auth, wait_on_rate_limit=True)
tweets = api.search(q=topic, count=maxTweets, tweet_mode= 'extended')
for tweet in tweets:
tweetCount = (tweetCount+1)
with open ('TweetsAbout' + userTopic, 'a', encoding='utf-8') as the_File:
print(tweet.full_text.translate(nonBmpMap))
tweet = (str(tweet.full_text).translate(nonBmpMap).replace(',','').replace('|','').replace('\n','').replace('’','\'').replace('…',"end"))
the_File.write(tweet + "\n")
print('Extracted ' + str(tweetCount) + ' tweets about ' + topic)
Try this, see if it works!
try:
specific_tweets = tweepy.Cursor(api.search, tweet_mode='extended', q=<your_query_string> +" -filter:retweets", lang='en').items(500)
except tweepy.error.TweepError:
pass
for tweet in specific_tweets:
extracted_text = tweet.full_text
all the text your trying to extract should be in extracted_text. Good Luck!!

How to count how many times a result has occurred?

I am running a sentiment analysis by using twitter and I am having some difficulties on:
Counting how many 'Positive', 'Negative' and 'Neutral' results I have.
Any help will be me more than appreciated.
Please take a look at my code:
import tweepy
from textblob import TextBlob
consumer_key = ''
consumer_key_secret = ''
access_token = ''
access_token_secret = ''
auth = tweepy.OAuthHandler(consumer_key, consumer_key_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
public_tweets = api.search('stackoverflow')
for tweet in public_tweets:
print(tweet.text)
analysis = TextBlob(tweet.text)
print(analysis.sentiment)
if analysis.sentiment[0]>0:
print ('Positive')
elif analysis.sentiment[0]<0:
print('Negative')
else:
print ('Neutral')
I think you can just create variables that keep track of how many labels were in the data. Something like this:
pos, neg, neu = 0, 0, 0
for tweet in public_tweets:
analysis = TextBlob(tweet.text)
if analysis.sentiment[0]>0:
pos += 1
elif analysis.sentiment[0]<0:
neg += 1
else:
neu += 1
print("positive: {}\nnegative: {}\nneutral: {}".format(pos,neg,neu))
Regarding the result dataframe, I was not sure what kind of data you want to save, so could not give a good answer for that.

Tweepy error: unhashable type slice

I am trying to use the tweepy library to collect some data from twitter to conduct some sentiment analysis.
Here is a sample of the script I am running:
import tweepy
import pandas as pd
import numpy as np
auth = tweepy.OAuthHandler(CONSUMER_KEY,CONSUMER_SECRET)
auth.set_access_token(ACCESS_TOKEN, ACCESS_SECRET)
api = tweepy.API(auth, parser = tweepy.parsers.JSONParser())
# Set search query
searchquery = '"atiku" -filter:retweets'
data = api.search(q = searchquery, count = 100, lang = 'en', result_type = 'mixed')
data_all = list(data.values())[0]
#(data.values())[1])
while (len(data_all) <= 20000):
time.sleep(5)
last = data_all[1]['id']
data = api.search(q = searchquery, count = 100, lang = 'en', result_type = 'mixed', max_id = last)
data_all += list(data.values())[1][1:]
print(data_all)
I have hit a road block in my code, as when I run it I get this error:
TypeError: unhashable type: 'slice'
I would appreciate any pointers on thos

extract tweets with some special keywords from twitter using tweepy in python

here is my code..i want to extract tweets from twitter with some keywords....my code dont give any errors but i am not getting the output file generated...please help me........
import re
import csv
import tweepy
from tweepy import OAuthHandler
#TextBlob perform simple natural language processing tasks.
from textblob import TextBlob
def search():
#text = e.get() **************************
consumer_key = ''
consumer_secret = ''
access_token = ' '
access_token_secret = ' '
# create OAuthHandler object
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
# set access token and secret
auth.set_access_token(access_token, access_token_secret)
# create tweepy API object to fetch tweets
api = tweepy.API(auth)
def get_tweets(query, count = 300):
# empty list to store parsed tweets
tweets = []
target = open("tweets.txt", 'w',encoding="utf-8")
t1 = open("review.txt", 'w',encoding="utf-8")
# call twitter api to fetch tweets
q=str(query)
a=str(q+" sarcasm")
b=str(q+" sarcastic")
c=str(q+" irony")
fetched_tweets = api.search(a, count = count)+ api.search(b, count = count)+ api.search(c, count = count)
# parsing tweets one by one
print(len(fetched_tweets))
for tweet in fetched_tweets:
# empty dictionary to store required params of a tweet
parsed_tweet = {}
# saving text of tweet
parsed_tweet['text'] = tweet.text
if "http" not in tweet.text:
line = re.sub("[^A-Za-z]", " ", tweet.text)
target.write(line+"\n")
t1.write(line+"\n")
return tweets
# creating object of TwitterClient Class
# calling function to get tweets
tweets = get_tweets(query =text, count = 20000)
root.mainloop()
From this code i am nor getting the output generated file. Can anyone tell me what i am doing wrong ?
Thanks in advance!
I just made some slight changes and it was working perfectly for me. Removed or commented some unnecessary statements (like the review file). Changed the open function to io.open since I have python version 2.7. Here is the running code, hope it helps!!
`
import re
import io
import csv
import tweepy
from tweepy import OAuthHandler
#TextBlob perform simple natural language processing tasks.
#from textblob import TextBlob
consumer_key = 'sz6x0nvL0ls9wacR64MZu23z4'
consumer_secret = 'ofeGnzduikcHX6iaQMqBCIJ666m6nXAQACIAXMJaFhmC6rjRmT'
access_token = '854004678127910913-PUPfQYxIjpBWjXOgE25kys8kmDJdY0G'
access_token_secret = 'BC2TxbhKXkdkZ91DXofF7GX8p2JNfbpHqhshW1bwQkgxN'
# create OAuthHandler object
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
# set access token and secret
auth.set_access_token(access_token, access_token_secret)
# create tweepy API object to fetch tweets
api = tweepy.API(auth)
def get_tweets(query, count = 300):
# empty list to store parsed tweets
tweets = []
target = io.open("mytweets.txt", 'w', encoding='utf-8')
# call twitter api to fetch tweets
q=str(query)
a=str(q+" sarcasm")
b=str(q+" sarcastic")
c=str(q+" irony")
fetched_tweets = api.search(a, count = count)+ api.search(b, count = count)+ api.search(c, count = count)
# parsing tweets one by one
print(len(fetched_tweets))
for tweet in fetched_tweets:
# empty dictionary to store required params of a tweet
parsed_tweet = {}
# saving text of tweet
parsed_tweet['text'] = tweet.text
if "http" not in tweet.text:
line = re.sub("[^A-Za-z]", " ", tweet.text)
target.write(line+"\n")
return tweets
# creating object of TwitterClient Class
# calling function to get tweets
tweets = get_tweets(query ="", count = 20000)
`

Categories

Resources