How to remove a right noise from this image? - python

kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
close = 255 - cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
cv2.imshow('thresh', thresh)

I am assuming you wish to have only the middle part of the image and remove everything else from the image. One simple way is to search for contours, select the bounding box of the biggest contour and draw it out on a newly created mask.
Example code:
import cv2
import numpy as np
img = cv2.imread("1.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU+cv2.THRESH_BINARY_INV)[1]
contours = cv2.findContours(thresh, cv2.CHAIN_APPROX_NONE, cv2.RETR_TREE)[0]
cnt = max(contours, key=lambda c: cv2.contourArea(c))
mask = np.ones((img.shape[:2]), np.uint8)*255
x, y, w, h = cv2.boundingRect(cnt)
mask[y:y+h, x:x+w] = gray[y:y+h, x:x+w]
cv2.imwrite("mask.png", mask)
cv2.imshow("mask", mask)
cv2.waitKey(0)
cv2.destroyAllWindows()
EDIT:
This is how I would try to make it based on your input image
import cv2
import numpy as np
img = cv2.imread('1.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3, 3), 0)
thresh = cv2.threshold(
blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
contours = cv2.findContours(thresh, cv2.CHAIN_APPROX_NONE, cv2.RETR_TREE)[0]
cnt = max(contours, key=lambda c: cv2.contourArea(c))
mask = np.ones((img.shape[:2]), np.uint8)*255
mask2 = np.zeros((img.shape[:2]), dtype=np.uint8)
cv2.drawContours(mask, [cnt], -1, (0, 0, 0), -1)
x, y, w, h = cv2.boundingRect(cnt)
mask2[y:y+h, x:x+w] = gray[y:y+h, x:x+w]
cv2.imshow('mask2', mask2)
cv2.imshow('mask', mask)
cv2.waitKey(0)
cv2.destroyAllWindows()

Related

How to split an image using edge detection in python

My images are stored in an numpy array I want to split the images into individual images containing single character.
import cv2
# Load image, grayscale, Gaussian blur, Otsu's threshold, dilate
image = arr #numpy_arr_containing 200X200 image
original = image.copy()
gray = image
blur = cv2.GaussianBlur(gray, (5,5), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (15,15))
dilate = cv2.dilate(thresh, kernel, iterations=2)
# Find contours, obtain bounding box coordinates, and extract ROI
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
image_number = 0
for c in cnts:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 3)
ROI = original[y:y+h, x:x+w]
cv2.imwrite("ROI_{}.png".format(image_number), ROI)
image_number += 1
# cv2.imshow('image', image)
# cv2.imshow('thresh', thresh)
# cv2.imshow('dilate', dilate)
# cv2.waitKey()

OpenCV - Can't find correct contours in similar images

the task I want to do looks pretty simple: I take as input several images with an object centered in the photo and a little color chart needed for other purposes. My code normally works for the majority of the cases, but sometimes fails miserably and I just can't understand why.
For example (these are the source images), it works correctly on this https://imgur.com/PHfIqcb but not on this https://imgur.com/qghzO3V
Here's the code of the interested part:
img = cv2.imread(path)
height, width, channel = img.shape
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
kernel = np.ones((31, 31), np.uint8)
dil = cv2.dilate(gray, kernel, iterations=1)
_, th = cv2.threshold(dil, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
th_er1 = cv2.bitwise_not(th)
_, contours, _= cv2.findContours(th_er1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
areas = [cv2.contourArea(c) for c in contours]
max_index = np.argmax(areas)
cnt=contours[max_index]
x,y,w,h = cv2.boundingRect(cnt)
After that I'm just going to crop the image accordingly to the given results (getting the biggest rectangle contour), basically cutting off the photo only the main object.
But as I said, using very similar images sometimes works and sometimes not.
Thank you in advance.
maybe you could try not using otsu's method, and just set threshold manually, if it's possible... ;)
You can use the Canny edge detector. In the two images, there is a good threshold value to isolate the object in the center of the image. After applying the threshold, we blur the results and apply the Canny edge detector before finding the contours:
import cv2
import numpy as np
def process(img):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(img_gray, 190, 255, cv2.THRESH_BINARY_INV)
img_blur = cv2.GaussianBlur(thresh, (3, 3), 1)
img_canny = cv2.Canny(img_blur, 0, 0)
kernel = np.ones((5, 5))
img_dilate = cv2.dilate(img_canny, kernel, iterations=1)
return cv2.erode(img_dilate, kernel, iterations=1)
def get_contours(img):
contours, hierarchies = cv2.findContours(process(img), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key=cv2.contourArea)
cv2.drawContours(img, [cnt], -1, (0, 255, 0), 30)
x, y, w, h = cv2.boundingRect(cnt)
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 30)
img = cv2.imread("image.jpeg")
get_contours(img)
cv2.imshow("Result", img)
cv2.waitKey(0)
Input images:
Output images:
The green outlines are the contours of the objects, and the red outlines are the bounding boxes of the objects.

How to remove background using Canny Edge detection

I want to remove background and sharpen the images of following type:
image 1
Both of these are signatures. I want to be able to remove everything except the signature itself and sharpen the lines of signature.
I am able to get a mask using Canny edge detection using following code
import cv2
im_path = r'test2.png'
image = cv2.imread(im_path) #args["image"]
image = cv2.resize(image, (680, 460))
#rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
cv2.imshow('thresh', thresh) ###for showing
cv2.imwrite('thresh.jpg', thresh) ###for saving
cv2.waitKey()
And these are masks I get;
But Im clueless about what Image processing operations to perform next.
PS: These signatures are same (not forged) and next step would be to find similarity between them.
Try this
import cv2
import numpy as np
image = cv2.imread("r'test2.png'")
original = image.copy()
mask = np.zeros(image.shape, dtype=np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts:
cv2.drawContours(mask, [c], -1, (255,255,255), -1)
break
close = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=4)
close = cv2.cvtColor(close, cv2.COLOR_BGR2GRAY)
result = cv2.bitwise_and(original, original, mask=close)
result[close==0] = (255,255,255)
cv2.imshow('result', result)
cv2.waitKey()

How to extract ID document region of interest from image with OpenCV?

I am trying to segment this image because I need only to obtain the document.
Applying some filters I got this result:
I am trying to get the outline of the white rectangle but I get this result:
Anyone have any idea how to do better?
this is my code :/
import cv2
image = cv2.imread('roberto.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
_, binary = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV)
cv2.imshow('test', binary)
cv2.waitKey(0)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[-2:]
idx = 0
for cnt in contours:
idx += 1
x,y,w,h = cv2.boundingRect(cnt)
roi=binary[y:y+h,x:x+w]
cv2.rectangle(image,(x,y),(x+w,y+h),(200,0,0),2)
cv2.imshow('img',image)
cv2.waitKey(0)
You're almost there, you just need to obtain the x,y,w,h bounding rectangle coordinates using cv2.boundingRect then you can extract/save the ROI using Numpy slicing. Here's the result
import cv2
# Load image, grayscale, threshold
image = cv2.imread('1.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.threshold(gray, 225, 255, cv2.THRESH_BINARY_INV)[1]
# Get bounding box and extract ROI
x,y,w,h = cv2.boundingRect(thresh)
ROI = image[y:y+h, x:x+w]
cv2.imshow('thresh', thresh)
cv2.imshow('ROI', ROI)
cv2.waitKey()

Count gear (Python, OpenCV)

For a prototype I need to build a 3d model of a gear. This have a "many" number of teeth.
So I am trying to count them using OpenCV and Python. I found this (only?) post which explain how to do it in C++.
I am following the steps and, for now this is the code I made.
import numpy as np
import cv2
img = cv2.imread('C:\\Users\\Link\\Desktop\\gear.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
kernel = np.ones((3, 3), np.uint8)
img_erosion = cv2.erode(thresh, kernel, iterations=1)
edges = cv2.Canny(img_erosion, 50, 150)
img_dilate = cv2.dilate(edges, kernel, iterations=1)
cv2.imshow('i', thresh)
cv2.waitKey(0)
cv2.imshow('i', img_erosion)
cv2.waitKey(0)
cv2.imshow('i', edges)
cv2.waitKey(0)
cv2.imshow('i', img_dilate)
cv2.waitKey(0)
What stopped me from go ahead is this: the image at some point became really a mess.
This is the original on which I am working:
And this is the output of image_dilate
As you can see, the teeth at the bottom is not displayed properly, maybe because of the shaddow in the original image. How can I get rid of this ?
Because your source image is cleaner than the link your post, so you can do approx on the max-area-contour, then get half number of points, the result is 84.
Sample code:
#!/usr/bin/python3
# 2018.01.22 11:53:24 CST
import cv2
import myutils
## Read
img = cv2.imread("img13_2.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
## threshold and find contours
ret, threshed = cv2.threshold(gray, 50, 255, cv2.THRESH_BINARY_INV)
cnts= cv2.findContours(threshed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2]
## Find the max-area-contour
cnt = max(contours, key=cv2.contourArea)
## Approx the contour
arclen = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.002*arclen, True)
## Draw and output the result
for pt in approx:
cv2.circle(img, (pt[0][0],pt[0][1]), 3, (0,255,0), -1, cv2.LINE_AA)
msg = "Total: {}".format(len(approx)//2)
cv2.putText(img, msg, (20,40),cv2.FONT_HERSHEY_PLAIN, 2, (0,0,255), 2, cv2.LINE_AA)
## Display
cv2.imshow("res", img);cv2.waitKey()
Result:
Solved it..
This is the code. The count is wrong by one because one teeth, on the right is lower than the others and because it found two points by itself. Don't know why this happens.
Also, it has been made with another image. It's not the source I posted above as long as it is in low definition.
import numpy as np
import cv2
img = cv2.imread('C:\\Users\\Link\\Desktop\\gear.png')
img2 = cv2.imread('C:\\Users\\Link\\Desktop\\gear.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
kernel = np.ones((3, 3), np.uint8)
img_dilate = cv2.dilate(thresh, kernel, iterations=1)
im2, contours, hierarchy = cv2.findContours(img_dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cv2.drawContours(img, contours, -1, (0, 255, 0), -1)
edges = cv2.Canny(cnts, 350, 350)
cnt = contours[0]
hull = cv2.convexHull(cnt, returnPoints=False)
defects = cv2.convexityDefects(cnt, hull)
for i in range(defects.shape[0]):
s, e, f, d = defects[i, 0]
start = tuple(cnt[s][0])
end = tuple(cnt[e][0])
far = tuple(cnt[f][0])
cv2.line(edges, start, end, [0, 255, 255], 1)
circles = cv2.circle(img2, end, 5, [0, 255, 0], -1)
# print(len(defects)) - number of points
cv2.imshow('thresh', thresh)
cv2.waitKey(0)
cv2.imshow('dilate', img_dilate)
cv2.waitKey(0)
cv2.imshow('edges', edges)
cv2.waitKey(0)
cv2.imshow('cnts', cnts)
cv2.waitKey(0)
cv2.imshow('points', circles)
cv2.waitKey(0)

Categories

Resources