Python, Four-bar linkage angle-time plot - python

I'm trying to plot the angle vs. time plot for the output angle of a four-bar linkage (angle fi4 in the image below). This angle is calculated using the solution from the https://scholar.cu.edu.eg/?q=anis/files/week04-mdp206-position_analysis-draft.pdf, page 23.
I'm now trying to plot the fi_4(t) plot and am getting some strange results. The diagram displays the input angle fi2 as blue and output angle fi4 as red. Why is the fi2 fluctuating over time? Shouldn't the fi4 have some sort of sine curve?
Am I missing something here?
Four-bar linkage:
The code:
from __future__ import division
import math
import numpy as np
import matplotlib.pyplot as plt
# Input
#lengths of links (tube testing machine actual lengths)
a = 45.5 #mm
b = 250 #mm
c = 140 #mm
d = 244.244 #mm
# Solution for fi2 being a time function, f(time) = angle
f = 16.7/60 #/s
omega = 2 * np.pi * f #rad/s
t = np.linspace(0, 50, 100)
y = a * np.sin(omega * t)
x = a * np.cos(omega * t)
fi2 = np.arctan(y/x)
# Solution of the vector loop equation
#https://scholar.cu.edu.eg/?q=anis/files/week04-mdp206-position_analysis-draft.pdf
K1 = d/a
K2 = d/c
K3 = (a**2 - b**2 + c**2 + d**2)/(2*a*c)
A = np.cos(fi2) - K1 - K2*np.cos(fi2) + K3
B = -2*np.sin(fi2)
C = K1 - (K2+1)*np.cos(fi2) + K3
fi4_1 = 2*np.arctan((-B+np.sqrt(B**2 - 4*A*C))/(2*A))
fi4_2 = 2*np.arctan((-B-np.sqrt(B**2 - 4*A*C))/(2*A))
# Plot the fi2 time diagram and fi4 time diagram
plt.plot(t, np.degrees(fi2), color = 'blue')
plt.plot(t, np.degrees(fi4_2), color = 'red')
plt.show()
Diagram:

The linespace(0, 50, 100) is too fast. Replacing it with:
t = np.linspace(0, 5, 100)
Second, all the calculations involving the bare np.arctan() are incorrect. You should use np.arctan2(y, x), which determines the correct quadrant (unlike anything based on y/x where the respective signs of x and y are lost). So:
fi2 = np.arctan2(y, x) # not: np.arctan(y/x)
...
fi4_1 = 2 * np.arctan2(-B + np.sqrt(B**2 - 4*A*C), 2*A)
fi4_2 = 2 * np.arctan2(-B - np.sqrt(B**2 - 4*A*C), 2*A)
Putting some labels on your plots and showing both solutions for θ_4:
plt.plot(t, np.degrees(fi2) % 360, color = 'k', label=r'$θ_2$')
plt.plot(t, np.degrees(fi4_1) % 360, color = 'b', label=r'$θ_{4_1}$')
plt.plot(t, np.degrees(fi4_2) % 360, color = 'r', label=r'$θ_{4_2}$')
plt.xlabel('t [s]')
plt.ylabel('degrees')
plt.legend()
plt.show()
With these mods, we get:

BTW, do you want to see an amazingly lazy way of solving problems like these? Much more inefficient than your code, but much easier to derive (e.g. for other structures) without trying to express the closed form of your solution:
from scipy.optimize import fsolve
def polar(r, theta):
return r * np.array((np.cos(theta), np.sin(theta)))
def f(th34, th2):
th3, th4 = th34 # solve simultaneously for theta_3 and theta_4
pb_23 = polar(a, th2) + polar(b, th3) # point B based on links a, b
pb_14 = polar(d, 0) + polar(c, th4) # point B based on links d, c
return pb_23 - pb_14 # error: difference of the two
def solve(th2):
th4_1 = np.array([fsolve(f, [0, -1.5], args=(th2_k,))[1] for th2_k in th2])
th4_2 = np.array([fsolve(f, [0, 1.5], args=(th2_k,))[1] for th2_k in th2])
return th4_1, th4_2
Application:
t = np.linspace(0, 5, 100)
th2 = omega * t
th4_1, th4_2 = solve(th2)
twopi = 2 * np.pi
np.allclose(th4_1 % twopi, fi4_1 % twopi)
# True
np.allclose(th4_2 % twopi, fi4_2 % twopi)
# True
Depending on the structure of your mechanism (e.g. 5 links), you may have more than two solutions, and of course more angles, so you'd have to adapt the code above. But you get the idea.
Be warned: fsolve iterates to find a suitable (close enough) solution, so as I said, it is much slower than your closed form.
Update (some clarification/explanation):
The function f computes the position of the point B in two different ways (via R2-R3 and via R1-R4) and returns the difference (as a vector). We solve for the difference to be zero.
That function takes two arguments: one 2-dimensional variable (th34, which is an array [th3, th4]) and one parameter th2; the parameter is constant during one run of fsolve.
The values [0, -1.5] and [0, 1.5] are initialization values (guesses) for th34 (th3 and th4). We call fsolve twice to get the two possible solutions.
All angles refer to your figure. I use th for θ (theta, not phi), but I kept along the original fi4_1 and fi4_2 for comparison.
Modulo 2*pi, th4_1 should be equal to fi4_1 etc., which is tested by np.allclose to account for numerical rounding errors.

Related

Interpolating non-uniformly distributed points on a 3D sphere

I have several points on the unit sphere that are distributed according to the algorithm described in https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf (and implemented in the code below). On each of these points, I have a value that in my particular case represents 1 minus a small error. The errors are in [0, 0.1] if this is important, so my values are in [0.9, 1].
Sadly, computing the errors is a costly process and I cannot do this for as many points as I want. Still, I want my plots to look like I am plotting something "continuous".
So I want to fit an interpolation function to my data, to be able to sample as many points as I want.
After a little bit of research I found scipy.interpolate.SmoothSphereBivariateSpline which seems to do exactly what I want. But I cannot make it work properly.
Question: what can I use to interpolate (spline, linear interpolation, anything would be fine for the moment) my data on the unit sphere? An answer can be either "you misused scipy.interpolation, here is the correct way to do this" or "this other function is better suited to your problem".
Sample code that should be executable with numpy and scipy installed:
import typing as ty
import numpy
import scipy.interpolate
def get_equidistant_points(N: int) -> ty.List[numpy.ndarray]:
"""Generate approximately n points evenly distributed accros the 3-d sphere.
This function tries to find approximately n points (might be a little less
or more) that are evenly distributed accros the 3-dimensional unit sphere.
The algorithm used is described in
https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf.
"""
# Unit sphere
r = 1
points: ty.List[numpy.ndarray] = list()
a = 4 * numpy.pi * r ** 2 / N
d = numpy.sqrt(a)
m_v = int(numpy.round(numpy.pi / d))
d_v = numpy.pi / m_v
d_phi = a / d_v
for m in range(m_v):
v = numpy.pi * (m + 0.5) / m_v
m_phi = int(numpy.round(2 * numpy.pi * numpy.sin(v) / d_phi))
for n in range(m_phi):
phi = 2 * numpy.pi * n / m_phi
points.append(
numpy.array(
[
numpy.sin(v) * numpy.cos(phi),
numpy.sin(v) * numpy.sin(phi),
numpy.cos(v),
]
)
)
return points
def cartesian2spherical(x: float, y: float, z: float) -> numpy.ndarray:
r = numpy.linalg.norm([x, y, z])
theta = numpy.arccos(z / r)
phi = numpy.arctan2(y, x)
return numpy.array([r, theta, phi])
n = 100
points = get_equidistant_points(n)
# Random here, but costly in real life.
errors = numpy.random.rand(len(points)) / 10
# Change everything to spherical to use the interpolator from scipy.
ideal_spherical_points = numpy.array([cartesian2spherical(*point) for point in points])
r_interp = 1 - errors
theta_interp = ideal_spherical_points[:, 1]
phi_interp = ideal_spherical_points[:, 2]
# Change phi coordinate from [-pi, pi] to [0, 2pi] to please scipy.
phi_interp[phi_interp < 0] += 2 * numpy.pi
# Create the interpolator.
interpolator = scipy.interpolate.SmoothSphereBivariateSpline(
theta_interp, phi_interp, r_interp
)
# Creating the finer theta and phi values for the final plot
theta = numpy.linspace(0, numpy.pi, 100, endpoint=True)
phi = numpy.linspace(0, numpy.pi * 2, 100, endpoint=True)
# Creating the coordinate grid for the unit sphere.
X = numpy.outer(numpy.sin(theta), numpy.cos(phi))
Y = numpy.outer(numpy.sin(theta), numpy.sin(phi))
Z = numpy.outer(numpy.cos(theta), numpy.ones(100))
thetas, phis = numpy.meshgrid(theta, phi)
heatmap = interpolator(thetas, phis)
Issue with the code above:
With the code as-is, I have a
ValueError: The required storage space exceeds the available storage space: nxest or nyest too small, or s too small. The weighted least-squares spline corresponds to the current set of knots.
that is raised when initialising the interpolator instance.
The issue above seems to say that I should change the value of s that is one on the parameters of scipy.interpolate.SmoothSphereBivariateSpline. I tested different values of s ranging from 0.0001 to 100000, the code above always raise, either the exception described above or:
ValueError: Error code returned by bispev: 10
Edit: I am including my findings here. They can't really be considered as a solution, that is why I am editing and not posting as an answer.
With more research I found this question Using Radial Basis Functions to Interpolate a Function on a Sphere. The author has exactly the same problem as me and use a different interpolator: scipy.interpolate.Rbf. I changed the above code by replacing the interpolator and plotting:
# Create the interpolator.
interpolator = scipy.interpolate.Rbf(theta_interp, phi_interp, r_interp)
# Creating the finer theta and phi values for the final plot
plot_points = 100
theta = numpy.linspace(0, numpy.pi, plot_points, endpoint=True)
phi = numpy.linspace(0, numpy.pi * 2, plot_points, endpoint=True)
# Creating the coordinate grid for the unit sphere.
X = numpy.outer(numpy.sin(theta), numpy.cos(phi))
Y = numpy.outer(numpy.sin(theta), numpy.sin(phi))
Z = numpy.outer(numpy.cos(theta), numpy.ones(plot_points))
thetas, phis = numpy.meshgrid(theta, phi)
heatmap = interpolator(thetas, phis)
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import cm
colormap = cm.inferno
normaliser = mpl.colors.Normalize(vmin=numpy.min(heatmap), vmax=1)
scalar_mappable = cm.ScalarMappable(cmap=colormap, norm=normaliser)
scalar_mappable.set_array([])
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.plot_surface(
X,
Y,
Z,
facecolors=colormap(normaliser(heatmap)),
alpha=0.7,
cmap=colormap,
)
plt.colorbar(scalar_mappable)
plt.show()
This code runs smoothly and gives the following result:
The interpolation seems OK except on one line that is discontinuous, just like in the question that led me to this class. One of the answer give the idea of using a different distance, more adapted the the spherical coordinates: the Haversine distance.
def haversine(x1, x2):
theta1, phi1 = x1
theta2, phi2 = x2
return 2 * numpy.arcsin(
numpy.sqrt(
numpy.sin((theta2 - theta1) / 2) ** 2
+ numpy.cos(theta1) * numpy.cos(theta2) * numpy.sin((phi2 - phi1) / 2) ** 2
)
)
# Create the interpolator.
interpolator = scipy.interpolate.Rbf(theta_interp, phi_interp, r_interp, norm=haversine)
which, when executed, gives a warning:
LinAlgWarning: Ill-conditioned matrix (rcond=1.33262e-19): result may not be accurate.
self.nodes = linalg.solve(self.A, self.di)
and a result that is not at all the one expected: the interpolated function have values that may go up to -1 which is clearly wrong.
You can use Cartesian coordinate instead of Spherical coordinate.
The default norm parameter ('euclidean') used by Rbf is sufficient
# interpolation
x, y, z = numpy.array(points).T
interpolator = scipy.interpolate.Rbf(x, y, z, r_interp)
# predict
heatmap = interpolator(X, Y, Z)
Here the result:
ax.plot_surface(
X, Y, Z,
rstride=1, cstride=1,
# or rcount=50, ccount=50,
facecolors=colormap(normaliser(heatmap)),
cmap=colormap,
alpha=0.7, shade=False
)
ax.set_xlabel('x axis')
ax.set_ylabel('y axis')
ax.set_zlabel('z axis')
You can also use a cosine distance if you want (norm parameter):
def cosine(XA, XB):
if XA.ndim == 1:
XA = numpy.expand_dims(XA, axis=0)
if XB.ndim == 1:
XB = numpy.expand_dims(XB, axis=0)
return scipy.spatial.distance.cosine(XA, XB)
In order to better see the differences,
I stacked the two images, substracted them and inverted the layer.

Multivariate curve-fitting in python for estimating the parameter and order of ellipse-like shapes

I'm trying to find the best parameters (a, b, and c) of the following function (general formula of circle, ellipse, or rhombus):
(|x|/a)^c + (|y|/b)^c = 1
of two arrays of independent data (x and y) in python. My main objective is to estimate the best value of (a, b, and c) based on my x and y variable. I am using curve_fit function from scipy, so here is my code with a demo x, and y.
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
alpha = 5
beta = 3
N = 500
DIM = 2
np.random.seed(2)
theta = np.random.uniform(0, 2*np.pi, (N,1))
eps_noise = 0.2 * np.random.normal(size=[N,1])
circle = np.hstack([np.cos(theta), np.sin(theta)])
B = np.random.randint(-3, 3, (DIM, DIM))
noisy_ellipse = circle.dot(B) + eps_noise
X = noisy_ellipse[:,0:1]
Y = noisy_ellipse[:,1:]
def func(xdata, a, b,c):
x, y = xdata
return (np.abs(x)/a)**c + (np.abs(y)/b)**c
xdata = np.transpose(np.hstack((X, Y)))
ydata = np.ones((xdata.shape[1],))
pp, pcov = curve_fit(func, xdata, ydata, maxfev = 1000000, bounds=((0, 0, 1), (50, 50, 2)))
plt.scatter(X, Y, label='Data Points')
x_coord = np.linspace(-5,5,300)
y_coord = np.linspace(-5,5,300)
X_coord, Y_coord = np.meshgrid(x_coord, y_coord)
Z_coord = func((X_coord,Y_coord),pp[0],pp[1],pp[2])
plt.contour(X_coord, Y_coord, Z_coord, levels=[1], colors=('g'), linewidths=2)
plt.legend()
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
By using this code, the parameters are [4.69949891, 3.65493859, 1.0] for a, b, and c.
The problem is that I usually get the value of c the smallest in its bound, while in this demo data it (i.e., c parameter) supposes to be very close to 2 as the data represent an ellipse.
Any help and suggestions for solving this issue are appreciated.
A curve which equation is (|x/a|)^c + (|y/b|)^c = 1 is called "Superellipse" :
http://mathworld.wolfram.com/Superellipse.html
For large c the superellipse tends to a rectangular shape.
For c=2 the curve is an ellipse, or a circle in the particular case a=b.
For c close to 1 the superellipse tends to a rhombus shape.
For c larger than 0 and lower than 1 the superellipse looks like a (squashed) astroid with sharp vertices. This kind of shape will not be considered below.
Before looking to the right question of the OP, it is of interest to study the regression behaviour for fitting a superellipse to scattered data. A short experimental and simplified approach tends to make understand the mathematical difficulty, prior the programming difficulties.
When the scatter increases the computed value of c (corresponding to the minimum of MSE ) decreases. Also the minimum becomes more and more difficult to localize. This is certainly a difficulty for the softwares.
For even larger scatter the value of c=1 leads to a rhombus shape.
So, it is not surprizing that in the example highly scattered published by the OP the software gave a rhombus as fitted curve.
If this was not the expected result, one have to chose another goal than the minimum MSE. For example if the goal is to obtain an elliptic shape, one have to set c=2. The result on the next figure shows that the MSE is worse than with the preceeding rhombus shape. But the elliptic fitting is well achieved.
NOTE : In case of large scatter the result depends a lot from the choice of criteria of fitting (MSE, MAE, ..., and with respect to what variable). This can be the cause of very different results from a software to another if the criterias of fitting (sometime not explicit) are different.
Among the criterias of fitting, if it is specified that the rhombus shape is excluded, one have to define more representative criteria and/or model and implement them in the software.
IMPORTANCE OF CRITERIA OF FITTING :
In order to show how the choice of criteria of fitting is important especially in case of data highly scattered, we will make the study again with a different criteria.
Instead of the preceeding criteria which was the MSE of the errors on the superellipse equation itself, that was :
we chose a different criteria, for example the MSE of the errors on the radial coordinate in polar system :
The notations are defined on the next picture :
Some results from the empirical study for increasing scatter :
We observe that the numerical calculus with the second criteria is more robust that with the first. Cases with higher scatter can be treated With the second criteria of fitting .
The drawback it that this second criteria is probably not considered in the available softwares. So one have to implement the above formulas in the existing software if possible. Or to write a software especially adapted.
Nevertheless this discussion about criteria of fitting is somehow out of subject because the criteria of fitting should not result from mathematical considerations only. If the problem comes from a practical need in physic or technology the criteria of fitting might be derived from the reality without choice.
I have modified your code (though you took it from https://stackoverflow.com/a/47881806/10640534) quite a lot, but I think I have what you expect. I am using a different equation, which I found here. I have also used the new Numpy random generators, but I believe that is only aesthetic for this problem. I am drawing the ellipse using patches from matplotlib, which indeed is aesthetic, but definitely a way better solution to represent your conic. Importantly, I am using the dogbox method for curve_fit because other methods do not converge; occasionally the ellipse is not matched and decreasing the added noise (e.g., rng.normal(0, 1, (500, 2)) / 1e2 instead of rng.normal(0, 1, (500, 2)) / 1e1 helps). Anyway, snippet and figure below.
import numpy as np
from numpy.random import default_rng
from matplotlib.patches import Ellipse
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def func(data, a, b, h, k, A):
x, y = data
return ((((x - h) * np.cos(A) + (y - k) * np.sin(A)) / a) ** 2
+ (((x - h) * np.sin(A) - (y - k) * np.cos(A)) / b) ** 2)
rng = default_rng(3)
numPoints = 500
center = rng.random(2) * 10 - 5
theta = rng.uniform(0, 2 * np.pi, (numPoints, 1))
circle = np.hstack([np.cos(theta), np.sin(theta)])
ellipse = (circle.dot(rng.random((2, 2)) * 2 * np.pi - np.pi)
+ (center[0], center[1]) + rng.normal(0, 1, (500, 2)) / 1e1)
pp, pcov = curve_fit(func, (ellipse[:, 0], ellipse[:, 1]), np.ones(numPoints),
p0=(1, 1, center[0], center[1], np.pi / 2),
method='dogbox')
plt.scatter(ellipse[:, 0], ellipse[:, 1], label='Data Points')
plt.gca().add_patch(Ellipse(xy=(pp[2], pp[3]), width=2 * pp[0],
height=2 * pp[1], angle=pp[4] * 180 / np.pi,
fill=False))
plt.gca().set_aspect('equal')
plt.tight_layout()
plt.show()
To incorporate the value of the exponent, I have used your equation and generated an ellipse according to this answer. This results in:
import numpy as np
from numpy.random import default_rng
from matplotlib.patches import Ellipse
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit, root
from scipy.special import ellipeinc
def angles_in_ellipse(num, a, b):
assert(num > 0)
assert(a < b)
angles = 2 * np.pi * np.arange(num) / num
if a != b:
e = (1.0 - a ** 2.0 / b ** 2.0) ** 0.5
tot_size = ellipeinc(2.0 * np.pi, e)
arc_size = tot_size / num
arcs = np.arange(num) * arc_size
res = root(lambda x: (ellipeinc(x, e) - arcs), angles)
angles = res.x
return angles
def func(data, a, b, c):
x, y = data
return (np.absolute(x) / a) ** c + (np.absolute(y) / b) ** c
a = 10
b = 20
n = 100
phi = angles_in_ellipse(n, a, b)
e = (1.0 - a ** 2.0 / b ** 2.0) ** 0.5
arcs = ellipeinc(phi, e)
noise = default_rng(0).normal(0, 1, n) / 2
pp, pcov = curve_fit(func, (b * np.sin(phi) + noise,
a * np.cos(phi) + noise),
np.ones(n), method='lm')
plt.scatter(b * np.sin(phi) + noise, a * np.cos(phi) + noise,
label='Data Points')
plt.gca().add_patch(Ellipse(xy=(0, 0), width=2 * pp[0], height=2 * pp[1],
angle=0, fill=False))
plt.gca().set_aspect('equal')
plt.tight_layout()
plt.show()
As you decrease noise values, pp will tend to (b, a, 2).

Poincare Section of a system of second order odes

It is the first time I am trying to write a Poincare section code at Python.
I borrowed the piece of code from here:
https://github.com/williamgilpin/rk4/blob/master/rk4_demo.py
and I have tried to run it for my system of second order coupled odes. The problem is that I do not see what I was expecting to. Actually, I need the Poincare section when x=0 and px>0.
I believe that my implementation is not the best out there. I would like to:
Improve the way that the initial conditions are chosen.
Apply the correct conditions (x=0 and px>0) in order to acquire the correct Poincare section.
Create one plot with all the collected poincare section data, not four separate ones.
I would appreciate any help.
This is the code:
from matplotlib.pyplot import *
from scipy import *
from numpy import *
# a simple Runge-Kutta integrator for multiple dependent variables and one independent variable
def rungekutta4(yprime, time, y0):
# yprime is a list of functions, y0 is a list of initial values of y
# time is a list of t-values at which solutions are computed
#
# Dependency: numpy
N = len(time)
y = array([thing*ones(N) for thing in y0]).T
for ii in xrange(N-1):
dt = time[ii+1] - time[ii]
k1 = dt*yprime(y[ii], time[ii])
k2 = dt*yprime(y[ii] + 0.5*k1, time[ii] + 0.5*dt)
k3 = dt*yprime(y[ii] + 0.5*k2, time[ii] + 0.5*dt)
k4 = dt*yprime(y[ii] + k3, time[ii+1])
y[ii+1] = y[ii] + (k1 + 2.0*(k2 + k3) + k4)/6.0
return y
# Miscellaneous functions
n= 1.0/3.0
kappa1 = 0.1
kappa2 = 0.1
kappa3 = 0.1
def total_energy(valpair):
(x, y, px, py) = tuple(valpair)
return .5*(px**2 + py**2) + (1.0/(1.0*(n+1)))*(kappa1*np.absolute(x)**(n+1)+kappa2*np.absolute(y-x)**(n+1)+kappa3*np.absolute(y)**(n+1))
def pqdot(valpair, tval):
# input: [x, y, px, py], t
# takes a pair of x and y values and returns \dot{p} according to the Hamiltonian
(x, y, px, py) = tuple(valpair)
return np.array([px, py, -kappa1*np.sign(x)*np.absolute(x)**n+kappa2*np.sign(y-x)*np.absolute(y-x)**n, kappa2*np.sign(y-x)*np.absolute(y-x)**n-kappa3*np.sign(y)*np.absolute(y)**n]).T
def findcrossings(data, data1):
# returns indices in 1D data set where the data crossed zero. Useful for generating Poincare map at 0
prb = list()
for ii in xrange(len(data)-1):
if (((data[ii] > 0) and (data[ii+1] < 0)) or ((data[ii] < 0) and (data[ii+1] > 0))) and data1[ii] > 0:
prb.append(ii)
return array(prb)
t = linspace(0, 1000.0, 100000)
print ("step size is " + str(t[1]-t[0]))
# Representative initial conditions for E=1
E = 1
x0=0
y0=0
init_cons = [[x0, y0, np.sqrt(2*E-(1.0*i/10.0)*(1.0*i/10.0)-2.0/(n+1)*(kappa1*np.absolute(x0)**(n+1)+kappa2*np.absolute(y0-x0)**(n+1)+kappa3*np.absolute(y0)**(n+1))), 1.0*i/10.0] for i in range(-10,11)]
outs = list()
for con in init_cons:
outs.append( rungekutta4(pqdot, t, con) )
# plot the results
fig1 = figure(1)
for ii in xrange(4):
subplot(2, 2, ii+1)
plot(outs[ii][:,1],outs[ii][:,3])
ylabel("py")
xlabel("y")
title("Full trajectory projected onto the plane")
fig1.suptitle('Full trajectories E = 1', fontsize=10)
# Plot Poincare sections at x=0 and px>0
fig2 = figure(2)
for ii in xrange(4):
subplot(2, 2, ii+1)
xcrossings = findcrossings(outs[ii][:,0], outs[ii][:,3])
yints = [.5*(outs[ii][cross, 1] + outs[ii][cross+1, 1]) for cross in xcrossings]
pyints = [.5*(outs[ii][cross, 3] + outs[ii][cross+1, 3]) for cross in xcrossings]
plot(yints, pyints,'.')
ylabel("py")
xlabel("y")
title("Poincare section x = 0")
fig2.suptitle('Poincare Sections E = 1', fontsize=10)
show()
You need to compute the derivatives of the Hamiltonian correctly. The derivative of |y-x|^n for x is
n*(x-y)*|x-y|^(n-2)=n*sign(x-y)*|x-y|^(n-1)
and the derivative for y is almost, but not exactly (as in your code), the same,
n*(y-x)*|x-y|^(n-2)=n*sign(y-x)*|x-y|^(n-1),
note the sign difference. With this correction you can take larger time steps, with correct linear interpolation probably even larger ones, to obtain the images
I changed the integration of the ODE to
t = linspace(0, 1000.0, 2000+1)
...
E_kin = E-total_energy([x0,y0,0,0])
init_cons = [[x0, y0, (2*E_kin-py**2)**0.5, py] for py in np.linspace(-10,10,8)]
outs = [ odeint(pqdot, con, t, atol=1e-9, rtol=1e-8) ) for con in init_cons[:8] ]
Obviously the number and parametrization of initial conditions may change.
The computation and display of the zero-crossings was changed to
def refine_crossing(a,b):
tf = -a[0]/a[2]
while abs(b[0])>1e-6:
b = odeint(pqdot, a, [0,tf], atol=1e-8, rtol=1e-6)[-1];
# Newton step using that b[0]=x(tf) and b[2]=x'(tf)
tf -= b[0]/b[2]
return [ b[1], b[3] ]
# Plot Poincare sections at x=0 and px>0
fig2 = figure(2)
for ii in xrange(8):
#subplot(4, 2, ii+1)
xcrossings = findcrossings(outs[ii][:,0], outs[ii][:,3])
ycrossings = [ refine_crossing(outs[ii][cross], outs[ii][cross+1]) for cross in xcrossings]
yints, pyints = array(ycrossings).T
plot(yints, pyints,'.')
ylabel("py")
xlabel("y")
title("Poincare section x = 0")
and evaluating the result of a longer integration interval

Using FiPy and Mayavi to solve the diffusion equation in 3D

I'm interested in solving,
\frac{\delta \phi}{\delta t} - D \nabla^2 \phi - \alpha \phi - \gamma \phi = 0
The following is working, but I have a few questions:
Is it possible to increase performance with FiPy? I feel like the nx, ny, nz bins are very small here, despite a long computation time. I don't understand why the arrays X, Y, and Z are so large.
Notice in the first frame, we are zoomed in. How can I force the extents to automatically be [0..nx, 0..ny, 0..nz] in all plots?
Data for the first frame is a sphere of points with values 1.0 surrounded by 0.0. Why does there appear to be a gradient? Is Mayavi interpolating? If so, how can I disable this?
Code:
from fipy import *
import mayavi.mlab as mlab
import numpy as np
import time
# Spatial parameters
nx = ny = nz = 30 # bins
dx = dy = dz = 1 # Must this be an integer?
L = nx * dx
# Diffusion and time step
D = 1.
dt = 10.0 * dx**2 / (2. * D)
steps = 4
# Initial value and radius of concentration
phi0 = 1.0
r = 3.0
# Rates
alpha = 1.0 # Source coeficcient
gamma = .01 # Sink coeficcient
mesh = Grid3D(nx=nx, ny=ny, nz=nz, dx=dx, dy=dy, dz=dz)
X, Y, Z = mesh.cellCenters # These are large arrays
phi = CellVariable(mesh=mesh, name=r"$\phi$", value=0.)
src = phi * alpha # Source term (zeroth order reaction)
degr = -gamma * phi # Sink term (degredation)
eq = TransientTerm() == DiffusionTerm(D) + src + degr
# Initial concentration is a sphere located in the center of a bounded cube
phi.setValue(1.0, where=( ((X-nx/2))**2 + (Y-ny/2)**2 + (Z-nz/2)**2 < r**2) )
# Solve
start_time = time.time()
results = [phi.getNumericValue().copy()]
for step in range(steps):
eq.solve(var=phi, dt=dt)
results.append(phi.getNumericValue().copy())
print 'Time elapsed:', time.time() - start_time
# Plot
for i, res in enumerate(results):
fig = mlab.figure()
res = res.reshape(nx, ny, nz)
mlab.contour3d(res, opacity=.3, vmin=0, vmax=1, contours=100, transparent=True, extent=[0, 10, 0, 10, 0, 10])
mlab.colorbar()
mlab.savefig('diffusion3d_%i.png'%(i+1))
mlab.close()
Time elapsed: 68.2 seconds
It's hard to tell from your question, but in the course of diagnosing things, I discovered that the LinearLUSolver scales very poorly as the dimension of the problem increases (see https://github.com/usnistgov/fipy/issues/474).
For this symmetric problem, PySparse should use the PCG solver and Trilinos should use GMRES. If you didn't install either of these, then you'll get the SciPy sparse solvers, which defaults to LU (I don't know why; something for us to look into), and things will be really slow in 3D. Try adding solver=LinearGMRESSolver() to your eq.solve(...) statement.
As far as the size of X, Y, and Z, you've declared a 30*30*30 cube of cells, so each of the cell center coordinate vectors will be 27000 elements long. Did you have a different expectation for cellCenters?
I suggest you subclass our MayaviDaemon class, or at least look at how it sets up the display in Mayavi. In short, we set a data_set_clipper to the desired bounds.
I don't know.

Fit a curve for data made up of two distinct regimes

I'm looking for a way to plot a curve through some experimental data. The data shows a small linear regime with a shallow gradient, followed by a steep linear regime after a threshold value.
My data is here: http://pastebin.com/H4NSbxqr
I could fit the data with two lines relatively easily, but I'd like to fit with a continuous line ideally - which should look like two lines with a smooth curve joining them around the threshold (~5000 in the data, shown above).
I attempted this using scipy.optimize curve_fit and trying a function which included the sum of a straight line and an exponential:
y = a*x + b + c*np.exp((x-d)/e)
although despite numerous attempts, it didn't find a solution.
If anyone has any suggestions please, either on the choice of fitting distribution / method or the curve_fit implementation, they would be greatly appreciated.
If you don't have a particular reason to believe that linear + exponential is the true underlying cause of your data, then I think a fit to two lines makes the most sense. You can do this by making your fitting function the maximum of two lines, for example:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def two_lines(x, a, b, c, d):
one = a*x + b
two = c*x + d
return np.maximum(one, two)
Then,
x, y = np.genfromtxt('tmp.txt', unpack=True, delimiter=',')
pw0 = (.02, 30, .2, -2000) # a guess for slope, intercept, slope, intercept
pw, cov = curve_fit(two_lines, x, y, pw0)
crossover = (pw[3] - pw[1]) / (pw[0] - pw[2])
plt.plot(x, y, 'o', x, two_lines(x, *pw), '-')
If you really want a continuous and differentiable solution, it occurred to me that a hyperbola has a sharp bend to it, but it has to be rotated. It was a bit difficult to implement (maybe there's an easier way), but here's a go:
def hyperbola(x, a, b, c, d, e):
""" hyperbola(x) with parameters
a/b = asymptotic slope
c = curvature at vertex
d = offset to vertex
e = vertical offset
"""
return a*np.sqrt((b*c)**2 + (x-d)**2)/b + e
def rot_hyperbola(x, a, b, c, d, e, th):
pars = a, b, c, 0, 0 # do the shifting after rotation
xd = x - d
hsin = hyperbola(xd, *pars)*np.sin(th)
xcos = xd*np.cos(th)
return e + hyperbola(xcos - hsin, *pars)*np.cos(th) + xcos - hsin
Run it as
h0 = 1.1, 1, 0, 5000, 100, .5
h, hcov = curve_fit(rot_hyperbola, x, y, h0)
plt.plot(x, y, 'o', x, two_lines(x, *pw), '-', x, rot_hyperbola(x, *h), '-')
plt.legend(['data', 'piecewise linear', 'rotated hyperbola'], loc='upper left')
plt.show()
I was also able to get the line + exponential to converge, but it looks terrible. This is because it's not a good descriptor of your data, which is linear and an exponential is very far from linear!
def line_exp(x, a, b, c, d, e):
return a*x + b + c*np.exp((x-d)/e)
e0 = .1, 20., .01, 1000., 2000.
e, ecov = curve_fit(line_exp, x, y, e0)
If you want to keep it simple, there's always a polynomial or spline (piecewise polynomials)
from scipy.interpolate import UnivariateSpline
s = UnivariateSpline(x, y, s=x.size) #larger s-value has fewer "knots"
plt.plot(x, s(x))
I researched this a little, Applied Linear Regression by Sanford, and the Correlation and Regression lecture by Steiger had some good info on it. They all however lack the right model, the piecewise function should be
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import lmfit
dfseg = pd.read_csv('segreg.csv')
def err(w):
th0 = w['th0'].value
th1 = w['th1'].value
th2 = w['th2'].value
gamma = w['gamma'].value
fit = th0 + th1*dfseg.Temp + th2*np.maximum(0,dfseg.Temp-gamma)
return fit-dfseg.C
p = lmfit.Parameters()
p.add_many(('th0', 0.), ('th1', 0.0),('th2', 0.0),('gamma', 40.))
mi = lmfit.minimize(err, p)
lmfit.printfuncs.report_fit(mi.params)
b0 = mi.params['th0']; b1=mi.params['th1'];b2=mi.params['th2']
gamma = int(mi.params['gamma'].value)
import statsmodels.formula.api as smf
reslin = smf.ols('C ~ 1 + Temp + I((Temp-%d)*(Temp>%d))' % (gamma,gamma), data=dfseg).fit()
print reslin.summary()
x0 = np.array(range(0,gamma,1))
x1 = np.array(range(0,80-gamma,1))
y0 = b0 + b1*x0
y1 = (b0 + b1 * float(gamma) + (b1 + b2)* x1)
plt.scatter(dfseg.Temp, dfseg.C)
plt.hold(True)
plt.plot(x0,y0)
plt.plot(x1+gamma,y1)
plt.show()
Result
[[Variables]]
th0: 78.6554456 +/- 3.966238 (5.04%) (init= 0)
th1: -0.15728297 +/- 0.148250 (94.26%) (init= 0)
th2: 0.72471237 +/- 0.179052 (24.71%) (init= 0)
gamma: 38.3110177 +/- 4.845767 (12.65%) (init= 40)
The data
"","Temp","C"
"1",8.5536,86.2143
"2",10.6613,72.3871
"3",12.4516,74.0968
"4",16.9032,68.2258
"5",20.5161,72.3548
"6",21.1613,76.4839
"7",24.3929,83.6429
"8",26.4839,74.1935
"9",26.5645,71.2581
"10",27.9828,78.2069
"11",32.6833,79.0667
"12",33.0806,71.0968
"13",33.7097,76.6452
"14",34.2903,74.4516
"15",36,56.9677
"16",37.4167,79.8333
"17",43.9516,79.7097
"18",45.2667,76.9667
"19",47,76
"20",47.1129,78.0323
"21",47.3833,79.8333
"22",48.0968,73.9032
"23",49.05,78.1667
"24",57.5,81.7097
"25",59.2,80.3
"26",61.3226,75
"27",61.9194,87.0323
"28",62.3833,89.8
"29",64.3667,96.4
"30",65.371,88.9677
"31",68.35,91.3333
"32",70.7581,91.8387
"33",71.129,90.9355
"34",72.2419,93.4516
"35",72.85,97.8333
"36",73.9194,92.4839
"37",74.4167,96.1333
"38",76.3871,89.8387
"39",78.0484,89.4516
Graph
I used #user423805 's answer (found via google groups thread: https://groups.google.com/forum/#!topic/lmfit-py/7I2zv2WwFLU ) but noticed it had some limitations when trying to use three or more segments.
Instead of applying np.maximum in the minimizer error function or adding (b1 + b2) in #user423805 's answer, I used the same linear spline calculation for both the minimizer and end-usage:
# least_splines_calc works like this for an example with three segments
# (four threshold params, three gamma params):
#
# for 0 < x < gamma0 : y = th0 + (th1 * x)
# for gamma0 < x < gamma1 : y = th0 + (th1 * x) + (th2 * (x - gamma0))
# for gamma1 < x : y = th0 + (th1 * x) + (th2 * (x - gamma0)) + (th3 * (x - gamma1))
#
def least_splines_calc(x, thresholds, gammas):
if(len(thresholds) < 2):
print("Error: expected at least two thresholds")
return None
applicable_gammas = filter(lambda gamma: x > gamma , gammas)
#base result
y = thresholds[0] + (thresholds[1] * x)
#additional factors calculated depending on x value
for i in range(0, len(applicable_gammas)):
y = y + ( thresholds[i + 2] * ( x - applicable_gammas[i] ) )
return y
def least_splines_calc_array(x_array, thresholds, gammas):
y_array = map(lambda x: least_splines_calc(x, thresholds, gammas), x_array)
return y_array
def err(params, x, data):
th0 = params['th0'].value
th1 = params['th1'].value
th2 = params['th2'].value
th3 = params['th3'].value
gamma1 = params['gamma1'].value
gamma2 = params['gamma2'].value
thresholds = np.array([th0, th1, th2, th3])
gammas = np.array([gamma1, gamma2])
fit = least_splines_calc_array(x, thresholds, gammas)
return np.array(fit)-np.array(data)
p = lmfit.Parameters()
p.add_many(('th0', 0.), ('th1', 0.0),('th2', 0.0),('th3', 0.0),('gamma1', 9.),('gamma2', 9.3)) #NOTE: the 9. / 9.3 were guesses specific to my data, you will need to change these
mi = lmfit.minimize(err_alt, p, args=(np.array(dfseg.Temp), np.array(dfseg.C)))
After minimization, convert the params found by the minimizer into an array of thresholds and gammas to re-use linear_splines_calc to plot the linear splines regression.
Reference: While there's various places that explain least splines (I think #user423805 used http://www.statpower.net/Content/313/Lecture%20Notes/Splines.pdf , which has the (b1 + b2) addition I disagree with in its sample code despite similar equations) , the one that made the most sense to me was this one (by Rob Schapire / Zia Khan at Princeton) : https://www.cs.princeton.edu/courses/archive/spring07/cos424/scribe_notes/0403.pdf - section 2.2 goes into linear splines. Excerpt below:
If you're looking to join what appears to be two straight lines with a hyperbola having a variable radius at/near the intersection of the two lines (which are its asymptotes), I urge you to look hard at Using an Hyperbola as a Transition Model to Fit Two-Regime Straight-Line Data, by Donald G. Watts and David W. Bacon, Technometrics, Vol. 16, No. 3 (Aug., 1974), pp. 369-373.
The formula is drop dead simple, nicely adjustable, and works like a charm. From their paper (in case you can't access it):
As a more useful alternative form we consider an hyperbola for which:
(i) the dependent variable y is a single valued function of the independent variable x,
(ii) the left asymptote has slope theta_1,
(iii) the right asymptote has slope theta_2,
(iv) the asymptotes intersect at the point (x_o, beta_o),
(v) the radius of curvature at x = x_o is proportional to a quantity delta. Such an hyperbola can be written y = beta_o + beta_1*(x - x_o) + beta_2* SQRT[(x - x_o)^2 + delta^2/4], where beta_1 = (theta_1 + theta_2)/2 and beta_2 = (theta_2 - theta_1)/2.
delta is the adjustable parameter that allows you to either closely follow the lines right to the intersection point or smoothly merge from one line to the other.
Just solve for the intersection point (x_o, beta_o), and plug into the formula above.
BTW, in general, if line 1 is y_1 = b_1 + m_1 *x and line 2 is y_2 = b_2 + m_2 * x, then they intersect at x* = (b_2 - b_1) / (m_1 - m_2) and y* = b_1 + m_1 * x*. So, to connect with the formalism above, x_o = x*, beta_o = y* and the two m_*'s are the two thetas.
There is a straightforward method (not iterative, no initial guess) pp.12-13 in https://fr.scribd.com/document/380941024/Regression-par-morceaux-Piecewise-Regression-pdf
The data comes from the scanning of the figure published by IanRoberts in his question. Scanning for the coordinates of the pixels in not accurate. So, don't be surprised by additional deviation.
Note that the abscisses and ordinates scales have been devised by 1000.
The equations of the two segments are
The approximate values of the five parameters are written on the above figure.

Categories

Resources