I have several lists as items in my dictionary. I want to create a dictionary with the same keys, but only with items that correspond to the unique values of the list in the first key. What's the best way to do this?
Original:
d = {'s': ['a','a','a','b','b','b','b'],
'd': ['c1','d2','c3','d4','c5','d6','c7'],
'g': ['e1','f2','e3','f4','e5','f6','e7']}
Output:
e = {'s': ['a','a','a'],
'd': ['c1','d2','c3'],
'g': ['e1','f2','e3']}
f = {'s': ['b','b','b','b'],
'd': ['d4','c5','d6','c7'],
'g': ['f4','e5','f6','e7']}
I don't think there is an easy way to do this. I created a (not so) little function for you:
def func(entry):
PARSING_KEY = "s"
# check if entry dict is valid (optional)
assert type(entry)==dict
for key in entry.keys():
assert type(entry[key])==list
first_list = entry[PARSING_KEY]
first_list_len = len(first_list)
for key in entry.keys():
assert len(entry[key]) == first_list_len
# parsing
output_list_index = []
already_check = set()
for index1, item1 in enumerate(entry[PARSING_KEY]):
if not item1 in already_check:
output_list_index.append([])
for index2, item2 in enumerate(entry[PARSING_KEY][index1:]):
if item2==item1:
output_list_index[-1].append(index2)
already_check.add(item1)
# creating lists
output_list = []
for indexes in output_list_index:
new_dict = {}
for key, value in entry.items():
new_dict[key] = [value[i] for i in indexes]
output_list.append(new_dict)
return output_list
Note that because of the structure of dict, there isn't a "first key" so you have to hardcode the key you want to use to parse (whit the "PARSING_KEY" constant at the top of the function)
original_dict = {
'a': [1, 3, 5, 8, 4, 2, 1, 2, 7],
'b': [4, 4, 4, 4, 4, 3],
'c': [822, 1, 'hello', 'world']
}
distinct_dict = {k: list(set(v)) for k, v in original_dict.items()}
distinct_dict
yields
{'a': [1, 2, 3, 4, 5, 7, 8], 'b': [3, 4], 'c': [1, 'hello', 'world', 822]}
Related
There is this list of string that I need to use to create a nested dictionary with some values ['C/A', 'C/B/A', 'C/B/B']
The output will be in the format {'C': {'A': [1, 2, 3], 'B': {'A': [1, 2, 3], 'B': [1, 2, 3]}}}
I've tried to use the below code to create the nested dictionary and update the value, but instead I get {'C': {'A': [1, 2, 3], 'C': {'B': {'A': [1, 2, 3], 'C': {'B': {'B': [1, 2, 3]}}}}}} as the output which is not the correct format. I'm still trying to figure out a way. any ideas?
s = ['C/A', 'C/B/A', 'C/B/B']
new = current = dict()
for each in s:
lst = each.split('/')
for i in range(len(lst)):
current[lst[i]] = dict()
if i != len(lst)-1:
current = current[lst[i]]
else:
current[lst[i]] = [1,2,3]
print(new)
You can create a custom Tree class:
class Tree(dict):
'''
Create arbitrarily nested dicts.
>>> t = Tree()
>>> t[1][2][3] = 4
>>> t
{1: {2: {3: 4}}}
>>> t.set_nested_item('a', 'b', 'c', value=5)
>>> t
{1: {2: {3: 4}}, 'a': {'b': {'c': 5}}}
'''
def __missing__(self, key):
self[key] = type(self)()
return self[key]
def set_nested_item(self, *keys, value):
head, *rest = keys
if not rest:
self[head] = value
else:
self[head].set_nested_item(*rest, value=value)
>>> s = ['C/A', 'C/B/A', 'C/B/B']
>>> output = Tree()
>>> default = [1, 2, 3]
>>> for item in s:
... output.set_nested_item(*item.split('/'), value=list(default))
>>> output
{'C': {'A': [1, 2, 3], 'B': {'A': [1, 2, 3], 'B': [1, 2, 3]}}}
You do not need numpy for this problem, but you may want to use recursion. Here is a recursive function add that adds a list of string keys lst and eventually a list of numbers to the dictionary d:
def add(lst, d):
key = lst[0]
if len(lst) == 1: # if the list has only 1 element
d[key] = [1, 2, 3] # That element is the last key
return
if key not in d: # Haven't seen that key before
d[key] = dict()
add(lst[1:], d[key]) # The recursive part
To use the function, create a new dictionary and apply the function to each splitter string:
d = dict()
for each in s:
add(each.split("/"), d)
# d
# {'C': {'A': [1, 2, 3], 'B': {'A': [1, 2, 3], 'B': [1, 2, 3]}}}
I have a list = [1,2,3,4,5] which I want to populate into a dictionary but my dict is currently
my_dict={a:none,b:[none,none,none],c:none}
Required output: {a: 1, b: [2,3,4], c: 5}
my_list = [1,2,3,4,5]
my_dict = {'a': None,'b': [None, None, None],'c': None}
for key in my_dict.keys():
if my_dict[key] == None:
my_dict[key] = my_list[0]
my_list.pop(0)
else:
if type(my_dict[key]) is list:
for item in range(len(my_dict[key])):
if my_dict[key][item] == None:
my_dict[key][item] = my_list[0]
my_list.pop(0)
print(my_dict)
Output:
{'a': 1, 'b': [2, 3, 4], 'c': 5}
This code segment assigns the first element to a, the last element to c, and all intermediate elements are assigned to b.
lis = [1,2,3,4,5]
output = {'a': lis[0], 'b': lis[1:len(lis)-1], 'c': lis[len(lis)-1]}
print(output)
Output:
{'a': 1, 'b': [2, 3, 4], 'c': 5}
If I have a nested dictionary in Python, is there any way to restructure it based on keys?
I'm bad at explaining, so I'll give a little example.
d = {'A':{'a':[1,2,3],'b':[3,4,5],'c':[6,7,8]},
'B':{'a':[7,8,9],'b':[4,3,2],'d':[0,0,0]}}
Re-organize like this
newd = {'a':{'A':[1,2,3],'B':[7,8,9]},
'b':{'A':[3,4,5],'B':[4,3,2]},
'c':{'A':[6,7,8]},
'd':{'B':[0,0,0]}}
Given some function with inputs like
def mysteryfunc(olddict,newkeyorder):
????
mysteryfunc(d,[1,0])
Where the [1,0] list passed means to put the dictionaries 2nd level of keys in the first level and the first level in the 2nd level. Obviously the values need to be associated with their unique key values.
Edit:
Looking for an answer that covers the general case, with arbitrary unknown nested dictionary depth.
Input:
d = {'A':{'a':[1,2,3],'b':[3,4,5],'c':[6,7,8]},
'B':{'a':[7,8,9],'b':[4,3,2],'d':[0,0,0]}}
inner_dict={}
for k,v in d.items():
print(k)
for ka,va in v.items():
val_list=[]
if ka not in inner_dict:
val_dict={}
val_dict[k]=va
inner_dict[ka]=val_dict
else:
val_dict=inner_dict[ka]
val_dict[k]=va
inner_dict[ka]=val_dict
Output:
{'a': {'A': [1, 2, 3], 'B': [7, 8, 9]},
'b': {'A': [3, 4, 5], 'B': [4, 3, 2]},
'c': {'A': [6, 7, 8]},
'd': {'B': [0, 0, 0]}}
you can use 2 for loops, one to iterate over each key, value pair and the second for loop to iterate over the nested dict, at each step form the second for loop iteration you can build your desired output:
from collections import defaultdict
new_dict = defaultdict(dict)
for k0, v0 in d.items():
for k1, v1 in v0.items():
new_dict[k1][k0] = v1
print(dict(new_dict))
output:
{'a': {'A': [1, 2, 3], 'B': [7, 8, 9]},
'b': {'A': [3, 4, 5], 'B': [4, 3, 2]},
'c': {'A': [6, 7, 8]},
'd': {'B': [0, 0, 0]}}
You can use recursion with a generator to handle input of arbitrary depth:
def paths(d, c = []):
for a, b in d.items():
yield from ([((c+[a])[::-1], b)] if not isinstance(b, dict) else paths(b, c+[a]))
from collections import defaultdict
def group(d):
_d = defaultdict(list)
for [a, *b], c in d:
_d[a].append([b, c])
return {a:b[-1][-1] if not b[0][0] else group(b) for a, b in _d.items()}
print(group(list(paths(d))))
Output:
{'a': {'A': [1, 2, 3], 'B': [7, 8, 9]}, 'b': {'A': [3, 4, 5], 'B': [4, 3, 2]}, 'c': {'A': [6, 7, 8]}, 'd': {'B': [0, 0, 0]}}
Let's say I have a dictionary containing multiple lists of different sizes, how would I split the dictionary into 4 dictionaries of equal length based on the length of the lists. Is there a simple way of doing this?
dict = {"A":[1,2,3,4,5], "B":[1,2,3], "C":[1,2,3,4,5,6,7,8]}
How would I split this into 4 dictionaries of the same length so that I get the result of:
dict1 = {"A":[1,2,3,4]}
dict2 = {"A":[5], "B":[1,2,3]}
dict3 = {"C":[1,2,3,4]}
dict4 = {"C":[5,6,7,8]}
Edit: if it couldn't be split evenly then one of the dictionaries would end up being slightly longer than the others.
Here is a way to do it, using a generator to yield the successive key-value pairs:
data = {"A":[1,2,3,4,5], "B":[1,2,3], "C":[1,2,3,4,5,6,7,8]}
def key_value_gen(data):
# will yield ('A', 1), ('A', 2), .... ('C', 8)
for key, values in data.items():
for value in values:
yield key, value
out = []
size = 4
for index, (key, value) in enumerate(key_value_gen(data)):
# if the index is a multiple of size, we add a new dict
if index % size == 0:
out.append({})
out[-1].setdefault(key, []).append(value)
print(out)
# [{'A': [1, 2, 3, 4]}, {'A': [5], 'B': [1, 2, 3]}, {'C': [1, 2, 3, 4]}, {'C': [5, 6, 7, 8]}]
Another way with just an iterative approach:
def group_by_count(dic, size):
output, temp, count = [], {}, 0
for k, v in dic.items():
for x in v:
if count == size:
output.append(temp)
temp, count = {}, 0
temp[k] = temp.get(k, []) + [x]
count += 1
if temp:
output.append(temp)
return output
d = {"A":[1,2,3,4,5], "B":[1,2,3], "C":[1,2,3,4,5,6,7,8]}
output = group_by_count(d, 4)
for dic in output:
print(dic)
Output:
{'A': [1, 2, 3, 4]}
{'A': [5], 'B': [1, 2, 3]}
{'C': [1, 2, 3, 4]}
{'C': [5, 6, 7, 8]}
I want to change back and forth between a dictionary of (equal-length) lists:
DL = {'a': [0, 1], 'b': [2, 3]}
and a list of dictionaries:
LD = [{'a': 0, 'b': 2}, {'a': 1, 'b': 3}]
For those of you that enjoy clever/hacky one-liners.
Here is DL to LD:
v = [dict(zip(DL,t)) for t in zip(*DL.values())]
print(v)
and LD to DL:
v = {k: [dic[k] for dic in LD] for k in LD[0]}
print(v)
LD to DL is a little hackier since you are assuming that the keys are the same in each dict. Also, please note that I do not condone the use of such code in any kind of real system.
If you're allowed to use outside packages, Pandas works great for this:
import pandas as pd
pd.DataFrame(DL).to_dict(orient="records")
Which outputs:
[{'a': 0, 'b': 2}, {'a': 1, 'b': 3}]
You can also use orient="list" to get back the original structure
{'a': [0, 1], 'b': [2, 3]}
Perhaps consider using numpy:
import numpy as np
arr = np.array([(0, 2), (1, 3)], dtype=[('a', int), ('b', int)])
print(arr)
# [(0, 2) (1, 3)]
Here we access columns indexed by names, e.g. 'a', or 'b' (sort of like DL):
print(arr['a'])
# [0 1]
Here we access rows by integer index (sort of like LD):
print(arr[0])
# (0, 2)
Each value in the row can be accessed by column name (sort of like LD):
print(arr[0]['b'])
# 2
To go from the list of dictionaries, it is straightforward:
You can use this form:
DL={'a':[0,1],'b':[2,3], 'c':[4,5]}
LD=[{'a':0,'b':2, 'c':4},{'a':1,'b':3, 'c':5}]
nd={}
for d in LD:
for k,v in d.items():
try:
nd[k].append(v)
except KeyError:
nd[k]=[v]
print nd
#{'a': [0, 1], 'c': [4, 5], 'b': [2, 3]}
Or use defaultdict:
nd=cl.defaultdict(list)
for d in LD:
for key,val in d.items():
nd[key].append(val)
print dict(nd.items())
#{'a': [0, 1], 'c': [4, 5], 'b': [2, 3]}
Going the other way is problematic. You need to have some information of the insertion order into the list from keys from the dictionary. Recall that the order of keys in a dict is not necessarily the same as the original insertion order.
For giggles, assume the insertion order is based on sorted keys. You can then do it this way:
nl=[]
nl_index=[]
for k in sorted(DL.keys()):
nl.append({k:[]})
nl_index.append(k)
for key,l in DL.items():
for item in l:
nl[nl_index.index(key)][key].append(item)
print nl
#[{'a': [0, 1]}, {'b': [2, 3]}, {'c': [4, 5]}]
If your question was based on curiosity, there is your answer. If you have a real-world problem, let me suggest you rethink your data structures. Neither of these seems to be a very scalable solution.
Here are the one-line solutions (spread out over multiple lines for readability) that I came up with:
if dl is your original dict of lists:
dl = {"a":[0, 1],"b":[2, 3]}
Then here's how to convert it to a list of dicts:
ld = [{key:value[index] for key,value in dl.items()}
for index in range(max(map(len,dl.values())))]
Which, if you assume that all your lists are the same length, you can simplify and gain a performance increase by going to:
ld = [{key:value[index] for key, value in dl.items()}
for index in range(len(dl.values()[0]))]
Here's how to convert that back into a dict of lists:
dl2 = {key:[item[key] for item in ld]
for key in list(functools.reduce(
lambda x, y: x.union(y),
(set(dicts.keys()) for dicts in ld)
))
}
If you're using Python 2 instead of Python 3, you can just use reduce instead of functools.reduce there.
You can simplify this if you assume that all the dicts in your list will have the same keys:
dl2 = {key:[item[key] for item in ld] for key in ld[0].keys() }
cytoolz.dicttoolz.merge_with
Docs
from cytoolz.dicttoolz import merge_with
merge_with(list, *LD)
{'a': [0, 1], 'b': [2, 3]}
Non-cython version
Docs
from toolz.dicttoolz import merge_with
merge_with(list, *LD)
{'a': [0, 1], 'b': [2, 3]}
The python module of pandas can give you an easy-understanding solution. As a complement to #chiang's answer, the solutions of both D-to-L and L-to-D are as follows:
import pandas as pd
DL = {'a': [0, 1], 'b': [2, 3]}
out1 = pd.DataFrame(DL).to_dict('records')
Output:
[{'a': 0, 'b': 2}, {'a': 1, 'b': 3}]
In the other direction:
LD = [{'a': 0, 'b': 2}, {'a': 1, 'b': 3}]
out2 = pd.DataFrame(LD).to_dict('list')
Output:
{'a': [0, 1], 'b': [2, 3]}
Cleanest way I can think of a summer friday. As a bonus, it supports lists of different lengths (but in this case, DLtoLD(LDtoDL(l)) is no more identity).
From list to dict
Actually less clean than #dwerk's defaultdict version.
def LDtoDL (l) :
result = {}
for d in l :
for k, v in d.items() :
result[k] = result.get(k,[]) + [v] #inefficient
return result
From dict to list
def DLtoLD (d) :
if not d :
return []
#reserve as much *distinct* dicts as the longest sequence
result = [{} for i in range(max (map (len, d.values())))]
#fill each dict, one key at a time
for k, seq in d.items() :
for oneDict, oneValue in zip(result, seq) :
oneDict[k] = oneValue
return result
I needed such a method which works for lists of different lengths (so this is a generalization of the original question). Since I did not find any code here that the way that I expected, here's my code which works for me:
def dict_of_lists_to_list_of_dicts(dict_of_lists: Dict[S, List[T]]) -> List[Dict[S, T]]:
keys = list(dict_of_lists.keys())
list_of_values = [dict_of_lists[key] for key in keys]
product = list(itertools.product(*list_of_values))
return [dict(zip(keys, product_elem)) for product_elem in product]
Examples:
>>> dict_of_lists_to_list_of_dicts({1: [3], 2: [4, 5]})
[{1: 3, 2: 4}, {1: 3, 2: 5}]
>>> dict_of_lists_to_list_of_dicts({1: [3, 4], 2: [5]})
[{1: 3, 2: 5}, {1: 4, 2: 5}]
>>> dict_of_lists_to_list_of_dicts({1: [3, 4], 2: [5, 6]})
[{1: 3, 2: 5}, {1: 3, 2: 6}, {1: 4, 2: 5}, {1: 4, 2: 6}]
>>> dict_of_lists_to_list_of_dicts({1: [3, 4], 2: [5, 6], 7: [8, 9, 10]})
[{1: 3, 2: 5, 7: 8},
{1: 3, 2: 5, 7: 9},
{1: 3, 2: 5, 7: 10},
{1: 3, 2: 6, 7: 8},
{1: 3, 2: 6, 7: 9},
{1: 3, 2: 6, 7: 10},
{1: 4, 2: 5, 7: 8},
{1: 4, 2: 5, 7: 9},
{1: 4, 2: 5, 7: 10},
{1: 4, 2: 6, 7: 8},
{1: 4, 2: 6, 7: 9},
{1: 4, 2: 6, 7: 10}]
Here my small script :
a = {'a': [0, 1], 'b': [2, 3]}
elem = {}
result = []
for i in a['a']: # (1)
for key, value in a.items():
elem[key] = value[i]
result.append(elem)
elem = {}
print result
I'm not sure that is the beautiful way.
(1) You suppose that you have the same length for the lists
Here is a solution without any libraries used:
def dl_to_ld(initial):
finalList = []
neededLen = 0
for key in initial:
if(len(initial[key]) > neededLen):
neededLen = len(initial[key])
for i in range(neededLen):
finalList.append({})
for i in range(len(finalList)):
for key in initial:
try:
finalList[i][key] = initial[key][i]
except:
pass
return finalList
You can call it as follows:
dl = {'a':[0,1],'b':[2,3]}
print(dl_to_ld(dl))
#[{'a': 0, 'b': 2}, {'a': 1, 'b': 3}]
If you don't mind a generator, you can use something like
def f(dl):
l = list((k,v.__iter__()) for k,v in dl.items())
while True:
d = dict((k,i.next()) for k,i in l)
if not d:
break
yield d
It's not as "clean" as it could be for Technical Reasons: My original implementation did yield dict(...), but this ends up being the empty dictionary because (in Python 2.5) a for b in c does not distinguish between a StopIteration exception when iterating over c and a StopIteration exception when evaluating a.
On the other hand, I can't work out what you're actually trying to do; it might be more sensible to design a data structure that meets your requirements instead of trying to shoehorn it in to the existing data structures. (For example, a list of dicts is a poor way to represent the result of a database query.)
List of dicts ⟶ dict of lists
from collections import defaultdict
from typing import TypeVar
K = TypeVar("K")
V = TypeVar("V")
def ld_to_dl(ld: list[dict[K, V]]) -> dict[K, list[V]]:
dl = defaultdict(list)
for d in ld:
for k, v in d.items():
dl[k].append(v)
return dl
defaultdict creates an empty list if one does not exist upon key access.
Dict of lists ⟶ list of dicts
Collecting into "jagged" dictionaries
from typing import TypeVar
K = TypeVar("K")
V = TypeVar("V")
def dl_to_ld(dl: dict[K, list[V]]) -> list[dict[K, V]]:
ld = []
for k, vs in dl.items():
ld += [{} for _ in range(len(vs) - len(ld))]
for i, v in enumerate(vs):
ld[i][k] = v
return ld
This generates a list of dictionaries ld that may be missing items if the lengths of the lists in dl are unequal. It loops over all key-values in dl, and creates empty dictionaries if ld does not have enough.
Collecting into "complete" dictionaries only
(Usually intended only for equal-length lists.)
from typing import TypeVar
K = TypeVar("K")
V = TypeVar("V")
def dl_to_ld(dl: dict[K, list[V]]) -> list[dict[K, V]]:
ld = [dict(zip(dl.keys(), v)) for v in zip(*dl.values())]
return ld
This generates a list of dictionaries ld that have the length of the smallest list in dl.
DL={'a':[0,1,2,3],'b':[2,3,4,5]}
LD=[{'a':0,'b':2},{'a':1,'b':3}]
Empty_list = []
Empty_dict = {}
# to find length of list in values of dictionry
len_list = 0
for i in DL.values():
if len_list < len(i):
len_list = len(i)
for k in range(len_list):
for i,j in DL.items():
Empty_dict[i] = j[k]
Empty_list.append(Empty_dict)
Empty_dict = {}
LD = Empty_list