Train autoencoder without looping - python

I have some data that is of shape 10000 x 1440 x 8 where 10000 is the number of days, 1440 the number of minutes and 8 is the number of features.
For each day, ie. each submatrix of size 1440 x 8 I wish to train an autoencoder and extract the weights from the second layer, such that my output will be a matrix output = 10000 x 8
I can do this in a loop with
import numpy as np
from keras.layers import Input, Dense
from keras import regularizers, models, optimizers
data = np.random.random(size=(10000,1440,8))
def AE(y, epochs=100,learning_rate = 1e-4, regularization = 5e-4, epochs=3):
input = Input(shape=(y.shape[1],))
encoded = Dense(1, activation='relu',
kernel_regularizer=regularizers.l2(regularization))(input)
decoded = Dense(y.shape[1], activation='relu',
kernel_regularizer=regularizers.l2(regularization))(encoded)
autoencoder = models.Model(input, decoded)
autoencoder.compile(optimizer=optimizers.Adam(lr=learning_rate), loss='mean_squared_error')
autoencoder.fit(y, y, epochs=epochs, batch_size=10, shuffle=False)
(w1,b1,w2,b2)=autoencoder.get_weights()
return (w1,b1,w2,b2)
lst = []
for i in range(data.shape[0]):
y = data[i]
(_, _, w2, _) = AE(y)
lst.append(w2[0])
output = np.array(lst)
However, this feels very stupid as surely I must be able to just pass the 3D data to the autoencoder and retrieve what I want. However, if I try modify the shape of input to be input = Input(shape=(y.shape[1],y.shape[2]))
I get an error
ValueError: Dimensions must be equal, but are 1440 and 8 for '{{node
mean_squared_error/SquaredDifference}} =
SquaredDifference[T=DT_FLOAT](model_778/dense_1558/Relu,
IteratorGetNext:1)' with input shapes: [?,1440,1440], [?,1440,8].
Any pointers on how to get the shape right?

Simply reshape your your data like so and call the function.
data = data.reshape(data.shape[0]*data.shape[1], -1)
(w1, b1, w2, b2) = AE(data)
print(w2.shape)
Your first layer of the NN is a Dense layer. You can only pass two dimensional data into it. One dimension will be batch size and the other dimension will be the feature vector. When you are using the data in the way you are using it, you are considering each data point independently. Which means that you can join the first two axes together and just pass it on to the NN. However, note that you would still need to modify the code so that you are not passing the entire dataset at once to the NN. You need to split the data into batches and loop over those before passing it on. And honestly, it's the same as what you are doing now. So your looping is not as bad as you think it is for what you are trying to do.
However, also note that you have a time series data and considering each datapoint as an independent point doesn't really make sense. You need an LSTM layer or something to learn the time series encoding.

Related

Determining the Right Shape for a RNN with a Integer Sequence Target

I am trying to build an RNN based model in Tensorflow that takes a sequence of categorical values as an input, and sequence of categorical values as the output.
For example, if I have sequence of 30 values, the first 25 would be the training data, and the last 5 would be the target. Imagine the data is something like a person pressing keys on a computer keyboard and recording their key presses over time.
I've tried to feed the training data and targets into this model in different shapes, and I always get an error that indicates the data is in the wrong shape.
I've included a code sample that should run and demonstrate what I'm trying to do and the failure I'm seeing.
In the code sample, I've used windows for batches. So if there are 90 values in the sequence, the first 25 values would be the training data for the first batch, and the next 5 values would be the target. This next batch would be the next 30 values (25 training values, 5 target values).
import numpy as np
import tensorflow as tf
from tensorflow import keras
num_categories = 20
data_sequence = np.random.choice(num_categories, 10000)
def create_target(batch):
X = tf.cast(batch[:,:-5][:,:,None], tf.float32)
Y = batch[:,-5:][:,:,None]
return X,Y
def add_windows(data):
data = tf.data.Dataset.from_tensor_slices(data)
return data.window(20, shift=1, drop_remainder=True)
dataset = tf.data.Dataset.from_tensor_slices(data_sequence)
dataset = dataset.window(30, drop_remainder=True)
dataset = dataset.flat_map(lambda x: x.batch(30))
dataset = dataset.batch(5)
dataset = dataset.map(create_target)
model = keras.models.Sequential([
keras.layers.SimpleRNN(20, return_sequences=True),
keras.layers.SimpleRNN(20, return_sequences=True),
keras.layers.TimeDistributed(keras.layers.Dense(num_categories, activation="softmax"))
])
optimizer = keras.optimizers.Adam()
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer)
model.fit(dataset, epochs=1)
The error I get when I run the above code is
Node: 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits'
logits and labels must have the same first dimension, got logits shape [125,20] and labels shape [25]
I've also tried the following model, but the errors are similar.
model = keras.models.Sequential([
keras.layers.SimpleRNN(20, return_sequences=True),
keras.layers.SimpleRNN(20),
keras.layers.Dense(num_categories, activation="softmax"))
])
Does anybody have any recommendations about what I need to do to get this working?
Thanks.
I figured out the issue. The size of the time dimension needs to be the same for the training data and the target.
If you look at my original example code, the training data has these shapes
X.shape = (1, 25, 1)
Y.shape = (1, 5, 1)
To fix it, the time dimension should be the same.
X.shape = (1, 15, 1)
Y.shape = (1, 15, 1)
Here is the updated function that will let the model train. Note that all I did was update the array sizes so they are equally sized. The value of 15 is used because the original array length is 30.
def create_target(batch):
X = tf.cast(batch[:,:-15][:,:,None], tf.float32)
Y = batch[:,-15:][:,:,None]
return X,Y

How do I predict on more than one batch from a Tensorflow Dataset, using .predict_on_batch?

As the question says, I can only predict from my model with model.predict_on_batch(). Keras tries to concatenate everything together if I use model.predict() and that doesn't work.
For my application (a sequence to sequence model) it is faster to do grouping on the fly. But even if I had done it in Pandas and then only used Dataset for the padded batch, .predict() still shouldn't work?
If I can get predict_on_batch to work then that's what works. But I can only predict on the first batch of the Dataset. How do I get predictions for the rest? I can't loop over the Dataset, I can't consume it...
Here's a smaller code example. The group is the same as the labels but in the real world they are obviously two different things. There are 3 classes, maximum of 2 values in a sequence, 2 row of data per batch. There's a lot of comments and I nicked parts of the windowing from somewhere on StackOverflow. I hope it is fairly legible to most.
If you have any other suggestions on how to improve the code, please comment. But no, that's not what my model looks like at all. So suggestions for that part probably aren't helpful.
EDIT: Tensorflow version 2.1.0
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Bidirectional, Masking, Input, Dense, GRU
import random
import numpy as np
random.seed(100)
# input data
feature = list(range(3, 14))
# shuffle data
random.shuffle(feature)
# make label from feature data, +1 because we are padding with zero
label = [feat // 5 +1 for feat in feature]
group = label[:]
# random.shuffle(group)
max_group = 2
batch_size = 2
print('Data:')
print(*zip(group, feature, label), sep='\n')
# make dataset from data arrays
ds = tf.data.Dataset.zip((tf.data.Dataset.from_tensor_slices({'group': group, 'feature': feature}),
tf.data.Dataset.from_tensor_slices({'label': label})))
# group by window
ds = ds.apply(tf.data.experimental.group_by_window(
# use feature as key (you may have to use tf.reshape(x['group'], []) instead of tf.cast)
key_func=lambda x, y: tf.cast(x['group'], tf.int64),
# convert each window to a batch
reduce_func=lambda _, window: window.batch(max_group),
# use batch size as window size
window_size=max_group))
# shuffle at most 100k rows, but commented out because we don't want to predict on shuffled data
# ds = ds.shuffle(int(1e5))
ds = ds.padded_batch(batch_size,
padded_shapes=({s: (None,) for s in ['group', 'feature']},
{s: (None,) for s in ['label']}))
# show dataset contents
print('Result:')
for element in ds:
print(element)
# Keras matches the name in the input to the tensor names in the first part of ds
inp = Input(shape=(None,), name='feature')
# RNNs require an additional rank, even if it is a degenerate dimension
duck = tf.expand_dims(inp, axis=-1)
rnn = GRU(32, return_sequences=True)(duck)
# again Keras matches names
out = Dense(max(label)+1, activation='softmax', name='label')(rnn)
model = Model(inputs=inp, outputs=out)
model.summary()
model.compile(loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(ds, epochs=3)
model.predict_on_batch(ds)
You can iterate over the dataset, like so, remembering what is "x" and what is "y" in typical notation:
for item in ds:
xi, yi = item
pi = model.predict_on_batch(xi)
print(xi["group"].shape, pi.shape)
Of course, this predicts on each element individually. Otherwise you'd have to define the batches yourself, by batching matching shapes together, as the batch size itself is allowed to be variable.

Keras multi-output data reshape for LSTM model

I have a Keras LSTM model that contains multiple outputs.
The model is defined as follows:
outputs=[]
main_input = Input(shape= (seq_length,feature_cnt), name='main_input')
lstm = LSTM(32,return_sequences=True)(main_input)
for _ in range((output_branches)): #output_branches is the number of output branches of the model
prediction = LSTM(8,return_sequences=False)(lstm)
out = Dense(1)(prediction)
outputs.append(out)
model = Model(inputs=main_input, outputs=outputs)
model.compile(optimizer='rmsprop',loss='mse')
I have a problem when reshaping the output data.
The code for reshaping the output data is:
y=y.reshape((len(y),output_branches,1))
I got the following error:
ValueError: Error when checking model target: the list of Numpy arrays
that you are passing to your model is not the size the model expected.
Expected to see 5 array(s), but instead got the following list of 1
arrays: [array([[[0.29670931],
[0.16652206],
[0.25114482],
[0.36952324],
[0.09429612]],
[[0.16652206],
[0.25114482],
[0.36952324],
[0.09429612],...
How can I correctly reshape the output data?
It depends on how y is structured initially. Here I assume that y is a single-valued label for each sequence in batch.
When there are multiple inputs/outputs model.fit() expects a corresponding list of inputs/outputs to be given. np.split(y, output_branches, axis=-1) in a following fully reproducible example does exactly this - for each batch splits a single list of outputs into a list of separate outputs where each output (in this case) is 1-element list:
import tensorflow as tf
import numpy as np
tf.enable_eager_execution()
batch_size = 100
seq_length = 10
feature_cnt = 5
output_branches = 3
# Say we've got:
# - 100-element batch
# - of 10-element sequences
# - where each element of a sequence is a vector describing 5 features.
X = np.random.random_sample([batch_size, seq_length, feature_cnt])
# Every sequence of a batch is labelled with `output_branches` labels.
y = np.random.random_sample([batch_size, output_branches])
# Here y.shape() == (100, 3)
# Here we split the last axis of y (output_branches) into `output_branches` separate lists.
y = np.split(y, output_branches, axis=-1)
# Here y is not a numpy matrix anymore, but a list of matrices.
# E.g. y[0].shape() == (100, 1); y[1].shape() == (100, 1) etc...
outputs = []
main_input = tf.keras.layers.Input(shape=(seq_length, feature_cnt), name='main_input')
lstm = tf.keras.layers.LSTM(32, return_sequences=True)(main_input)
for _ in range(output_branches):
prediction = tf.keras.layers.LSTM(8, return_sequences=False)(lstm)
out = tf.keras.layers.Dense(1)(prediction)
outputs.append(out)
model = tf.keras.models.Model(inputs=main_input, outputs=outputs)
model.compile(optimizer='rmsprop', loss='mse')
model.fit(X, y)
You might need to play around with axes as you didn't specify how exactly your data look like.
EDIT:
As author is looking for an answer drawing from official sources, it's mentioned here (not explicitly though, it only mentions what the Dataset should yield, hence - what kind of input structure model.fit() expects):
When calling fit with a Dataset object, it should yield either a tuple of lists like ([title_data, body_data, tags_data], [priority_targets, dept_targets]) or a tuple of dictionaries like ({'title': title_data, 'body': body_data, 'tags': tags_data}, {'priority': priority_targets, 'department': dept_targets}).
Since you have an amount of outputs equal to output_branches, your output data must be a list with the same amount of arrays.
Basically, if the output data is in the middle dimension as your reshape suggests:
y = [ y[:,i] for i in range(output_branches)]

Keras and input shape to Conv1D issues

First off, I am very new to Neural Nets and Keras.
I am trying to create a simple Neural Network using Keras where the input is a time series and the output is another time series of same length (1 dimensional vectors).
I made dummy code to create random input and output time series using a Conv1D layer. The Conv1D layer then outputs 6 different time series (because I have 6 filters) and the next layer I define to add all 6 of those outputs into one which is the output to the entire network.
import numpy as np
import tensorflow as tf
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Conv1D, Input, Lambda
def summation(x):
y = tf.reduce_sum(x, 0)
return y
time_len = 100 # total length of time series
num_filters = 6 # number of filters/outputs to Conv1D layer
kernel_len = 10 # length of kernel (memory size of convolution)
# create random input and output time series
X = np.random.randn(time_len)
Y = np.random.randn(time_len)
# Create neural network architecture
input_layer = Input(shape = X.shape)
conv_layer = Conv1D(filters = num_filters, kernel_size = kernel_len, padding = 'same')(input_layer)
summation_layer = Lambda(summation)(conv_layer)
model = Model(inputs = input_layer, outputs = summation_layer)
model.compile(loss = 'mse', optimizer = 'adam', metrics = ['mae'])
model.fit(X,Y,epochs = 1, metrics = ['mae'])
The error I get is:
ValueError: Input 0 of layer conv1d_1 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: [None, 100]
Looking at the Keras documentation for Conv1D, the input shape is supposed to be a 3D tensor of shape (batch, steps, channels) which I don't understand if we are working with 1 dimensional data.
Can you explain the meaning of each of the items: batch, steps, and channels? And how should I shape my 1D vectors to allow my network to run?
What is a (training) sample?
The (training) data may consists of tens, hundreds or thousands of samples. For example, each image in an image dataset like Cifar-10 or ImageNet is a sample. As another example, for a timseries dataset which consists of weather statistics recorded during the days over 10 years, each training sample may be a timeseries of each day. If we have recorded 100 measurements during the day and each measurement consists of temperature and humidity (i.e. we have two features per measurement) then the shape of our dataset is roughly (10x365, 100, 2).
What is batch size?
The batch size is simply the number of samples that can be processed by the model at a single time. We can set the batch size using the batch_size argument of fit method in Keras. The common values are 16, 32, 64, 128, 256, etc (though you must choose a number such that your machine could have enough RAM to allocate the required resources).
Further, the "steps" (also called "sequence length") and "channels" (also called "feature size") are the number of measurements and the size of each measurement, respectively. For example in our weather example above, we have steps=100 and channels=2.
To resolve the issue with your code you need to define your training data (i.e. X) such that it has a shape of (num_samples, steps or time_len, channels or feat_size):
n_samples = 1000 # we have 1000 samples in our training data
n_channels = 1 # each measurement has one feature
X = np.random.randn(n_samples, time_len, n_channels)
# if you want to predict one value for each measurement
Y = np.random.randn(n_samples, time_len)
# or if you want to predict one value for each sample
Y = np.random.randn(n_samples)
Edit:
One more thing is that you should pass the shape of one sample as the input shape of the model. Therefore, the input shape of Input layer must be passed like shape=X.shape[1:].

LSTM: Understand timesteps, samples and features and especially the use in reshape and input_shape

I'm trying to learn LSTM. Have taken this web courses, read this book (https://machinelearningmastery.com/lstms-with-python/) and a lot of blogs... But, I'm completely stuck. My interest is in multivariate LSTM's and I have read all I can find but still can't get it. Don't know if I'm stupid or what it is...
If this exact question and a good answer already exists then I am sorry for double posting but I have looked and haven't found it...
As I want to really know the basics I created a dummy dataset in excel where every "y" depends on the sum of each input x1 and x2 but also over time. As I understand it this is a many-to-one scenario.
Pseudo code:
x1(t) = sin(A(t))
x2(t) = cos(A(t))
tmp(t) = x1(t) + x2(t) (dummy variable)
y(t) = tmp(t) + tmp(t-1) + tmp(t-2) (i.e. sum over the last three steps)
(Basically I want to predict y(t) given x1 and x2 over three time steps)
This is then exported to a csv file with columns x1, x2, y
I have tried to code it up below but obviously it won't work.
I read the data and split it into a 80/20 test and train set as X_train, y_train, X_test, y_test with dimensions (217,2), (217,1), (54,2), (54/1)
What I really haven't got a grip on yet is what exactly are timesteps and samples and the use in reshape and input_shape. In many examples of code I have looked at they simply use numbers rather than defined variables which makes it very difficult to understand what is happening, especially if you want to change something. As an example, in one of the courses I took the reshaping was coded like this...
X_train = np.reshape(X_train, (1257, 1, 1))
This doesn't provide much info...
Anyway, when i run the code below it says
ValueError: cannot reshape array of size 434 into shape (217,3,2)
So, I know what the causes the error, but not what I need to do to fix it. If I set look_back=1 it works but that's not what I want.
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
# Load data
data_set = pd.read_csv('../Data/LSTM_test.csv',';')
"""
data loaded have three columns:
col 0, col 1: features (x)
col 2: y
"""
# Train/test and variable split
split = 0.8 # 80% train, 20% test
split_idx = int(data_set.shape[0]*split)
# ...train
X_train = data_set.values[0:split_idx,0:2]
y_train = data_set.values[0:split_idx,2]
# ...test
X_test = data_set.values[split_idx:-1,0:2]
y_test = data_set.values[split_idx:-1,2]
# Model setup
look_back = 3 # as that is how y was generated (i.e. sum last three steps)
num_features = 2 # in this case: 2 features x1, x2
output_dim = 1 # want to predict 1 y value
nb_hidden_neurons = 32 # assume something to start with
nb_epoch = 2 # assume something to start with
# Reshaping
nb_samples = len(X_train) # in this case 217 samples in the training set
X_train_reshaped = np.reshape(X_train,(nb_samples, look_back, num_features))
# Create model
model = Sequential()
model.add(LSTM(nb_hidden_neurons, input_shape=(look_back,num_features)))
model.add(Dense(units=output_dim))
model.compile(optimizer = 'adam', loss = 'mean_squared_error')
model.fit(X_train_reshaped, y_train, batch_size = 32, epochs = nb_epoch)
print(model.summary())
Can anyone please explain what I have done wrong?
As I said, I have read a lot of blogs, questions, tutorials etc but if someone has a particularly good source of info I'd love to check that one up too.
I also had this question before. On a higher level, in (samples, time steps, features)
samples are the number of data, or say how many rows are there in your data set
time step is the number of times to feed in the model or LSTM
features is the number of columns of each sample
For me, I think a better example to understand it is that in NLP, suppose you have a sentence to process, then here sample is 1, which means 1 sentence to read, time step is the number of words in that sentence, you feed in the sentence word by word before the model read all the words and get a whole context of that sentence, features here is the dimension of each word, because in word embedding like word2vec or glove, each word is interpreted by a vector with multiple dimensions.
The input_shape parameter in Keras is only (time_steps, num_features),
more you can refer to this.
And the problem of yours is that when you reshape data, the multiplication of each dimension should equal to the multiplication of dimensions of original data set, where 434 does not equal to 217*3*2.
When you implement LSTM, you should be very clear of what are the features and what are the element you want the model to read each time step. There is a very similar case here surely can help you. For example, if you are trying to predict the value of time t using t-1 and t-2, you can either choose to feed in two values as one element to predict t, where (time_step, num_features)=(1, 2), or you can feed each value in 2 time steps, where (time_step, num_features)=(2, 1).
That's basically how I understand this, hope make it clear for you.
You seem to have a decent grasp of what LSTM expects and are just struggling with getting your data into the correct format. You start with an X_train of shape (217, 2) and you want to reshape this such that it's in the shape (nb_samples, look_back, num_features). You already have defined look_back and num_features and really all the work that's left is generating nb_samples chunks of length look_back with your original X_train. Numpy's reshape isn't really the tool for this, instead you'll have to write some code.
import numpy as np
nb_samples = X_train.shape[0] - look_back
x_train_reshaped = np.zeros((nb_samples, look_back, num_features))
y_train_reshaped = np.zeros((nb_samples))
for i in range(nb_samples):
y_position = i + look_back
x_train_reshaped[i] = X_train[i:y_position]
y_train_reshaped[i] = y_train[y_position]
model.fit(x_train_reshaped, y_train_reshaped, ...)
The shapes are now:
x_train_reshaped.shape
# (214, 3, 2)
y_train_reshaped.shape
# (214,)
You'll have to do the same thing with X_test and y_test.
This https://github.com/fchollet/keras/issues/2045 helped me.
But shortly, the answer for your question:
you want to reshape a list with 434 elements into shape (217,3,2), but it's impossible, let me show you why:
A new shape has 217*3*2 = 1302 elements, but you have 434 elements in the original list. Therefore, the solution is to change the dimensions of reshaping.

Categories

Resources