(Python) Equally Spacing Trues in a Series of Booleans - python

I am trying to make a custom PWM script to work with my Charlieplexed series of LEDs. However, I am struggling to make certain intensity values look smooth with no flashing. Different brightness values will have the LED on for a different amount of ticks. In order to make it feel smooth, I need to optimize the spacing of on and off ticks for the LEDs but I can quite figure out how to do so.
If you have a pattern that has x amount of booleans and n amount of them are true, how would you go about equally spacing out the trues as much as possible?
Here is an example of what I am looking for:
x = 10, n = 7
Desired result: 1,1,1,0,1,1,0,1,1,0
x = 10, n = 4
Desired result: 1,0,1,0,0,1,0,1,0,0

You can use the linspace function of numpy for this.
import numpy as np
x = 10
n = 7
# Gets the indices that should be true
def get_spaced_indices(array_length, num_trues):
array = np.arange(array_length) # Create array of "indices" 0 to x
indices = np.round(np.linspace(0, len(array) - 1, num_trues)).astype(int) # Evenly space the indices
values = array[indices]
return values
true_indices = get_spaced_indices(x, n)
print("true_indices:", true_indices)
result = [0] * x # Initialize your whole result to "false"
for i in range(x):
if i in true_indices: # Set evenly-spaced values to true in your result based on indices from get_spaced_indices
result[i] = 1
print("result:", result)

Related

How to make a graph between order of the matrix and the time taken to multiply the two matrices?

import numpy as np
from time import time
import matplotlib.pyplot as plt
np.random.seed(27)
mysetup = "from math import sqrt"
begin=time()
i=int(input("Number of rows in first matrix"))
k=int(input("Number of column in first and rows in second matrix"))
j=int(input("Number of columns in second matrix"))
A = np.random.randint(1,10,size = (i,k))
B = np.random.randint(1,10,size = (k,j))
def multiply_matrix(A,B):
global C
if A.shape[1]==B.shape[0]:
C=np.zeros((A.shape[0],B.shape[1]),dtype=int)
for row in range(i):
for col in range(j):
for elt in range(0,len(B)):
C[row,col] += A[row,elt]*B[elt,col]
return C
else:
return "Cannot multiply A and B"
print(f"Matrix A:\n {A}\n")
print(f"Matrix B:\n {B}\n")
D=print(multiply_matrix(A, B))
end=time()
t=print(end-begin)
x=[0,100,10]
y=[100,100,1000]
plt.plot(x,y)
plt.xlabel('Time taken for the program to run')
plt.ylabel('Order of the matrix multiplication')
plt.show()
In the program, I have generated random elements for the matrices to be multiplied.Basically I am trying to compute the time it takes to multiply two matrices.The i,j and k will be considered as the order used for the matrix.As we cannot multiply matrices where number of columns of the first is not equal to the number of the rows in the second, I have already given them the variable 'k'.
Initially I considered to increment the order of the matrix using for loop but wasn't able to do so. I want the graph to display the time it took to multiply the matrices on the x axis and the order of the resultant matrix on the y axis.
There is a problem in the logic I applied but I am not able to find out how to do this problem as I am a beginner in programming
I was expecting to get the result as Y axis having a scale ranging from 0 to 100 with a difference of 10 and x axis with a scale of 100 to 1000 with a difference of 100.
The thousandth entity on the x axis will correspond to the time it took to compute the multiplication of two matrices with numbers of rows and columns as 1000.
Suppose the time it took to compute this was 200seconds. So the graph should be showing the point(1000,200).
Some problematic points I'd like to address -
You're starting the timer before the user chooses an input - which can differ, we want to be as precise as possible, thus we need to only calculate how much time it takes for the multiply_matrix function to run.
Because you're taking an input - it means that each run you will get one result, and one result is only a single point - not a full graph, so we need to get rid of the user input and generate our own.
Moreover to point #2 - we are not interested in giving "one shot" for each matrix order - that means that when we want to test how much time it takes to multiply two matrices of order 300 (for example) - we need to do it N times and take the average in order to be more precise, not to mention we are generating random numbers, and it is possible that some random generated matrices will be easier to compute than other... although taking the average over N tests is not 100% accurate - it does help.
You don't need to set C as a global variable as it can be a local variable of the function multiply_matrix that we anyways return. Also this is not the usage of globals as even with the global C - it will be undefined in the module level.
This is not a must, but it can improve a little bit your program - use time.perf_counter() as it uses the clock with the highest (available) resolution to measure a short duration, and it avoids precision loss by the float type.
You need to change the axes because we want to see how the time is affected by the order of the matrices, not the opposite! (so our X axis is now the order and the Y is the average time it took to multiply them)
Those fixes translate to this code:
Calculating how much it takes for multiply_matrix only.
begin = time.perf_counter()
C = multiply_matrix(A, B)
end = time.perf_counter()
2+3. Generating our own data, looping from order 1 to order maximum_order, taking 50 tests for each order:
maximum_order = 50
tests_number_for_each_order = 50
def generate_matrices_to_graph():
matrix_orders = [] # our X
multiply_average_time = [] # our Y
for order in range(1, maximum_order):
print(order)
times_for_each_order = []
for _ in range(tests_amount_for_each_order):
# generating random square matrices of size order.
A = np.random.randint(1, 10, size=(order, order))
B = np.random.randint(1, 10, size=(order, order))
# getting the time it took to compute
begin = time.perf_counter()
multiply_matrix(A, B)
end = time.perf_counter()
# adding it to the times list
times_for_each_order.append(end - begin)
# adding the data about the order and the average time it took to compute
matrix_orders.append(order)
multiply_average_time.append(sum(times_for_each_order) / tests_amount_for_each_order) # average
return matrix_orders, multiply_average_time
Minor changes to multiply_matrix as we don't need i, j, k from the user:
def multiply_matrix(A, B):
matrix_order = A.shape[1]
C = np.zeros((matrix_order, matrix_order), dtype=int)
for row in range(matrix_order):
for col in range(matrix_order):
for elt in range(0, len(B)):
C[row, col] += A[row, elt] * B[elt, col]
return C
and finally call generate_matrices_to_graph
# calling the generate_data_and_compute function
plt.plot(*generate_matrices_to_graph())
plt.xlabel('Matrix order')
plt.ylabel('Time [in seconds]')
plt.show()
Some outputs:
We can see that when our tests_number_for_each_order is small, the graph loses precision and crisp.
Going from order 1-40 with 1 test for each order:
Going from order 1-40 with 30 tests for each order:
Going from order 1-40 with 80 tests for each order:
I love this kind of questions:
import numpy as np
from time import time
import matplotlib.pyplot as plt
np.random.seed(27)
dim = []
times = []
for i in range(1,10001,10):
A = np.random.randint(1,10,size=(1,i))
B = np.random.randint(1,10,size=(i,1))
begin = time()
C = A*B
times.append(time()-begin)
dim.append(i)
plt.plot(times,dim)
This is a simplified test in which I tested 1 dimension matrices, (1,1)(1,1), (1,10)(10,1), (1,20)(20,1) and so on...
But you can make a double iteration to change also the "outer" dimension of the matrices and see how this affect the computational time

Build a coupled map lattice using 2D array

So I'm trying to build a coupled map lattice on my computer.
A coupled map lattice (CML) is given by this eq'n:
where, the function f(Xn) is a logistic map :
with x value from 0-1, and r=4 for this CML.
Note: 'n' can be thought of as time, and 'i' as space
I have spent a lot of time understanding the iterations and i came up with a code as below, however i'm not sure if this is the correct code to iterate this equation.
Note: I have used 2d numpy arrays, where rows are 'n' and columns are 'i' as obvious from the code.
So basically, I want to develop a code to simulate this equation, and here is my take on that
Don't jump to the code directly, you won't understand what's happening without bothering to look at the equations first.
import numpy as np
import matplotlib.pyplot as plt
'''The 4 definitions created below are actually similar and only vary in their indexings. These 4
have been created only because of the if conditions I have put in the for loop '''
def logInit(r,x):
y[n,0]=r*x[n,0]*(1-x[n,0])
return y[n,0]
def logPresent(r,x):
y[n,i]=r*x[n,i]*(1-x[n,i])
return y[n,i]
def logLast(r,x):
y[n,L-1]=r*x[n,L-1]*(1-x[n,L-1])
return y[n,L-1]
def logNext(r,x):
y[n,i+1]=r*x[n,i+1]*(1-x[n,i+1])
return y[n,i+1]
def logPrev(r,x):
y[n,i-1]=r*x[n,i-1]*(1-x[n,i-1])
return y[n,i-1]
# 2d array with 4 row, 3 col. I created this because I want to store the evaluated values of log
function into this y[n,i] array
y=np.ones(12).reshape(4,3)
# creating an array of random numbers between 0-1 with 4 rows 3 columns
np.random.seed(0)
x=np.random.random((4,3))
L=3
r=4
eps=0.5
for n in range(3):
for i in range(L):
if i==0:
x[n+1,i]=(1-eps)*logPresent(r,x) + 0.5*eps*(logLast(r,x)+logNext(r,x))
elif i==L-1:
x[n+1,i]=(1-eps)*logPresent(r,x) + 0.5*eps*(logPrev(r,x) + logInit(r,x))
elif i > 0 and i < L - 1:
x[n+1,i]=(1-eps)*logPresent(r,x) + 0.5*eps*(logPrev(r,x) +logNext(r,x))
print(x)
This does give an output. Here it is:
[[0.5488135 0.71518937 0.60276338]
[0.94538775 0.82547604 0.64589411]
[0.43758721 0.891773 0.96366276]
[0.38344152 0.79172504 0.52889492]]
[[0.5488135 0.71518937 0.60276338]
[0.94538775 0.82547604 0.92306303]
[0.2449672 0.49731638 0.96366276]
[0.38344152 0.79172504 0.52889492]]
[[0.5488135 0.71518937 0.60276338]
[0.94538775 0.82547604 0.92306303]
[0.2449672 0.49731638 0.29789622]
[0.75613708 0.93368134 0.52889492]]
But I'm very sure this is not what I'm looking for.
If you can please figure out a correct way to iterate and loop the CML equation with code ? Suggest me the changes I have to make. Thank you very much!!
You'll have to think about the iterations and looping to be made to simulate this equation. It might be tedious, but that's the only way you can suggest me some changes in my code.
Your calculations seem fine to me. You could improve the speed by using vectorization along the space dimension and by reusing your intermediate results y. I restructured your program a little, but in essence it does the same thing as before. For me the results look plausible. The image shows the random initial vector in the first row and as the time goes on (top to bottom) the coupling comes in to play and little islands and patterns form.
import numpy as np
import matplotlib.pyplot as plt
L = 128 # grid size
N = 128 # time steps
r = 4
eps = 0.5
# Create random values for the initial time step
np.random.seed(0)
x = np.zeros((N+1, L))
x[0, :] = np.random.random(L)
# Create a helper matrix to save and reuse part of the calculations
y = np.zeros((N, L))
# Indices for previous, present, next position for every point on the grid
idx_present = np.arange(L) # 0, 1, ..., L-2, L-1
idx_next = (idx_present + 1) % L # 1, 2, ..., L-1, 0
idx_prev = (idx_present - 1) % L # L-1, 0, ..., L-3, L-2
def log_vector(rr, xx):
return rr * xx * (1 - xx)
# Loop over the time steps
for n in range(N):
# Compute y once for the whole time step and reuse it
# to build the next time step with coupling the neighbours
y[n, :] = log_vector(rr=r, xx=x[n, :])
x[n+1, :] = (1-eps)*y[n,idx_present] + 0.5*eps*(y[n,idx_prev]+y[n,idx_next])
# Plot the results
plt.imshow(x)

How do I force two arrays to be equal for use in pyplot?

I'm trying to plot a simple moving averages function but the resulting array is a few numbers short of the full sample size. How do I plot such a line alongside a more standard line that extends for the full sample size? The code below results in this error message:
ValueError: x and y must have same first dimension, but have shapes (96,) and (100,)
This is using standard matplotlib.pyplot. I've tried just deleting X values using remove and del as well as switching all arrays to numpy arrays (since that's the output format of my moving averages function) then tried adding an if condition to the append in the while loop but neither has worked.
import random
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
def movingaverage(values, window):
weights = np.repeat(1.0, window) / window
smas = np.convolve(values, weights, 'valid')
return smas
sampleSize = 100
min = -10
max = 10
window = 5
vX = np.array([])
vY = np.array([])
x = 0
val = 0
while x < sampleSize:
val += (random.randint(min, max))
vY = np.append(vY, val)
vX = np.append(vX, x)
x += 1
plt.plot(vX, vY)
plt.plot(vX, movingaverage(vY, window))
plt.show()
Expected results would be two lines on the same graph - one a simple moving average of the other.
Just change this line to the following:
smas = np.convolve(values, weights,'same')
The 'valid' option, only convolves if the window completely covers the values array. What you want is 'same', which does what you are looking for.
Edit: This, however, also comes with its own issues as it acts like there are extra bits of data with value 0 when your window does not fully sit on top of the data. This can be ignored if chosen, as is done in this solution, but another approach is to pad the array with specific values of your choosing instead (see Mike Sperry's answer).
Here is how you would pad a numpy array out to the desired length with 'nan's (replace 'nan' with other values, or replace 'constant' with another mode depending on desired results)
https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html
import numpy as np
bob = np.asarray([1,2,3])
alice = np.pad(bob,(0,100-len(bob)),'constant',constant_values=('nan','nan'))
So in your code it would look something like this:
import random
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
def movingaverage(values,window):
weights = np.repeat(1.0,window)/window
smas = np.convolve(values,weights,'valid')
shorted = int((100-len(smas))/2)
print(shorted)
smas = np.pad(smas,(shorted,shorted),'constant',constant_values=('nan','nan'))
return smas
sampleSize = 100
min = -10
max = 10
window = 5
vX = np.array([])
vY = np.array([])
x = 0
val = 0
while x < sampleSize:
val += (random.randint(min,max))
vY = np.append(vY,val)
vX = np.append(vX,x)
x += 1
plt.plot(vX,vY)
plt.plot(vX,(movingaverage(vY,window)))
plt.show()
To answer your basic question, the key is to take a slice of the x-axis appropriate to the data of the moving average. Since you have a convolution of 100 data elements with a window of size 5, the result is valid for the last 96 elements. You would plot it like this:
plt.plot(vX[window - 1:], movingaverage(vY, window))
That being said, your code could stand to have some optimization done on it. For example, numpy arrays are stored in fixed size static buffers. Any time you do append or delete on them, the entire thing gets reallocated, unlike Python lists, which have amortization built in. It is always better to preallocate if you know the array size ahead of time (which you do).
Secondly, running an explicit loop is rarely necessary. You are generally better off using the under-the-hood loops implemented at the lowest level in the numpy functions instead. This is called vectorization. Random number generation, cumulative sums and incremental arrays are all fully vectorized in numpy. In a more general sense, it's usually not very effective to mix Python and numpy computational functions, including random.
Finally, you may want to consider a different convolution method. I would suggest something based on numpy.lib.stride_tricks.as_strided. This is a somewhat arcane, but very effective way to implement a sliding window with numpy arrays. I will show it here as an alternative to the convolution method you used, but feel free to ignore this part.
All in all:
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
def movingaverage(values, window):
# this step creates a view into the same buffer
values = np.lib.stride_tricks.as_strided(values, shape=(window, values.size - window + 1), strides=values.strides * 2)
smas = values.sum(axis=0)
smas /= window # in-place to avoid temp array
return smas
sampleSize = 100
min = -10
max = 10
window = 5
v_x = np.arange(sampleSize)
v_y = np.cumsum(np.random.random_integers(min, max, sampleSize))
plt.plot(v_x, v_y)
plt.plot(v_x[window - 1:], movingaverage(v_y, window))
plt.show()
A note on names: in Python, variable and function names are conventionally name_with_underscore. CamelCase is reserved for class names. np.random.random_integers uses inclusive bounds just like random.randint, but allows you to specify the number of samples to generate. Confusingly, np.random.randint has an exclusive upper bound, more like random.randrange.

General way to quantize floating point numbers into arbitrary number of bins?

I want to quantize a series of numbers which have a maximum and minimum value of X and Y respectively into arbitrary number of bins. For instance, if the maximum value of my array is 65535 and the minimum is 0 (do not assume these are all integers) and I want to quantize the values into 2 bins, all values more than floor(65535/2) would become 65535 and the rest become 0. Similar story repeats if I want to quantize the array from any number between 1 to 65535. I wonder, is there an efficient and easy way to do this? If not, how can I do this efficiently for number of bins being powers of 2? Although a pseudocode would be fine but Python + Numpy is preferred.
It's not the most elegant solution, but:
MIN_VALUE = 0
MAX_VALUE = 65535
NO_BINS = 2
# Create random dataset from [0,65535] interval
numbers = np.random.randint(0,65535+1,100)
# Create bin edges
bins = np.arange(0,65535, (MAX_VALUE-MIN_VALUE)/NO_BINS)
# Get bin values
_, bin_val = np.histogram(numbers, NO_BINS-1, range=(MIN_VALUE, MAX_VALUE))
# Change the values to the bin value
for iter_bin in range(1,NO_BINS+1):
numbers[np.where(digits == iter_bin)] = bin_val[iter_bin-1]
UPDATE
Does the same job:
import pandas as pd
import numpy as np
# or bin_labels = [i*((MAX_VALUE - MIN_VALUE) / (NO_BINS-1)) for i in range(NO_BINS)]
_, bin_labels = np.histogram(numbers, NO_BINS-1, range=(MIN_VALUE, MAX_VALUE))
pd.cut(numbers, NO_BINS, right=False, labels=bin_labels)

Using Mann Kendall in python with a lot of data

I have a set of 46 years worth of rainfall data. It's in the form of 46 numpy arrays each with a shape of 145, 192, so each year is a different array of maximum rainfall data at each lat and lon coordinate in the given model.
I need to create a global map of tau values by doing an M-K test (Mann-Kendall) for each coordinate over the 46 years.
I'm still learning python, so I've been having trouble finding a way to go through all the data in a simple way that doesn't involve me making 27840 new arrays for each coordinate.
So far I've looked into how to use scipy.stats.kendalltau and using the definition from here: https://github.com/mps9506/Mann-Kendall-Trend
EDIT:
To clarify and add a little more detail, I need to perform a test on for each coordinate and not just each file individually. For example, for the first M-K test, I would want my x=46 and I would want y=data1[0,0],data2[0,0],data3[0,0]...data46[0,0]. Then to repeat this process for every single coordinate in each array. In total the M-K test would be done 27840 times and leave me with 27840 tau values that I can then plot on a global map.
EDIT 2:
I'm now running into a different problem. Going off of the suggested code, I have the following:
for i in range(145):
for j in range(192):
out[i,j] = mk_test(yrmax[:,i,j],alpha=0.05)
print out
I used numpy.stack to stack all 46 arrays into a single array (yrmax) with shape: (46L, 145L, 192L) I've tested it out and it calculates p and tau correctly if I change the code from out[i,j] to just out. However, doing this messes up the for loop so it only takes the results from the last coordinate in stead of all of them. And if I leave the code as it is above, I get the error: TypeError: list indices must be integers, not tuple
My first guess was that it has to do with mk_test and how the information is supposed to be returned in the definition. So I've tried altering the code from the link above to change how the data is returned, but I keep getting errors relating back to tuples. So now I'm not sure where it's going wrong and how to fix it.
EDIT 3:
One more clarification I thought I should add. I've already modified the definition in the link so it returns only the two number values I want for creating maps, p and z.
I don't think this is as big an ask as you may imagine. From your description it sounds like you don't actually want the scipy kendalltau, but the function in the repository you posted. Here is a little example I set up:
from time import time
import numpy as np
from mk_test import mk_test
data = np.array([np.random.rand(145, 192) for _ in range(46)])
mk_res = np.empty((145, 192), dtype=object)
start = time()
for i in range(145):
for j in range(192):
out[i, j] = mk_test(data[:, i, j], alpha=0.05)
print(f'Elapsed Time: {time() - start} s')
Elapsed Time: 35.21990394592285 s
My system is a MacBook Pro 2.7 GHz Intel Core I7 with 16 GB Ram so nothing special.
Each entry in the mk_res array (shape 145, 192) corresponds to one of your coordinate points and contains an entry like so:
array(['no trend', 'False', '0.894546014835', '0.132554125342'], dtype='<U14')
One thing that might be useful would be to modify the code in mk_test.py to return all numerical values. So instead of 'no trend'/'positive'/'negative' you could return 0/1/-1, and 1/0 for True/False and then you wouldn't have to worry about the whole object array type. I don't know what kind of analysis you might want to do downstream but I imagine that would preemptively circumvent any headaches.
Thanks to the answers provided and some work I was able to work out a solution that I'll provide here for anyone else that needs to use the Mann-Kendall test for data analysis.
The first thing I needed to do was flatten the original array I had into a 1D array. I know there is probably an easier way to go about doing this, but I ultimately used the following code based on code Grr suggested using.
`x = 46
out1 = np.empty(x)
out = np.empty((0))
for i in range(146):
for j in range(193):
out1 = yrmax[:,i,j]
out = np.append(out, out1, axis=0) `
Then I reshaped the resulting array (out) as follows:
out2 = np.reshape(out,(27840,46))
I did this so my data would be in a format compatible with scipy.stats.kendalltau 27840 is the total number of values I have at every coordinate that will be on my map (i.e. it's just 145*192) and the 46 is the number of years the data spans.
I then used the following loop I modified from Grr's code to find Kendall-tau and it's respective p-value at each latitude and longitude over the 46 year period.
`x = range(46)
y = np.zeros((0))
for j in range(27840):
b = sc.stats.kendalltau(x,out2[j,:])
y = np.append(y, b, axis=0)`
Finally, I reshaped the data one for time as shown:newdata = np.reshape(y,(145,192,2)) so the final array is in a suitable format to be used to create a global map of both tau and p-values.
Thanks everyone for the assistance!
Depending on your situation, it might just be easiest to make the arrays.
You won't really need them all in memory at once (not that it sounds like a terrible amount of data). Something like this only has to deal with one "copied out" coordinate trend at once:
SIZE = (145,192)
year_matrices = load_years() # list of one 145x192 arrays per year
result_matrix = numpy.zeros(SIZE)
for x in range(SIZE[0]):
for y in range(SIZE[1]):
coord_trend = map(lambda d: d[x][y], year_matrices)
result_matrix[x][y] = analyze_trend(coord_trend)
print result_matrix
Now, there are things like itertools.izip that could help you if you really want to avoid actually copying the data.
Here's a concrete example of how Python's "zip" might works with data like yours (although as if you'd used ndarray.flatten on each year):
year_arrays = [
['y0_coord0_val', 'y0_coord1_val', 'y0_coord2_val', 'y0_coord2_val'],
['y1_coord0_val', 'y1_coord1_val', 'y1_coord2_val', 'y1_coord2_val'],
['y2_coord0_val', 'y2_coord1_val', 'y2_coord2_val', 'y2_coord2_val'],
]
assert len(year_arrays) == 3
assert len(year_arrays[0]) == 4
coord_arrays = zip(*year_arrays) # i.e. `zip(year_arrays[0], year_arrays[1], year_arrays[2])`
# original data is essentially transposed
assert len(coord_arrays) == 4
assert len(coord_arrays[0]) == 3
assert coord_arrays[0] == ('y0_coord0_val', 'y1_coord0_val', 'y2_coord0_val', 'y3_coord0_val')
assert coord_arrays[1] == ('y0_coord1_val', 'y1_coord1_val', 'y2_coord1_val', 'y3_coord1_val')
assert coord_arrays[2] == ('y0_coord2_val', 'y1_coord2_val', 'y2_coord2_val', 'y3_coord2_val')
assert coord_arrays[3] == ('y0_coord2_val', 'y1_coord2_val', 'y2_coord2_val', 'y3_coord2_val')
flat_result = map(analyze_trend, coord_arrays)
The example above still copies the data (and all at once, rather than a coordinate at a time!) but hopefully shows what's going on.
Now, if you replace zip with itertools.izip and map with itertools.map then the copies needn't occur — itertools wraps the original arrays and keeps track of where it should be fetching values from internally.
There's a catch, though: to take advantage itertools you to access the data only sequentially (i.e. through iteration). In your case, it looks like the code at https://github.com/mps9506/Mann-Kendall-Trend/blob/master/mk_test.py might not be compatible with that. (I haven't reviewed the algorithm itself to see if it could be.)
Also please note that in the example I've glossed over the numpy ndarray stuff and just show flat coordinate arrays. It looks like numpy has some of it's own options for handling this instead of itertools, e.g. this answer says "Taking the transpose of an array does not make a copy". Your question was somewhat general, so I've tried to give some general tips as to ways one might deal with larger data in Python.
I ran into the same task and have managed to come up with a vectorized solution using numpy and scipy.
The formula are the same as in this page: https://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm.
The trickiest part is to work out the adjustment for the tied values. I modified the code as in this answer to compute the number of tied values for each record, in a vectorized manner.
Below are the 2 functions:
import copy
import numpy as np
from scipy.stats import norm
def countTies(x):
'''Count number of ties in rows of a 2D matrix
Args:
x (ndarray): 2d matrix.
Returns:
result (ndarray): 2d matrix with same shape as <x>. In each
row, the number of ties are inserted at (not really) arbitary
locations.
The locations of tie numbers in are not important, since
they will be subsequently put into a formula of sum(t*(t-1)*(2t+5)).
Inspired by: https://stackoverflow.com/a/24892274/2005415.
'''
if np.ndim(x) != 2:
raise Exception("<x> should be 2D.")
m, n = x.shape
pad0 = np.zeros([m, 1]).astype('int')
x = copy.deepcopy(x)
x.sort(axis=1)
diff = np.diff(x, axis=1)
cated = np.concatenate([pad0, np.where(diff==0, 1, 0), pad0], axis=1)
absdiff = np.abs(np.diff(cated, axis=1))
rows, cols = np.where(absdiff==1)
rows = rows.reshape(-1, 2)[:, 0]
cols = cols.reshape(-1, 2)
counts = np.diff(cols, axis=1)+1
result = np.zeros(x.shape).astype('int')
result[rows, cols[:,1]] = counts.flatten()
return result
def MannKendallTrend2D(data, tails=2, axis=0, verbose=True):
'''Vectorized Mann-Kendall tests on 2D matrix rows/columns
Args:
data (ndarray): 2d array with shape (m, n).
Keyword Args:
tails (int): 1 for 1-tail, 2 for 2-tail test.
axis (int): 0: test trend in each column. 1: test trend in each
row.
Returns:
z (ndarray): If <axis> = 0, 1d array with length <n>, standard scores
corresponding to data in each row in <x>.
If <axis> = 1, 1d array with length <m>, standard scores
corresponding to data in each column in <x>.
p (ndarray): p-values corresponding to <z>.
'''
if np.ndim(data) != 2:
raise Exception("<data> should be 2D.")
# alway put records in rows and do M-K test on each row
if axis == 0:
data = data.T
m, n = data.shape
mask = np.triu(np.ones([n, n])).astype('int')
mask = np.repeat(mask[None,...], m, axis=0)
s = np.sign(data[:,None,:]-data[:,:,None]).astype('int')
s = (s * mask).sum(axis=(1,2))
#--------------------Count ties--------------------
counts = countTies(data)
tt = counts * (counts - 1) * (2*counts + 5)
tt = tt.sum(axis=1)
#-----------------Sample Gaussian-----------------
var = (n * (n-1) * (2*n+5) - tt) / 18.
eps = 1e-8 # avoid dividing 0
z = (s - np.sign(s)) / (np.sqrt(var) + eps)
p = norm.cdf(z)
p = np.where(p>0.5, 1-p, p)
if tails==2:
p=p*2
return z, p
I assume your data come in the layout of (time, latitude, longitude), and you are examining the temporal trend for each lat/lon cell.
To simulate this task, I synthesized a sample data array of shape (50, 145, 192). The 50 time points are taken from Example 5.9 of the book Wilks 2011, Statistical methods in the atmospheric sciences. And then I simply duplicated the same time series 27840 times to make it (50, 145, 192).
Below is the computation:
x = np.array([0.44,1.18,2.69,2.08,3.66,1.72,2.82,0.72,1.46,1.30,1.35,0.54,\
2.74,1.13,2.50,1.72,2.27,2.82,1.98,2.44,2.53,2.00,1.12,2.13,1.36,\
4.9,2.94,1.75,1.69,1.88,1.31,1.76,2.17,2.38,1.16,1.39,1.36,\
1.03,1.11,1.35,1.44,1.84,1.69,3.,1.36,6.37,4.55,0.52,0.87,1.51])
# create a big cube with shape: (T, Y, X)
arr = np.zeros([len(x), 145, 192])
for i in range(arr.shape[1]):
for j in range(arr.shape[2]):
arr[:, i, j] = x
print(arr.shape)
# re-arrange into tabular layout: (Y*X, T)
arr = np.transpose(arr, [1, 2, 0])
arr = arr.reshape(-1, len(x))
print(arr.shape)
import time
t1 = time.time()
z, p = MannKendallTrend2D(arr, tails=2, axis=1)
p = p.reshape(145, 192)
t2 = time.time()
print('time =', t2-t1)
The p-value for that sample time series is 0.63341565, which I have validated against the pymannkendall module result. Since arr contains merely duplicated copies of x, the resultant p is a 2d array of size (145, 192), with all 0.63341565.
And it took me only 1.28 seconds to compute that.

Categories

Resources