I have a 2d numpy array and a 2d numpy subarray that I want to add to the original array based on a condition.
I know that you can add the 2d subarray to the array like this:
original_array[start_x:end_x, start_y:end_y] = sub_array
but I dont know how to efficiently add only values of the sub_array that are bigger than 0?
Example:
orginal_array = np.array([2,2],[2,2],[2,2],[2,2])
sub_array = np.array([0,0],[1,1],[0,1],[0,0])
expected_result = np.array([2,2], [1,1], [2,1], [2,2])
You can index based on the condition >,< 0 and add the arrays.
orginal_array * (sub_array <= 0) + sub_array * (sub_array > 0)
array([[2, 2],
[1, 1],
[2, 1],
[2, 2]])
Another approach is to use the np.where function as:
np.where(sub_array > 0, sub_array, original_array)
Output:
array([[2, 2],
[1, 1],
[2, 1],
[2, 2]])
Try,
sub_array2 = np.select([sub_array>0],[sub_array])
original_array[start_x:end_x, start_y:end_y] = sub_array2
I'd like to copy a numpy 2D array into a third dimension. For example, given the 2D numpy array:
import numpy as np
arr = np.array([[1, 2], [1, 2]])
# arr.shape = (2, 2)
convert it into a 3D matrix with N such copies in a new dimension. Acting on arr with N=3, the output should be:
new_arr = np.array([[[1, 2], [1,2]],
[[1, 2], [1, 2]],
[[1, 2], [1, 2]]])
# new_arr.shape = (3, 2, 2)
Probably the cleanest way is to use np.repeat:
a = np.array([[1, 2], [1, 2]])
print(a.shape)
# (2, 2)
# indexing with np.newaxis inserts a new 3rd dimension, which we then repeat the
# array along, (you can achieve the same effect by indexing with None, see below)
b = np.repeat(a[:, :, np.newaxis], 3, axis=2)
print(b.shape)
# (2, 2, 3)
print(b[:, :, 0])
# [[1 2]
# [1 2]]
print(b[:, :, 1])
# [[1 2]
# [1 2]]
print(b[:, :, 2])
# [[1 2]
# [1 2]]
Having said that, you can often avoid repeating your arrays altogether by using broadcasting. For example, let's say I wanted to add a (3,) vector:
c = np.array([1, 2, 3])
to a. I could copy the contents of a 3 times in the third dimension, then copy the contents of c twice in both the first and second dimensions, so that both of my arrays were (2, 2, 3), then compute their sum. However, it's much simpler and quicker to do this:
d = a[..., None] + c[None, None, :]
Here, a[..., None] has shape (2, 2, 1) and c[None, None, :] has shape (1, 1, 3)*. When I compute the sum, the result gets 'broadcast' out along the dimensions of size 1, giving me a result of shape (2, 2, 3):
print(d.shape)
# (2, 2, 3)
print(d[..., 0]) # a + c[0]
# [[2 3]
# [2 3]]
print(d[..., 1]) # a + c[1]
# [[3 4]
# [3 4]]
print(d[..., 2]) # a + c[2]
# [[4 5]
# [4 5]]
Broadcasting is a very powerful technique because it avoids the additional overhead involved in creating repeated copies of your input arrays in memory.
* Although I included them for clarity, the None indices into c aren't actually necessary - you could also do a[..., None] + c, i.e. broadcast a (2, 2, 1) array against a (3,) array. This is because if one of the arrays has fewer dimensions than the other then only the trailing dimensions of the two arrays need to be compatible. To give a more complicated example:
a = np.ones((6, 1, 4, 3, 1)) # 6 x 1 x 4 x 3 x 1
b = np.ones((5, 1, 3, 2)) # 5 x 1 x 3 x 2
result = a + b # 6 x 5 x 4 x 3 x 2
Another way is to use numpy.dstack. Supposing that you want to repeat the matrix a num_repeats times:
import numpy as np
b = np.dstack([a]*num_repeats)
The trick is to wrap the matrix a into a list of a single element, then using the * operator to duplicate the elements in this list num_repeats times.
For example, if:
a = np.array([[1, 2], [1, 2]])
num_repeats = 5
This repeats the array of [1 2; 1 2] 5 times in the third dimension. To verify (in IPython):
In [110]: import numpy as np
In [111]: num_repeats = 5
In [112]: a = np.array([[1, 2], [1, 2]])
In [113]: b = np.dstack([a]*num_repeats)
In [114]: b[:,:,0]
Out[114]:
array([[1, 2],
[1, 2]])
In [115]: b[:,:,1]
Out[115]:
array([[1, 2],
[1, 2]])
In [116]: b[:,:,2]
Out[116]:
array([[1, 2],
[1, 2]])
In [117]: b[:,:,3]
Out[117]:
array([[1, 2],
[1, 2]])
In [118]: b[:,:,4]
Out[118]:
array([[1, 2],
[1, 2]])
In [119]: b.shape
Out[119]: (2, 2, 5)
At the end we can see that the shape of the matrix is 2 x 2, with 5 slices in the third dimension.
Use a view and get free runtime! Extend generic n-dim arrays to n+1-dim
Introduced in NumPy 1.10.0, we can leverage numpy.broadcast_to to simply generate a 3D view into the 2D input array. The benefit would be no extra memory overhead and virtually free runtime. This would be essential in cases where the arrays are big and we are okay to work with views. Also, this would work with generic n-dim cases.
I would use the word stack in place of copy, as readers might confuse it with the copying of arrays that creates memory copies.
Stack along first axis
If we want to stack input arr along the first axis, the solution with np.broadcast_to to create 3D view would be -
np.broadcast_to(arr,(3,)+arr.shape) # N = 3 here
Stack along third/last axis
To stack input arr along the third axis, the solution to create 3D view would be -
np.broadcast_to(arr[...,None],arr.shape+(3,))
If we actually need a memory copy, we can always append .copy() there. Hence, the solutions would be -
np.broadcast_to(arr,(3,)+arr.shape).copy()
np.broadcast_to(arr[...,None],arr.shape+(3,)).copy()
Here's how the stacking works for the two cases, shown with their shape information for a sample case -
# Create a sample input array of shape (4,5)
In [55]: arr = np.random.rand(4,5)
# Stack along first axis
In [56]: np.broadcast_to(arr,(3,)+arr.shape).shape
Out[56]: (3, 4, 5)
# Stack along third axis
In [57]: np.broadcast_to(arr[...,None],arr.shape+(3,)).shape
Out[57]: (4, 5, 3)
Same solution(s) would work to extend a n-dim input to n+1-dim view output along the first and last axes. Let's explore some higher dim cases -
3D input case :
In [58]: arr = np.random.rand(4,5,6)
# Stack along first axis
In [59]: np.broadcast_to(arr,(3,)+arr.shape).shape
Out[59]: (3, 4, 5, 6)
# Stack along last axis
In [60]: np.broadcast_to(arr[...,None],arr.shape+(3,)).shape
Out[60]: (4, 5, 6, 3)
4D input case :
In [61]: arr = np.random.rand(4,5,6,7)
# Stack along first axis
In [62]: np.broadcast_to(arr,(3,)+arr.shape).shape
Out[62]: (3, 4, 5, 6, 7)
# Stack along last axis
In [63]: np.broadcast_to(arr[...,None],arr.shape+(3,)).shape
Out[63]: (4, 5, 6, 7, 3)
and so on.
Timings
Let's use a large sample 2D case and get the timings and verify output being a view.
# Sample input array
In [19]: arr = np.random.rand(1000,1000)
Let's prove that the proposed solution is a view indeed. We will use stacking along first axis (results would be very similar for stacking along the third axis) -
In [22]: np.shares_memory(arr, np.broadcast_to(arr,(3,)+arr.shape))
Out[22]: True
Let's get the timings to show that it's virtually free -
In [20]: %timeit np.broadcast_to(arr,(3,)+arr.shape)
100000 loops, best of 3: 3.56 µs per loop
In [21]: %timeit np.broadcast_to(arr,(3000,)+arr.shape)
100000 loops, best of 3: 3.51 µs per loop
Being a view, increasing N from 3 to 3000 changed nothing on timings and both are negligible on timing units. Hence, efficient both on memory and performance!
This can now also be achived using np.tile as follows:
import numpy as np
a = np.array([[1,2],[1,2]])
b = np.tile(a,(3, 1,1))
b.shape
(3,2,2)
b
array([[[1, 2],
[1, 2]],
[[1, 2],
[1, 2]],
[[1, 2],
[1, 2]]])
A=np.array([[1,2],[3,4]])
B=np.asarray([A]*N)
Edit #Mr.F, to preserve dimension order:
B=B.T
Here's a broadcasting example that does exactly what was requested.
a = np.array([[1, 2], [1, 2]])
a=a[:,:,None]
b=np.array([1]*5)[None,None,:]
Then b*a is the desired result and (b*a)[:,:,0] produces array([[1, 2],[1, 2]]), which is the original a, as does (b*a)[:,:,1], etc.
Summarizing the solutions above:
a = np.arange(9).reshape(3,-1)
b = np.repeat(a[:, :, np.newaxis], 5, axis=2)
c = np.dstack([a]*5)
d = np.tile(a, [5,1,1])
e = np.array([a]*5)
f = np.repeat(a[np.newaxis, :, :], 5, axis=0) # np.repeat again
print('b='+ str(b.shape), b[:,:,-1].tolist())
print('c='+ str(c.shape),c[:,:,-1].tolist())
print('d='+ str(d.shape),d[-1,:,:].tolist())
print('e='+ str(e.shape),e[-1,:,:].tolist())
print('f='+ str(f.shape),f[-1,:,:].tolist())
b=(3, 3, 5) [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
c=(3, 3, 5) [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
d=(5, 3, 3) [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
e=(5, 3, 3) [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
f=(5, 3, 3) [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
Good luck
I have a NumPy array with each row representing some (x, y, z) coordinate like so:
a = array([[0, 0, 1],
[1, 1, 2],
[4, 5, 1],
[4, 5, 2]])
I also have another NumPy array with unique values of the z-coordinates of that array like so:
b = array([1, 2])
How can I apply a function, let's call it "f", to each of the groups of rows in a which correspond to the values in b? For example, the first value of b is 1 so I would get all rows of a which have a 1 in the z-coordinate. Then, I apply a function to all those values.
In the end, the output would be an array the same shape as b.
I'm trying to vectorize this to make it as fast as possible. Thanks!
Example of an expected output (assuming that f is count()):
c = array([2, 2])
because there are 2 rows in array a which have a z value of 1 in array b and also 2 rows in array a which have a z value of 2 in array b.
A trivial solution would be to iterate over array b like so:
for val in b:
apply function to a based on val
append to an array c
My attempt:
I tried doing something like this, but it just returns an empty array.
func(a[a[:, 2]==b])
The problem is that the groups of rows with the same Z can have different sizes so you cannot stack them into one 3D numpy array which would allow to easily apply a function along the third dimension. One solution is to use a for-loop, another is to use np.split:
a = np.array([[0, 0, 1],
[1, 1, 2],
[4, 5, 1],
[4, 5, 2],
[4, 3, 1]])
a_sorted = a[a[:,2].argsort()]
inds = np.unique(a_sorted[:,2], return_index=True)[1]
a_split = np.split(a_sorted, inds)[1:]
# [array([[0, 0, 1],
# [4, 5, 1],
# [4, 3, 1]]),
# array([[1, 1, 2],
# [4, 5, 2]])]
f = np.sum # example of a function
result = list(map(f, a_split))
# [19, 15]
But imho the best solution is to use pandas and groupby as suggested by FBruzzesi. You can then convert the result to a numpy array.
EDIT: For completeness, here are the other two solutions
List comprehension:
b = np.unique(a[:,2])
result = [f(a[a[:,2] == z]) for z in b]
Pandas:
df = pd.DataFrame(a, columns=list('XYZ'))
result = df.groupby(['Z']).apply(lambda x: f(x.values)).tolist()
This is the performance plot I got for a = np.random.randint(0, 100, (n, 3)):
As you can see, approximately up to n = 10^5 the "split solution" is the fastest, but after that the pandas solution performs better.
If you are allowed to use pandas:
import pandas as pd
df=pd.DataFrame(a, columns=['x','y','z'])
df.groupby('z').agg(f)
Here f can be any custom function working on grouped data.
Numeric example:
a = np.array([[0, 0, 1],
[1, 1, 2],
[4, 5, 1],
[4, 5, 2]])
df=pd.DataFrame(a, columns=['x','y','z'])
df.groupby('z').size()
z
1 2
2 2
dtype: int64
Remark that .size is the way to count number of rows per group.
To keep it into pure numpy, maybe this can suit your case:
tmp = np.array([a[a[:,2]==i] for i in b])
tmp
array([[[0, 0, 1],
[4, 5, 1]],
[[1, 1, 2],
[4, 5, 2]]])
which is an array with each group of arrays.
c = np.array([])
for x in np.nditer(b):
c = np.append(c, np.where((a[:,2] == x))[0].shape[0])
Output:
[2. 2.]
I have a 2D array:
>>> in_arr = np.array([[1,2],[4,3]])
array([[1, 2],
[4, 3]])
and I find the sorted indices by columns to yield another 2D array:
>>> col_sort = np.argsort(in_arr, axis=1)
array([[0, 1],
[1, 0]])
I would like to know the efficient numpy slice to index the first by the second:
>>> redordered_in_arr = np.*SOME_SLICE_METHOD*(in_arr, col_sort, axis=1)
array([[1, 2],
[3, 4]])
The intention is to then perform a (more complicated) function on the array by column, e.g.:
>>> arr_with_function = reordered_in_arr ** np.array([1,2])
array([[1, 4],
[3, 16]])
and return the elements to their original position in the array
>>> return_order = np.argsort(col_sort, axis=1)
>>> redordered_in_arr = np.*SOME_SLICE_METHOD*(arr_with_function, return_order, axis=1)
array([[1, 4],
[16, 3]])
Ok so thinking about it as I type I might just use apply_over_axis, but I would still like know how to the above efficiently in case it is of value later..
If you want to do all those operations in-place then you don't need argsort(). Numpy supports in-place operations in such situations:
In [12]: in_arr = np.array([[1,2],[4,3]])
In [13]: in_arr.sort(axis=1)
In [14]: in_arr **= [1, 2]
In [15]: in_arr
Out[15]:
array([[ 1, 4],
[ 3, 16]])
But if you need the indices of the sorted items you can get the expected result with a simple indexing.
In [18]: in_arr[np.arange(2)[:,None], col_sort]
Out[18]:
array([[1, 2],
[3, 4]])