I have a function that inputs a string (the name of the dataframe we're visualizing) and returns two histograms that visualize that data. The first plot (on the left) is the raw data, the one on the right is it after being normalized (same, just plotted using the matplotlib parameter density=True). But as you can see, this leads to transparency issues when the plots overlap. This is my code for this particular plot:
plt.rcParams["figure.figsize"] = [12, 8]
plt.rcParams["figure.autolayout"] = True
ax0_1 = plt.subplot(121)
_,bins,_ = ax0_1.hist(filtered_0,alpha=1,color='b',bins=15,label='All apples')
ax0_1.hist(filtered_1,alpha=0.9,color='gold',bins=bins,label='Less than two apples')
ax0_1.set_title('Condition 0 vs Condition 1: '+'{}'.format(apple_data),fontsize=14)
ax0_1.set_xlabel('{}'.format(apple_data),fontsize=13)
ax0_1.set_ylabel('Frequency',fontsize=13)
ax0_1.grid(axis='y',linewidth=0.4)
ax0_1.tick_params(axis='x',labelsize=13)
ax0_1.tick_params(axis='y',labelsize=13)
ax0_1_norm = plt.subplot(122)
_,bins,_ = ax0_1_norm.hist(filtered_0,alpha=1,color='b',bins=15,label='All apples',density=True)
ax0_1_norm.hist(filtered_1,alpha=0.9,color='gold',bins=bins,label='Less than two apples',density=True)
ax0_1_norm.set_title('Condition 0 vs Condition 1: '+'{} - Normalized'.format(apple_data),fontsize=14)
ax0_1_norm.set_xlabel('{}'.format(apple_data),fontsize=13)
ax0_1_norm.set_ylabel('Frequency',fontsize=13)
ax0_1_norm.legend(bbox_to_anchor=(2, 0.95))
ax0_1_norm.grid(axis='y',linewidth=0.4)
ax0_1_norm.tick_params(axis='x',labelsize=13)
ax0_1_norm.tick_params(axis='y',labelsize=13)
plt.tight_layout(pad=0.5)
plt.show()
What my current plot looks like
Any ideas on how to make the colors blend a bit better would be helpful. Alternatively, if there are any other combinations you know of that would work instead, feel free to share. I'm not picky about the color choice. Thanks!
I think it is better to emphasize such a histogram by distinguishing it by the shape of the histogram or by the difference in transparency rather than visualizing it by color. I have coded an example from the official reference with additional overlap.
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(20211021)
N_points = 100000
n_bins = 20
x = np.random.randn(N_points)
y = .4 * x + np.random.randn(100000) + 2
fig, axs = plt.subplots(2, 2, sharey=True, tight_layout=True)
# We can set the number of bins with the `bins` kwarg
axs[0,0].hist(x, color='b', alpha=0.9, bins=n_bins, ec='b', fc='None')
axs[0,0].hist(y, color='gold', alpha=0.6, bins=21)
axs[0,0].set_title('edgecolor and facecolor None')
axs[0,1].hist(x, color='b', alpha=0.9, bins=n_bins)
axs[0,1].hist(y, color='gold', alpha=0.6, bins=21, ec='b')
axs[0,1].set_title('edgecolor and facecolor')
axs[1,0].hist(x, alpha=0.9, bins=n_bins, histtype='step', facecolor='b')
axs[1,0].hist(y, color='gold', alpha=0.6, bins=21)
axs[1,0].set_title('step')
axs[1,1].hist(x, color='b', alpha=0.9, bins=n_bins, histtype='bar', rwidth=0.8)
axs[1,1].hist(y, color='gold', alpha=0.6, bins=21, ec='b')
axs[1,1].set_title('bar')
plt.show()
I working with some satellite images. After I extract the data and convert them in arrays, I use matplotlib's ax.pcolor() to visualize, and got this after using plt.axis('equal')
How can I fit the figure axes to the data automatically? I can do it manually adjusting the axes dimensions. Is there a better way to do that?
src = rasterio.open('imagem_teste.tif')
red = src.read(1)
fig = plt.figure()
ax = fig.add_axes([.1, .1, .465, .8])
ax.pcolor(lon_mtx, lat_mtx, red, cmap = 'jet', shading='auto')
plt.axis('equal')
ax.set_xlabel('Longitude')
ax.set_ylabel('Latitude')
In pyplot, you can change the order of different graphs using the zorder option or by changing the order of the plot() commands. However, when you add an alternative axis via ax2 = twinx(), the new axis will always overlay the old axis (as described in the documentation).
Is it possible to change the order of the axis to move the alternative (twinned) y-axis to background?
In the example below, I would like to display the blue line on top of the histogram:
import numpy as np
import matplotlib.pyplot as plt
import random
# Data
x = np.arange(-3.0, 3.01, 0.1)
y = np.power(x,2)
y2 = 1/np.sqrt(2*np.pi) * np.exp(-y/2)
data = [random.gauss(0.0, 1.0) for i in range(1000)]
# Plot figure
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax2 = ax1.twinx()
ax2.hist(data, bins=40, normed=True, color='g',zorder=0)
ax2.plot(x, y2, color='r', linewidth=2, zorder=2)
ax1.plot(x, y, color='b', linewidth=2, zorder=5)
ax1.set_ylabel("Parabola")
ax2.set_ylabel("Normal distribution")
ax1.yaxis.label.set_color('b')
ax2.yaxis.label.set_color('r')
plt.show()
Edit: For some reason, I am unable to upload the image generated by this code. I will try again later.
You can set the zorder of an axes, ax.set_zorder(). One would then need to remove the background of that axes, such that the axes below is still visible.
ax2 = ax1.twinx()
ax1.set_zorder(10)
ax1.patch.set_visible(False)
In pyplot, you can change the order of different graphs using the zorder option or by changing the order of the plot() commands. However, when you add an alternative axis via ax2 = twinx(), the new axis will always overlay the old axis (as described in the documentation).
Is it possible to change the order of the axis to move the alternative (twinned) y-axis to background?
In the example below, I would like to display the blue line on top of the histogram:
import numpy as np
import matplotlib.pyplot as plt
import random
# Data
x = np.arange(-3.0, 3.01, 0.1)
y = np.power(x,2)
y2 = 1/np.sqrt(2*np.pi) * np.exp(-y/2)
data = [random.gauss(0.0, 1.0) for i in range(1000)]
# Plot figure
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax2 = ax1.twinx()
ax2.hist(data, bins=40, normed=True, color='g',zorder=0)
ax2.plot(x, y2, color='r', linewidth=2, zorder=2)
ax1.plot(x, y, color='b', linewidth=2, zorder=5)
ax1.set_ylabel("Parabola")
ax2.set_ylabel("Normal distribution")
ax1.yaxis.label.set_color('b')
ax2.yaxis.label.set_color('r')
plt.show()
Edit: For some reason, I am unable to upload the image generated by this code. I will try again later.
You can set the zorder of an axes, ax.set_zorder(). One would then need to remove the background of that axes, such that the axes below is still visible.
ax2 = ax1.twinx()
ax1.set_zorder(10)
ax1.patch.set_visible(False)
I'm plotting, but find that I need to increase the area underneath chart such that I can plot the labels vertically but in a font size that is not so tiny. At the moment, I have:
plt.figure(count_fig) fig, ax = plt.subplots()
rects1 = ax.bar(ind, ratio_lst, width, color='r', linewidth=1, alpha=0.8, log=1)
ax.set_ylabel('')
ax.set_title('')
ax.set_xticks(ind_width)
ax.set_xticklabels(labels_lst, rotation='vertical', fontsize=6)
At the moment it works, but the labels often run-off the edge of the plot.
subplots_adjust will do it. You can play with the bottom keyword to get a good placement of the bottom of the plot.
fig.subplots_adjust(bottom=0.2)