Related
I have a dataframe where one column is a list of groups each of my users belongs to. Something like:
index groups
0 ['a','b','c']
1 ['c']
2 ['b','c','e']
3 ['a','c']
4 ['b','e']
And what I would like to do is create a series of dummy columns to identify which groups each user belongs to in order to run some analyses
index a b c d e
0 1 1 1 0 0
1 0 0 1 0 0
2 0 1 1 0 1
3 1 0 1 0 0
4 0 1 0 0 0
pd.get_dummies(df['groups'])
won't work because that just returns a column for each different list in my column.
The solution needs to be efficient as the dataframe will contain 500,000+ rows.
Using s for your df['groups']:
In [21]: s = pd.Series({0: ['a', 'b', 'c'], 1:['c'], 2: ['b', 'c', 'e'], 3: ['a', 'c'], 4: ['b', 'e'] })
In [22]: s
Out[22]:
0 [a, b, c]
1 [c]
2 [b, c, e]
3 [a, c]
4 [b, e]
dtype: object
This is a possible solution:
In [23]: pd.get_dummies(s.apply(pd.Series).stack()).sum(level=0)
Out[23]:
a b c e
0 1 1 1 0
1 0 0 1 0
2 0 1 1 1
3 1 0 1 0
4 0 1 0 1
The logic of this is:
.apply(Series) converts the series of lists to a dataframe
.stack() puts everything in one column again (creating a multi-level index)
pd.get_dummies( ) creating the dummies
.sum(level=0) for remerging the different rows that should be one row (by summing up the second level, only keeping the original level (level=0))
An slight equivalent is pd.get_dummies(s.apply(pd.Series), prefix='', prefix_sep='').sum(level=0, axis=1)
If this will be efficient enough, I don't know, but in any case, if performance is important, storing lists in a dataframe is not a very good idea.
Very fast solution in case you have a large dataframe
Using sklearn.preprocessing.MultiLabelBinarizer
import pandas as pd
from sklearn.preprocessing import MultiLabelBinarizer
df = pd.DataFrame(
{'groups':
[['a','b','c'],
['c'],
['b','c','e'],
['a','c'],
['b','e']]
}, columns=['groups'])
s = df['groups']
mlb = MultiLabelBinarizer()
pd.DataFrame(mlb.fit_transform(s),columns=mlb.classes_, index=df.index)
Result:
a b c e
0 1 1 1 0
1 0 0 1 0
2 0 1 1 1
3 1 0 1 0
4 0 1 0 1
Worked for me and also was suggested here and here
This is even faster:
pd.get_dummies(df['groups'].explode()).sum(level=0)
Using .explode() instead of .apply(pd.Series).stack()
Comparing with the other solutions:
import timeit
import pandas as pd
setup = '''
import time
import pandas as pd
s = pd.Series({0:['a','b','c'],1:['c'],2:['b','c','e'],3:['a','c'],4:['b','e']})
df = s.rename('groups').to_frame()
'''
m1 = "pd.get_dummies(s.apply(pd.Series).stack()).sum(level=0)"
m2 = "df.groups.apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')"
m3 = "pd.get_dummies(df['groups'].explode()).sum(level=0)"
times = {f"m{i+1}":min(timeit.Timer(m, setup=setup).repeat(7, 1000)) for i, m in enumerate([m1, m2, m3])}
pd.DataFrame([times],index=['ms'])
# m1 m2 m3
# ms 5.586517 3.821662 2.547167
Even though this quest was answered, I have a faster solution:
df.groups.apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')
And, in case you have empty groups or NaN, you could just:
df.loc[df.groups.str.len() > 0].apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')
How it works
Inside the lambda, x is your list, for example ['a', 'b', 'c']. So pd.Series will be as follows:
In [2]: pd.Series([1, 1, 1], index=['a', 'b', 'c'])
Out[2]:
a 1
b 1
c 1
dtype: int64
When all pd.Series comes together, they become pd.DataFrame and their index become columns; missing index became a column with NaN as you can see next:
In [4]: a = pd.Series([1, 1, 1], index=['a', 'b', 'c'])
In [5]: b = pd.Series([1, 1, 1], index=['a', 'b', 'd'])
In [6]: pd.DataFrame([a, b])
Out[6]:
a b c d
0 1.0 1.0 1.0 NaN
1 1.0 1.0 NaN 1.0
Now fillna fills those NaN with 0:
In [7]: pd.DataFrame([a, b]).fillna(0)
Out[7]:
a b c d
0 1.0 1.0 1.0 0.0
1 1.0 1.0 0.0 1.0
And downcast='infer' is to downcast from float to int:
In [11]: pd.DataFrame([a, b]).fillna(0, downcast='infer')
Out[11]:
a b c d
0 1 1 1 0
1 1 1 0 1
PS.: It's not required the use of .fillna(0, downcast='infer').
You can use explode and crosstab:
s = pd.Series([['a', 'b', 'c'], ['c'], ['b', 'c', 'e'], ['a', 'c'], ['b', 'e']])
s = s.explode()
pd.crosstab(s.index, s)
Output:
col_0 a b c e
row_0
0 1 1 1 0
1 0 0 1 0
2 0 1 1 1
3 1 0 1 0
4 0 1 0 1
You can use str.join to join all elements in list present in series into string and then use str.get_dummies:
out = df.join(df['groups'].str.join('|').str.get_dummies())
print(out)
groups a b c e
0 [a, b, c] 1 1 1 0
1 [c] 0 0 1 0
2 [b, c, e] 0 1 1 1
3 [a, c] 1 0 1 0
4 [b, e] 0 1 0 1
I have a dataframe where one column is a list of groups each of my users belongs to. Something like:
index groups
0 ['a','b','c']
1 ['c']
2 ['b','c','e']
3 ['a','c']
4 ['b','e']
And what I would like to do is create a series of dummy columns to identify which groups each user belongs to in order to run some analyses
index a b c d e
0 1 1 1 0 0
1 0 0 1 0 0
2 0 1 1 0 1
3 1 0 1 0 0
4 0 1 0 0 0
pd.get_dummies(df['groups'])
won't work because that just returns a column for each different list in my column.
The solution needs to be efficient as the dataframe will contain 500,000+ rows.
Using s for your df['groups']:
In [21]: s = pd.Series({0: ['a', 'b', 'c'], 1:['c'], 2: ['b', 'c', 'e'], 3: ['a', 'c'], 4: ['b', 'e'] })
In [22]: s
Out[22]:
0 [a, b, c]
1 [c]
2 [b, c, e]
3 [a, c]
4 [b, e]
dtype: object
This is a possible solution:
In [23]: pd.get_dummies(s.apply(pd.Series).stack()).sum(level=0)
Out[23]:
a b c e
0 1 1 1 0
1 0 0 1 0
2 0 1 1 1
3 1 0 1 0
4 0 1 0 1
The logic of this is:
.apply(Series) converts the series of lists to a dataframe
.stack() puts everything in one column again (creating a multi-level index)
pd.get_dummies( ) creating the dummies
.sum(level=0) for remerging the different rows that should be one row (by summing up the second level, only keeping the original level (level=0))
An slight equivalent is pd.get_dummies(s.apply(pd.Series), prefix='', prefix_sep='').sum(level=0, axis=1)
If this will be efficient enough, I don't know, but in any case, if performance is important, storing lists in a dataframe is not a very good idea.
Very fast solution in case you have a large dataframe
Using sklearn.preprocessing.MultiLabelBinarizer
import pandas as pd
from sklearn.preprocessing import MultiLabelBinarizer
df = pd.DataFrame(
{'groups':
[['a','b','c'],
['c'],
['b','c','e'],
['a','c'],
['b','e']]
}, columns=['groups'])
s = df['groups']
mlb = MultiLabelBinarizer()
pd.DataFrame(mlb.fit_transform(s),columns=mlb.classes_, index=df.index)
Result:
a b c e
0 1 1 1 0
1 0 0 1 0
2 0 1 1 1
3 1 0 1 0
4 0 1 0 1
Worked for me and also was suggested here and here
This is even faster:
pd.get_dummies(df['groups'].explode()).sum(level=0)
Using .explode() instead of .apply(pd.Series).stack()
Comparing with the other solutions:
import timeit
import pandas as pd
setup = '''
import time
import pandas as pd
s = pd.Series({0:['a','b','c'],1:['c'],2:['b','c','e'],3:['a','c'],4:['b','e']})
df = s.rename('groups').to_frame()
'''
m1 = "pd.get_dummies(s.apply(pd.Series).stack()).sum(level=0)"
m2 = "df.groups.apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')"
m3 = "pd.get_dummies(df['groups'].explode()).sum(level=0)"
times = {f"m{i+1}":min(timeit.Timer(m, setup=setup).repeat(7, 1000)) for i, m in enumerate([m1, m2, m3])}
pd.DataFrame([times],index=['ms'])
# m1 m2 m3
# ms 5.586517 3.821662 2.547167
Even though this quest was answered, I have a faster solution:
df.groups.apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')
And, in case you have empty groups or NaN, you could just:
df.loc[df.groups.str.len() > 0].apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')
How it works
Inside the lambda, x is your list, for example ['a', 'b', 'c']. So pd.Series will be as follows:
In [2]: pd.Series([1, 1, 1], index=['a', 'b', 'c'])
Out[2]:
a 1
b 1
c 1
dtype: int64
When all pd.Series comes together, they become pd.DataFrame and their index become columns; missing index became a column with NaN as you can see next:
In [4]: a = pd.Series([1, 1, 1], index=['a', 'b', 'c'])
In [5]: b = pd.Series([1, 1, 1], index=['a', 'b', 'd'])
In [6]: pd.DataFrame([a, b])
Out[6]:
a b c d
0 1.0 1.0 1.0 NaN
1 1.0 1.0 NaN 1.0
Now fillna fills those NaN with 0:
In [7]: pd.DataFrame([a, b]).fillna(0)
Out[7]:
a b c d
0 1.0 1.0 1.0 0.0
1 1.0 1.0 0.0 1.0
And downcast='infer' is to downcast from float to int:
In [11]: pd.DataFrame([a, b]).fillna(0, downcast='infer')
Out[11]:
a b c d
0 1 1 1 0
1 1 1 0 1
PS.: It's not required the use of .fillna(0, downcast='infer').
You can use explode and crosstab:
s = pd.Series([['a', 'b', 'c'], ['c'], ['b', 'c', 'e'], ['a', 'c'], ['b', 'e']])
s = s.explode()
pd.crosstab(s.index, s)
Output:
col_0 a b c e
row_0
0 1 1 1 0
1 0 0 1 0
2 0 1 1 1
3 1 0 1 0
4 0 1 0 1
You can use str.join to join all elements in list present in series into string and then use str.get_dummies:
out = df.join(df['groups'].str.join('|').str.get_dummies())
print(out)
groups a b c e
0 [a, b, c] 1 1 1 0
1 [c] 0 0 1 0
2 [b, c, e] 0 1 1 1
3 [a, c] 1 0 1 0
4 [b, e] 0 1 0 1
I have a dataframe where one column is a list of groups each of my users belongs to. Something like:
index groups
0 ['a','b','c']
1 ['c']
2 ['b','c','e']
3 ['a','c']
4 ['b','e']
And what I would like to do is create a series of dummy columns to identify which groups each user belongs to in order to run some analyses
index a b c d e
0 1 1 1 0 0
1 0 0 1 0 0
2 0 1 1 0 1
3 1 0 1 0 0
4 0 1 0 0 0
pd.get_dummies(df['groups'])
won't work because that just returns a column for each different list in my column.
The solution needs to be efficient as the dataframe will contain 500,000+ rows.
Using s for your df['groups']:
In [21]: s = pd.Series({0: ['a', 'b', 'c'], 1:['c'], 2: ['b', 'c', 'e'], 3: ['a', 'c'], 4: ['b', 'e'] })
In [22]: s
Out[22]:
0 [a, b, c]
1 [c]
2 [b, c, e]
3 [a, c]
4 [b, e]
dtype: object
This is a possible solution:
In [23]: pd.get_dummies(s.apply(pd.Series).stack()).sum(level=0)
Out[23]:
a b c e
0 1 1 1 0
1 0 0 1 0
2 0 1 1 1
3 1 0 1 0
4 0 1 0 1
The logic of this is:
.apply(Series) converts the series of lists to a dataframe
.stack() puts everything in one column again (creating a multi-level index)
pd.get_dummies( ) creating the dummies
.sum(level=0) for remerging the different rows that should be one row (by summing up the second level, only keeping the original level (level=0))
An slight equivalent is pd.get_dummies(s.apply(pd.Series), prefix='', prefix_sep='').sum(level=0, axis=1)
If this will be efficient enough, I don't know, but in any case, if performance is important, storing lists in a dataframe is not a very good idea.
Very fast solution in case you have a large dataframe
Using sklearn.preprocessing.MultiLabelBinarizer
import pandas as pd
from sklearn.preprocessing import MultiLabelBinarizer
df = pd.DataFrame(
{'groups':
[['a','b','c'],
['c'],
['b','c','e'],
['a','c'],
['b','e']]
}, columns=['groups'])
s = df['groups']
mlb = MultiLabelBinarizer()
pd.DataFrame(mlb.fit_transform(s),columns=mlb.classes_, index=df.index)
Result:
a b c e
0 1 1 1 0
1 0 0 1 0
2 0 1 1 1
3 1 0 1 0
4 0 1 0 1
Worked for me and also was suggested here and here
This is even faster:
pd.get_dummies(df['groups'].explode()).sum(level=0)
Using .explode() instead of .apply(pd.Series).stack()
Comparing with the other solutions:
import timeit
import pandas as pd
setup = '''
import time
import pandas as pd
s = pd.Series({0:['a','b','c'],1:['c'],2:['b','c','e'],3:['a','c'],4:['b','e']})
df = s.rename('groups').to_frame()
'''
m1 = "pd.get_dummies(s.apply(pd.Series).stack()).sum(level=0)"
m2 = "df.groups.apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')"
m3 = "pd.get_dummies(df['groups'].explode()).sum(level=0)"
times = {f"m{i+1}":min(timeit.Timer(m, setup=setup).repeat(7, 1000)) for i, m in enumerate([m1, m2, m3])}
pd.DataFrame([times],index=['ms'])
# m1 m2 m3
# ms 5.586517 3.821662 2.547167
Even though this quest was answered, I have a faster solution:
df.groups.apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')
And, in case you have empty groups or NaN, you could just:
df.loc[df.groups.str.len() > 0].apply(lambda x: pd.Series([1] * len(x), index=x)).fillna(0, downcast='infer')
How it works
Inside the lambda, x is your list, for example ['a', 'b', 'c']. So pd.Series will be as follows:
In [2]: pd.Series([1, 1, 1], index=['a', 'b', 'c'])
Out[2]:
a 1
b 1
c 1
dtype: int64
When all pd.Series comes together, they become pd.DataFrame and their index become columns; missing index became a column with NaN as you can see next:
In [4]: a = pd.Series([1, 1, 1], index=['a', 'b', 'c'])
In [5]: b = pd.Series([1, 1, 1], index=['a', 'b', 'd'])
In [6]: pd.DataFrame([a, b])
Out[6]:
a b c d
0 1.0 1.0 1.0 NaN
1 1.0 1.0 NaN 1.0
Now fillna fills those NaN with 0:
In [7]: pd.DataFrame([a, b]).fillna(0)
Out[7]:
a b c d
0 1.0 1.0 1.0 0.0
1 1.0 1.0 0.0 1.0
And downcast='infer' is to downcast from float to int:
In [11]: pd.DataFrame([a, b]).fillna(0, downcast='infer')
Out[11]:
a b c d
0 1 1 1 0
1 1 1 0 1
PS.: It's not required the use of .fillna(0, downcast='infer').
You can use explode and crosstab:
s = pd.Series([['a', 'b', 'c'], ['c'], ['b', 'c', 'e'], ['a', 'c'], ['b', 'e']])
s = s.explode()
pd.crosstab(s.index, s)
Output:
col_0 a b c e
row_0
0 1 1 1 0
1 0 0 1 0
2 0 1 1 1
3 1 0 1 0
4 0 1 0 1
You can use str.join to join all elements in list present in series into string and then use str.get_dummies:
out = df.join(df['groups'].str.join('|').str.get_dummies())
print(out)
groups a b c e
0 [a, b, c] 1 1 1 0
1 [c] 0 0 1 0
2 [b, c, e] 0 1 1 1
3 [a, c] 1 0 1 0
4 [b, e] 0 1 0 1
I have a list of DataFrames and I would like to one-hot encode some of the columns in place. For example, if:
In[1]: df1 = pd.DataFrame(np.array([['a', 'a'], ['b', 'b'], ['c', 'c']]),
columns=['col_1', 'col_2'])
df2 = pd.DataFrame(np.array([['a', 'a'], ['b', 'b'], ['c', 'c']]),
columns=['col_1', 'col_2'])
combined = [df1, df2]
combined
Out[1]: col_1 col_2
0 a a
1 b b
2 c c
I'm currently using the following approach.
In[2]: for df in combined:
one_hot = pd.get_dummies(df["col_2"])
df[one_hot.columns] = one_hot
df.drop("col_2", axis=1, inplace=True)
df1
Out[2]: col_1 a b c
0 a 1 0 0
1 b 0 1 0
2 c 0 0 1
Am I missing a more concise solution?
Edit
An important requirement is that I need to modify the original dataframes.
OP's method is just fine
for df in combined:
one_hot = pd.get_dummies(df["col_2"])
df[one_hot.columns] = one_hot
df.drop("col_2", axis=1, inplace=True)
Reassign to all names
df1, df2 = [df.join(pd.get_dummies(df['col_2'])).drop('col_2', 1) for df in combined]
I think you can using concat with key which will add a new level of index , then get_dummies
s=pd.concat(combined,keys=range(len(combined)))['col_2'].str.get_dummies()
s['col_1']=pd.concat(combined,keys=range(len(combined)))['col_1'].values
s
Out[20]:
a b c col_1
0 0 1 0 0 a
1 0 1 0 b
2 0 0 1 c
1 0 1 0 0 a
1 0 1 0 b
2 0 0 1 c
If you would like to save them into a list for different dfs , you can groupby and save it to dict
d={x:y.reset_index(level=0,drop=True) for x , y in s.groupby(level=0)}
d
Out[16]:
{0: a b c
0 1 0 0
1 0 1 0
2 0 0 1, 1: a b c
0 1 0 0
1 0 1 0
2 0 0 1}
I have two pandas dataframes, and I would like to combine each second dataframe row with each first dataframe row like this:
First:
val1 val2
1 2
0 0
2 1
Second:
l1 l2
a a
b c
Result (expected result size = len(first) * len(second)):
val1 val2 l1 l2
1 2 a a
1 2 b c
0 0 a a
0 0 b c
2 1 a a
2 1 b b
They have no same index.
Regards,
Secau
Create a surrogate key to do a cartesian join between them...
import pandas as pd
df1 = pd.DataFrame({'A': [1, 0, 2],
'B': [2, 0, 1],
'tmp': 1})
df2 = pd.DataFrame({'l1': ['a', 'b'],
'l2': ['a', 'c'],
'tmp': 1})
print pd.merge(df1, df2, on='tmp', how='outer')
Result:
A B tmp l1 l2
0 1 2 1 a a
1 1 2 1 b c
2 0 0 1 a a
3 0 0 1 b c
4 2 1 1 a a
5 2 1 1 b c
Here's an alternate solution:
import pandas as pd
df1 = pd.DataFrame({'val1': [1,0,2], 'val2': [2,0,1])
df2 = pd.DataFrame({'l1': ['a', 'b'], 'l2': ['a', 'c'])
df_list = []
for x in df1.index:
series = df1.iloc[x, :]
series_list = [series for _ in range(len(df2.index))]
temp_df = pd.DataFrame(series_list, index=range(len(df2.index)))
df_list.append(pd.concat((temp_df, df2), axis=1, join='inner'))
final_df = pd.concat(df_list)
Which produces:
final_df
val1 val2 l1 l2
0 1 2 a a
1 1 2 b c
0 0 0 a a
1 0 0 b c
0 2 1 a a
1 2 1 b c