JSON response into database - python

Ok, I have tried several kinds of solutions recommended by others on this site and other sited. However, I can't get it work as I would like it to do.
I get a XML-response which I normalize and then save to a CSV. This first part works fine.
Instead of saving it to CSV I would like to save it into an existing table in an access database. The second part below:
Would like to use an existing table instead of creating a new one
The result is not separated with ";" into different columns. Everything ends up in the same column not separated, see image below
response = requests.get(u,headers=h).json()
dp = pd.json_normalize(response,'Units')
response_list.append(dp)
export = pd.concat(response_list)
export.to_csv(r'C:\Users\username\Documents\Python Scripts\Test\Test2_'+str(now)+'.csv', index=False, sep=';',encoding='utf-8')
access_path = r"C:\Users\username\Documents\Python Scripts\Test\Test_db.accdb"
conn = pyodbc.connect("DRIVER={{Microsoft Access Driver (*.mdb, *.accdb)}};DBQ={};" \
.format(access_path))
strSQL = "SELECT * INTO projects2 FROM [text;HDR=Yes;FMT=sep(;);" + \
"Database=C:\\Users\\username\\Documents\\Python Scripts\\Test].Testdata.csv;"
cur = conn.cursor()
cur.execute(strSQL)
conn.commit()
conn.close()

If you already have the data in a well-formed pandas DataFrame then you don't really need to dump it to a CSV file; you can use the sqlalchemy-access dialect to push the data directly into an Access table using pandas' to_sql() method:
from pprint import pprint
import urllib
import pandas as pd
import sqlalchemy as sa
connection_string = (
r"DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};"
r"DBQ=C:\Users\Public\Database1.accdb;"
r"ExtendedAnsiSQL=1;"
)
connection_uri = f"access+pyodbc:///?odbc_connect={urllib.parse.quote_plus(connection_string)}"
engine = sa.create_engine(connection_uri)
with engine.begin() as conn:
# existing data in table
pprint(
conn.execute(sa.text("SELECT * FROM user_table")).fetchall(), width=30
)
"""
[('gord', 'gord#example.com'),
('jennifer', 'jennifer#example.com')]
"""
# DataFrame to insert
df = pd.DataFrame(
[
("newdev", "newdev#example.com"),
("newerdev", "newerdev#example.com"),
],
columns=["username", "email"],
)
df.to_sql("user_table", engine, index=False, if_exists="append")
with engine.begin() as conn:
# updated table
pprint(
conn.execute(sa.text("SELECT * FROM user_table")).fetchall(), width=30
)
"""
[('gord', 'gord#example.com'),
('jennifer', 'jennifer#example.com'),
('newdev', 'newdev#example.com'),
('newerdev', 'newerdev#example.com')]
"""
(Disclosure: I am currently the maintainer of the sqlalchemy-access dialect.)

Solved with the following code
SE_export_Tuple = list(zip(SE_export.Name,SE_export.URL,SE_export.ImageUrl,......,SE_export.ID))
print(SE_export_Tuple)
access_path = r"C:\Users\username\Documents\Python Scripts\Test\Test_db.accdb"
conn = pyodbc.connect("DRIVER={{Microsoft Access Driver (*.mdb, *.accdb)}};DBQ={};" \
.format(access_path))
cursor = conn.cursor()
mySql_insert_query="INSERT INTO Temp_table (UnitName,URL,ImageUrl,.......,ID) VALUES (?,?,?,......,?)"
cursor.executemany(mySql_insert_query,SE_export_Tuple)
conn.commit()
conn.close()
However, when I add many fields I get an error at "executemany", saying:
cursor.executemany(mySql_insert_query,SE_export_Tuple)
Error: ('HY004', '[HY004] [Microsoft][ODBC Microsoft Access Driver]Invalid SQL data type (67) (SQLBindParameter)')

Related

How to import subset from MS Access based on condition criteria

I'm trying to use Python to create a dataframe which consists of certain rows (based on condition criteria) extracted from an MS Access table.
I can't seem to get the condition to work.
The MS Access table has column names such as Date, Course, Horse etc.
I want to, for example, get all the rows with Date = "01-Dec-2021" and Course = "Kempton".
I have managed to get the following code working with one criterion:
import pyodbc
connStr = (r"DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};" r"DBQ=C:\Users\chris\Documents\UKHR\SFF_Cum\SFFCum_py.accdb;")
conn = pyodbc.connect(connStr)
cursor = conn.cursor()
sql = "select * FROM SFF_cumQ_O where Course = ?"
cursor.execute(sql, ["Kempton"])
#print(cursor.fetchone())
print(cursor.fetchall())
cursor.close()
conn.close()
Here is my import of the rows based on Date = "01-Dec-2021" and Course = "Kempton"
import pyodbc
connStr = (r"DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};" r"DBQ=C:\Users\chris\Documents\UKHR\SFF_Cum\SFFCum_py.accdb;")
conn = pyodbc.connect(connStr)
cursor = conn.cursor()
sql = "select * FROM SFF_cumQ_O WHERE Date = '01-Dec-2021' and Course = 'Kempton'"
cursor.execute(sql)
print(cursor.fetchall())
However, when I try to import the rows based on Date = "01-Dec-2021" and Course = "Kempton" I run into this error :
"Exception has occurred: Error
('07002', '[07002] [Microsoft][ODBC Microsoft Access Driver] Too few parameters. Expected 1. (-3010) (SQLExecDirectW)')"
I found the problem: the criteria needed to be bracketed.
Final code looks like this:
Note the table name is not necessary with the field name. So SFF_cumQ_O.Course can just be Course.
import pyodbc
connStr = (r"DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};" r"DBQ=C:\Users\chris\Documents\UKHR\SFF_Cum\SFFCum_py.accdb;")
conn = pyodbc.connect(connStr)
cursor = conn.cursor()
sql = "select * FROM SFF_cumQ_O WHERE ((SFF_cumQ_O.Course)='Kempton') AND ((SFF_cumQ_O.RaceDate)='01-Dec-21')"
#sql = "select * FROM SFF_cumQ_O WHERE Date = '01-Dec-21' and Course = ?"
#cursor.execute(sql, ["Kempton"])
cursor.execute(sql)
print(cursor.fetchall())
cursor.close()
conn.close()

SQL query not running in Python

I have the following Python code:
import pandas as pd
from sqlalchemy import create_engine
import mysql.connector
# Give the location of the file
loc = ("C:\\Users\\27826\\Desktop\\11Sixteen\\Models and Reports\\Historical results files\\EPL 1993-94.csv")
df = pd.read_csv(loc)
# Remove empty columns then rows
df = df.dropna(axis=1, how='all')
df = df.dropna(axis=0, how='all')
# Create DataFrame and then import to db (new game results table)
engine = create_engine("mysql://root:xxx#localhost/11sixteen")
df.to_sql('new_game_results', con=engine, if_exists="replace")
# Move from new games results table to game results table
db = mysql.connector.connect(host="localhost",
user="root",
passwd="xxx",
database="11sixteen")
my_cursor = db.cursor()
my_cursor.execute("INSERT INTO 11sixteen.game_results "
"SELECT * FROM 11sixteen.new_game_results WHERE "
"NOT EXISTS (SELECT date, HomeTeam "
"FROM 11sixteen.game_results WHERE "
"11sixteen.game_results.date = 11sixteen.new_game_results.date AND "
"11sixteen.game_results.HomeTeam = 11sixteen.new_game_results.HomeTeam)")
print("complete")
Basically the objective is that I copy data from several excel files to a SQL table (one at a time) and then transfer it from there to the fuller table where ALL the data will be aggregated (without duplicates hopefully)
Everything works 100% except the SQL query as below:
INSERT INTO 11sixteen.game_results
SELECT * FROM 11sixteen.new_game_results
WHERE NOT EXISTS ( SELECT date, HomeTeam
FROM 11sixteen.game_results WHERE
11sixteen.game_results.date = 11sixteen.new_game_results.date AND
11sixteen.game_results.HomeTeam = 11sixteen.new_game_results.HomeTeam)
If I run the same query on MySQL Workbench it works perfect. Any ideas why I can't get Python to execute the query as expected?
add a commit at the end.
db.commit()

Inserting Data to SQL Server from a Python Dataframe Quickly

I have been trying to insert data from a dataframe in Python to a table already created in SQL Server. The data frame has 90K rows and wanted the best possible way to quickly insert data in the table. I only have read,write and delete permissions for the server and I cannot create any table on the server.
Below is the code which is inserting the data but it is very slow. Please advise.
import pandas as pd
import xlsxwriter
import pyodbc
df = pd.read_excel(r"Url path\abc.xlsx")
conn = pyodbc.connect('Driver={ODBC Driver 11 for SQL Server};'
'SERVER=Server Name;'
'Database=Database Name;'
'UID=User ID;'
'PWD=Password;'
'Trusted_Connection=no;')
cursor= conn.cursor()
#Deleting existing data in SQL Table:-
cursor.execute("DELETE FROM datbase.schema.TableName")
conn.commit()
#Inserting data in SQL Table:-
for index,row in df.iterrows():
cursor.execute("INSERT INTO Table Name([A],[B],[C],) values (?,?,?)", row['A'],row['B'],row['C'])
conn.commit()
cursor.close()
conn.close()
To insert data much faster, try using sqlalchemy and df.to_sql. This requires you to create an engine using sqlalchemy, and to make things faster use the option fast_executemany=True
connect_string = urllib.parse.quote_plus(f'DRIVER={{ODBC Driver 11 for SQL Server}};Server=<Server Name>,<port>;Database=<Database name>')
engine = sqlalchemy.create_engine(f'mssql+pyodbc:///?odbc_connect={connect_string}', fast_executemany=True)
with engine.connect() as connection:
df.to_sql(<table name>, connection, index=False)
Here is the script and hope this works for you.
import pandas as pd
import pyodbc as pc
connection_string = "Driver=SQL Server;Server=localhost;Database={0};Trusted_Connection=Yes;"
cnxn = pc.connect(connection_string.format("DataBaseNameHere"), autocommit=True)
cur=cnxn.cursor()
df= pd.read_csv("your_filepath_and_filename_here.csv").fillna('')
query = 'insert into TableName({0}) values ({1})'
query = query.format(','.join(df.columns), ','.join('?' * len(df1.columns)))
cur.fast_executemany = True
cur.executemany(query, df.values.tolist())
cnxn.close()
This should do what you want...very generic example...
# Insert from dataframe to table in SQL Server
import time
import pandas as pd
import pyodbc
# create timer
start_time = time.time()
from sqlalchemy import create_engine
df = pd.read_csv("C:\\your_path\\CSV1.csv")
conn_str = (
r'DRIVER={SQL Server Native Client 11.0};'
r'SERVER=Excel-PC\SQLEXPRESS;'
r'DATABASE=NORTHWND;'
r'Trusted_Connection=yes;'
)
cnxn = pyodbc.connect(conn_str)
cursor = cnxn.cursor()
for index,row in df.iterrows():
cursor.execute('INSERT INTO dbo.Table_1([Name],[Address],[Age],[Work]) values (?,?,?,?)',
row['Name'],
row['Address'],
row['Age'],
row['Work'])
cnxn.commit()
cursor.close()
cnxn.close()
# see total time to do insert
print("%s seconds ---" % (time.time() - start_time))
Try that and post back if you have additional questions/issues/concerns.
Replace df.iterrows() with df.apply() for one thing. Remove the loop for something much more efficient.
Try to populate a temp table with 1 or none indexes then insert it into your good table all at once.
Might speed things up due to not having to update the indexes after each insert??

sql output to pandas dataframe using python in pycharm IDE

i am trying to save my sql output to pandas dataframe, using that i have to apply some logic and output save it to table.
how can i save the resultset to pandas dataframe.
code :
import pyodbc
cnxn = pyodbc.connect("Driver={SQL Server Native Client 11.0};"
"Server=DESKTOP-XXXXX;"
"Database=MOVIE_INFO;"
"Trusted_Connection=yes;")
cursor = cnxn.cursor()
cursor.execute('SELECT * FROM MOVIE_SRC')
for row in cursor:
print('row = %r' % (row,)
Thanks
i tried another approach like
import pyodbc
import pandas as pd
cnxn = pyodbc.connect("Driver={SQL Server Native Client 11.0};"
"Server=DESKTOP-XXXX;"
"Database=MOVIE;"
"Trusted_Connection=yes;")
cnxn = cnxn.cursor()
crsr = cnxn.cursor()
for table_name in crsr.tables(tableType='TABLE'):
print(table_name)
cursor = cnxn.cursor()
sql = "Select *"
sql = sql + " From MOVIE"
print(sql)
cursor.execute(sql)
data = pd.read_sql(sql, cnxn)
but getting error
AttributeError: 'pyodbc.Cursor' object has no attribute 'cursor'
Please share your suggestion.
Thanks
Although there are direct read methods in Pandas like pandas.read_sql() you should be able to take your successful cursor object, define new variables as empty Python lists and append the rows, then create a Pandas dataframe. Assuming your table is setup with columns as separate variables, here is some example code:
import Pandas as pd
# create some empty lists:
var1 = []
var2 = []
var3 = []
# append rows from the cursor object:
for row in cursor:
var1.append(row[0])
var2.append(row[1])
var3.append(row[2])
# Create a dictionary with header names if desired:
my_data = {'header1': var1,
'header2': var2,
'header3': var3}
# Make a Pandas dataframe:
df = pd.DataFrame(data = my_data)

Teradata - Pandas TypeError: 'NoneType' object is not iterable

I am trying to run the following code to create a Teradata table using the teradata python library:
import teradata
import pandas as pd
udaExec = teradata.UdaExec (appName="Hello", version="1.0",
logConsole=False)
session = udaExec.connect(method="odbc", system="tdprod",
username="xxx", password="xxx");
sqlStr = "CREATE SET TABLE \"TEST123\" \
(col1 INTEGER) PRIMARY INDEX (col1);"
result = pd.read_sql(sqlStr, self.session)
I am receiving the following error:
File "..\pandas\io\sql.py", line 1436, in read_query
columns = [col_desc[0] for col_desc in cursor.description]
TypeError: 'NoneType' object is not iterable
Any idea on how to solve this?
Your SQL (sqlStr) is a DDL (CREATE Table) -> it will NOT deliver any Resultset that can be placed into the Pandas Dataframe (pd.read_sql).
If you just want to create the table, you don't need pandas:
session.execute(sqlStr);
If you want to read from the table "TEST123":
sqlStr = "SELECT col1 FROM Test123;";
result = pd.read_sql(sqlStr, self.session);
or alternatively:
result = pd.read_sql_table("Test123", self.session);
To addon hhoeck answer, it is a good practice to use Context Manager. Otherwise you are risking having unclosed sessions.
import teradata
import pandas as pd
udaExec = teradata.UdaExec (appName="Hello", version="1.0",
logConsole=False)
with udaExec.connect(method="odbc", system="tdprod",
username="xxx", password="xxx") as session:
sqlStr = "CREATE SET TABLE \"TEST123\" \
(col1 INTEGER) PRIMARY INDEX (col1);"
# Create Table
session.execute(sqlStr)
# Read table to result
result = pd.read_sql(sqlStr,session)

Categories

Resources