Pandas: adding several columns to a dataframe in a single line - python

I come from R background & am wondering if there's a single line code to add several new columns to an existing dataframe in Pandas just like dplyr. If have this code:
import pandas as pd
df = pd.DataFrame({'a': range(1, 11)})
df['b'] = range(11, 21)
df['c'] = range(21, 31)
df['d'] = range(31, 40)
df['e'] = range(41, 50)
Is there a way to make all columns addition into df in one line?
An example of what I want in R would be:
library(dplyr)
df <- data.frame('a' = 1:10)
df <- df %>% mutate(b = 11:20, c = 21:30, d = 31:40, e = 41:50)

There is assign:
df.assign(b=range(11,21), c=range(21,31), d=range(31,41))
Things are even easier when you have a dictionary:
# assume you get this from somewhere else
val_dict = {'b': range(11,21), 'c':range(21,31)}
df.assign(**val_dict)
Note the second approach is expected when b is not a possible choice for keyword arguments, for example, having spaces 'a b'.

As others have noted, you could build them all in the original construction of the dataframe, but if you needed to add multiple columns at a later point, you can add each through multiple declaration:
df['b'], df['c'], df['d'], df['e'] = range(11, 21), range(21,31), range(31,41), range(41,51)

df = pd.DataFrame( {c: range(x, y) for c,x,y in [(chr(97+x), x*10+1, x*10+11) for x in range(5)]})
>>> df
a b c d e
0 1 11 21 31 41
1 2 12 22 32 42
2 3 13 23 33 43
3 4 14 24 34 44
4 5 15 25 35 45
5 6 16 26 36 46
6 7 17 27 37 47
7 8 18 28 38 48
8 9 19 29 39 49
9 10 20 30 40 50
Or to add to an existing dataframe:
df = pd.DataFrame({'a': range(1,11)})
df = pd.concat([df, pd.DataFrame( {c: range(x, y) for c,x,y in [(chr(97+x), x*10+1, x*10+11) for x in range(1, 5)]})], axis=1)

Check out this:
>>> from datar.all import f, tibble, mutate
>>> df = tibble(a = f[1:10])
>>> df >> mutate(b = f[11:20], c = f[21:30], d = f[31:40], e = f[41:50])
a b c d e
<int64> <int64> <int64> <int64> <int64>
0 1 11 21 31 41
1 2 12 22 32 42
2 3 13 23 33 43
3 4 14 24 34 44
4 5 15 25 35 45
5 6 16 26 36 46
6 7 17 27 37 47
7 8 18 28 38 48
8 9 19 29 39 49
9 10 20 30 40 50
I am the author of the datar package.

You just pass all the data and associated column name into pd.DataFrame just as you did with column 'a', separate with commas.
Like this:
df = pd.DataFrame({'a': range(1, 11), 'b' : range(11, 21)})

Related

How to concatenate rows side by side in pandas

I want to combine the five rows of the same dataset into a single dataset
I have 700 rows and i want to combining every five rows
A B C D E F G
1 10,11,12,13,14,15,16
2 17,18,19,20,21,22,23
3 24,25,26,27,28,29,30
4 31,32,33,34,35,36,37
5 38,39,40,41,42,43,44
.
.
.
.
.
700
After combining the first five rows.. My first row should look like this:
A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G
1 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44
If you can guarantee that the total number of rows you have is a multiple of 5, dipping into numpy will be the most efficient way to solve this problem:
import numpy as np
import pandas as pd
data = np.arange(70).reshape(-1, 7)
df = pd.DataFrame(data, columns=[*'ABCDEFG'])
print(df)
A B C D E F G
0 0 1 2 3 4 5 6
1 7 8 9 10 11 12 13
2 14 15 16 17 18 19 20
3 21 22 23 24 25 26 27
4 28 29 30 31 32 33 34
5 35 36 37 38 39 40 41
6 42 43 44 45 46 47 48
7 49 50 51 52 53 54 55
8 56 57 58 59 60 61 62
9 63 64 65 66 67 68 69
out = pd.DataFrame(
df.to_numpy().reshape(-1, df.shape[1] * 5),
columns=[*df.columns] * 5
)
print(out)
A B C D E F G A B C D E F ... B C D E F G A B C D E F G
0 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 22 23 24 25 26 27 28 29 30 31 32 33 34
1 35 36 37 38 39 40 41 42 43 44 45 46 47 ... 57 58 59 60 61 62 63 64 65 66 67 68 69
[2 rows x 35 columns]
You can do:
cols = [col for v in [df.columns.tolist()]*len(df) for col in v]
dfs = [df[i:min(i+5,len(df))].reset_index(drop=True) for i in range(0,len(df),5)]
df2 = pd.concat([pd.DataFrame(df.stack()).T for df in dfs])
df2.columns = cols
df2.reset_index(drop=True, inplace=True)
see if this helps answer your question
unstack turns the columns into rows, and once we have the data in a column, we just need it transposed. reset_index makes the resulting series into a dataframe. the original columns names are made into an index, so when we transpose we have the columns as you had stated in your columns.
df.unstack().reset_index().set_index('level_0')[[0]].T
level_0 A A A A A B B B B B ... F F F F F G G G G G
0 10 17 24 31 38 11 18 25 32 39 ... 15 22 29 36 43 16 23 30 37 44
vote and/or accept if the answer helps
the easiest way is to convert your dataframe to a numpy array, reshape it then cast it back to a new dataframe.
Edit:
data= # your dataframe
new_dataframe=pd.DataFrame(data.to_numpy().reshape(len(data)//5,-1),columns=np.tile(data.columns,5))
Stacking and unstacking data in pandas
Data in tables are often presented multiple ways. Long form ("tidy data") refers to data that are stacked in a couple of columns. One of the columns will have categorical indicators about the values. In contrast, wide form ("stacked data") is where each category has it's own column.
In your example, you present the wide form of data, and you're trying to get it into long form. The pandas.melt, pandas.groupby, pandas.pivot, pandas.stack, pandas.unstack, and pandas.reset_index are the functions that help convert between these forms.
Start with your original dataframe:
df = pd.DataFrame({
'A' : [10, 17, 24, 31, 38],
'B' : [11, 18, 25, 32, 39],
'C' : [12, 19, 26, 33, 40],
'D' : [13, 20, 27, 34, 41],
'E' : [14, 21, 28, 35, 42],
'F' : [15, 22, 29, 36, 43],
'G' : [16, 23, 30, 37, 44]})
A B C D E F G
0 10 11 12 13 14 15 16
1 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30
3 31 32 33 34 35 36 37
4 38 39 40 41 42 43 44
Use pandas.melt to convert it to long form, then sort to get it how you requested the data: The ignore index option helps us to get it back to wide form later.
melted_df = df.melt(ignore_index=False).sort_values(by='value')
variable value
0 A 10
0 B 11
0 C 12
0 D 13
0 E 14
0 F 15
0 G 16
1 A 17
1 B 18
...
Use groupby, unstack, and reset_index to convert it back to wide form. This is often a much more difficult process that relies on grouping by the value stacked column, other columns, index, and stacked variable and then unstacking and resetting the index.
(melted_df
.reset_index() # puts the index values into a column called 'index'
.groupby(['index','variable']) #groups by the index and the variable
.value #selects the value column in each of the groupby objects
.mean() #since there is only one item per group, it only aggregates one item
.unstack() #this sets the first item of the multi-index to columns
.reset_index() #fix the index
.set_index('index') #set index
)
A B C D E F G
0 10 11 12 13 14 15 16
1 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30
3 31 32 33 34 35 36 37
4 38 39 40 41 42 43 44
This stuff can be quite difficult and requires trial and error. I would recommend making a smaller version of your problems and mess with them. This way you can figure out how the functions are working.
Try this using arange() with floordiv to get groups by every 5, then creating a new df with the groups. This should work even if your df is not divisible by 5.
l = 5
(df.groupby(np.arange(len(df.index))//l)
.apply(lambda x: pd.DataFrame([x.to_numpy().ravel()]))
.set_axis(df.columns.tolist() * l,axis=1)
.reset_index(drop=True))
or
(df.groupby(np.arange(len(df.index))//5)
.apply(lambda x: x.reset_index(drop=True).stack())
.unstack(level=[1,2])
.droplevel(0,axis=1))
Output:
A B C D E F G A B C ... E F G A B C D E F G
0 9 0 3 2 6 2 9 1 7 5 ... 2 5 9 5 4 9 7 3 8 9
1 9 5 0 8 1 5 8 7 7 7 ... 6 3 5 5 2 3 9 7 5 6

Pandas sum multi-index columns with same name

I know that I can sum index's by:
df["name1"]+df["name2"]
But how does sum work when the two index names are the same?
Given the following CSV:
,,College 1,,,,,,,,,,,,College 2,,,,,,,,,,,,College 3,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,Music,,,,Geography,,,,Business,,,,Mathematics,,,,Biology,,,,Geography,,,,Business,,,,Biology,,,,Technology,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,F,P,M,D,F,P,M,D,F,P,M,D,F,P,M,D,F,P,M,D,F,P,M,D,F,P,M,D,F,P,M,D,F,P,M,D
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Year 1,M,0,5,7,9,2,18,5,10,4,9,6,2,4,14,18,11,10,19,18,20,3,17,19,13,4,9,6,2,0,10,11,14,4,12,12,5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,F,0,13,14,11,0,6,8,6,2,12,14,9,9,17,12,18,6,17,16,14,0,4,2,5,2,12,14,9,10,11,18,20,0,5,7,8
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Year 2,M,5,10,6,6,1,20,5,18,4,9,6,2,10,13,15,19,2,18,16,13,1,19,5,12,4,9,6,2,1,13,15,18,3,19,8,16
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,F,1,11,14,15,0,9,9,2,2,12,14,9,7,17,18,14,9,18,13,14,0,9,2,10,2,12,14,9,0,17,19,19,0,4,6,4
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Evening,M,4,10,6,5,3,13,19,5,4,9,6,2,8,17,10,18,3,11,20,11,4,18,17,20,4,9,6,2,8,12,16,13,4,19,18,7
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,F,4,12,12,13,0,9,3,8,2,12,14,9,0,18,11,18,1,13,13,10,0,6,2,8,2,12,14,9,9,16,20,13,0,10,5,6
I can clean the file and setup a multi-index with pandas and numpy:
df = pd.read_csv("CollegeGrades2.csv", index_col=[0,1], header=[0,1,2], skiprows=lambda x: x%2 == 1)
df.columns = pd.MultiIndex.from_frame(df.columns.to_frame().apply(lambda x: np.where(x.str.contains('Unnamed'), np.nan, x)).ffill())
df.index = pd.MultiIndex.from_frame(df.index.to_frame().ffill())
df.groupby(level=0, sort=False).sum()
However my issue is that I want to total the subjects e.g. College 1 Geography + College 3 Geography and display them in the following output:
I have tried separating them out into different data frames, summing them and then concatenating them but in doing so I lose the headings, for example:
music = df2["College 1", "Music"]
geography = df2["College 1", "Geography"] + df2["College 1", "Geography"]
pd.concat([music,geography], axis=1).groupby(level=0, sort=False).sum()
How I sum the subjects while maintaining my desired output? Any help would be appreciated.
Thank you.
You can also group by the column:
df.groupby(level=[1, 2], axis=1).sum().groupby(level=0).sum()
Result:
1 Biology Business Geography Mathematics Music Technology
2 D F M P D F M P D F M P D F M P D F M P D F M P
0
Evening 47 21 69 52 22 12 40 42 41 7 41 46 36 8 21 35 18 8 18 22 13 4 23 29
Year 1 68 26 63 57 22 12 40 42 34 5 34 45 29 13 30 31 20 0 21 18 13 4 19 17
Year 2 64 12 63 66 22 12 40 42 42 2 21 57 33 17 33 30 21 6 20 21 20 3 14 23

How to convert a dataframe into a pandas IndexSlice to index another MultiIndex dataframe

I have the following 2 dataframes df1 and df2:
import pandas as pd
m_idx = pd.MultiIndex.from_product([range(3), range(3, 6), range(6, 8)])
m_idx.names = ['a', 'b', 'c']
df1 = pd.DataFrame(None, index=m_idx, columns=['x1', 'x2', 'x3'])
df1.loc[:, 'x1'] = m_idx.get_level_values('a') + m_idx.get_level_values('b') + m_idx.get_level_values('c')
df1.loc[:, 'x2'] = df1.loc[:, 'x1'] * 2
df1.loc[:, 'x3'] = df1.loc[:, 'x1'] * 3
df2 = pd.DataFrame({'a': [0, 2], 'c': [6, 6]})
df1:
x1 x2 x3
a b c
0 3 6 9 18 27
7 10 20 30
4 6 10 20 30
7 11 22 33
5 6 11 22 33
7 12 24 36
1 3 6 10 20 30
7 11 22 33
4 6 11 22 33
7 12 24 36
5 6 12 24 36
7 13 26 39
2 3 6 11 22 33
7 12 24 36
4 6 12 24 36
7 13 26 39
5 6 13 26 39
7 14 28 42
df2:
a c
0 0 6
1 2 6
How can I convert df2 into something I can use to look up the index of df1 where the column names of df2 are the levels and in each row you have the combination of keys you are looking to get out of the df1 index.
Or in other words how can I convert df2 into something that does the equivalent of
df1.loc[pd.IndexSlice[[0, 2], :, [6, 6]], :]
which would return:
x1 x2 x3
a b c
0 3 6 9 18 27
4 6 10 20 30
5 6 11 22 33
2 3 6 11 22 33
4 6 12 24 36
5 6 13 26 39
This is a very simplified and small scale version of what I am actually trying to solve. So really looking to create the pd.IndexSlice on the fly.
I see a separate question that suggested this and I have done something similar in my code BUT it takes too long for my purposes.
df_list = [df1.loc[(v[0], slice(None), v[1]), :] for r, v in df2.iterrows()]
df_sliced = pd.concat(df_list)
So am hoping that using pd.IndexSlice or another alternative instead could be much quicker.
MANY THANKS!
Convert the index of df1 to dataframe then use isin + all on the matching levels to replicate the behaviour of index slice
d = df2.to_dict('list')
df1[df1.index.to_frame()[d].isin(d).all(1)]
x1 x2 x3
a b c
0 3 6 9 18 27
4 6 10 20 30
5 6 11 22 33
2 3 6 11 22 33
4 6 12 24 36
5 6 13 26 39

Iterating over dataframe and replace with values from another dataframe

I have 2 dataframes, df1 and df2, and df2 holds the min and max values for the corresponding columns.
import numpy as np
import pandas as pd
df1 = pd.DataFrame(np.random.randint(0,50,size=(10, 5)), columns=list('ABCDE'))
df2 = pd.DataFrame(np.array([[5,3,4,7,2],[30,20,30,40,50]]),columns=list('ABCDE'))
I would like to iterate through df1 and replace the cell values with those of df2 when the df1 cell value is below/above the respective columns' min/max values.
First dont loop/iterate in pandas, if exist some another better and vectorized solutions like here.
Use numpy.select with broadcasting for set values by conditions:
np.random.seed(123)
df1 = pd.DataFrame(np.random.randint(0,50,size=(10, 5)), columns=list('ABCDE'))
df2 = pd.DataFrame(np.array([[5,3,4,7,2],[30,20,30,40,50]]),columns=list('ABCDE'))
print (df1)
A B C D E
0 45 2 28 34 38
1 17 19 42 22 33
2 32 49 47 9 32
3 46 32 47 25 19
4 14 36 32 16 4
5 49 3 2 20 39
6 2 20 47 48 7
7 41 35 28 38 33
8 21 30 27 34 33
print (df2)
A B C D E
0 5 3 4 7 2
1 30 20 30 40 50
#for pandas below 0.24 change .to_numpy() to .values
min1 = df2.loc[0].to_numpy()
max1 = df2.loc[1].to_numpy()
arr = df1.to_numpy()
df = pd.DataFrame(np.select([arr < min1, arr > max1], [min1, max1], arr),
index=df1.index,
columns=df1.columns)
print (df)
A B C D E
0 30 3 28 34 38
1 17 19 30 22 33
2 30 20 30 9 32
3 30 20 30 25 19
4 14 20 30 16 4
5 30 3 4 20 39
6 5 20 30 40 7
7 30 20 28 38 33
8 21 20 27 34 33
9 12 20 4 40 5
Another better solution with numpy.clip:
df = pd.DataFrame(np.clip(arr, min1, max1), index=df1.index, columns=df1.columns)
print (df)
A B C D E
0 30 3 28 34 38
1 17 19 30 22 33
2 30 20 30 9 32
3 30 20 30 25 19
4 14 20 30 16 4
5 30 3 4 20 39
6 5 20 30 40 7
7 30 20 28 38 33
8 21 20 27 34 33
9 12 20 4 40 5

Complicated refer to another table

I have dataframe shown in below:
column name 'Types'shows each types dified
I would like to add another column named 'number' defined as below.
df=pd.DataFrame({'Sex':['M','F','F','M'],'Age':[30,31,33,32],'Types':['A','C','B','D']})
Out[8]:
Age Sex Types
0 30 M A
1 31 F C
2 33 F B
3 32 M D
and I have another male table below;
each column represents Types!
(It was difficult to create table for me, Are there another easy way to create?)
table_M = pd.DataFrame(np.arange(20).reshape(4,5),index=[30,31,32,33],columns=["A","B","C","D","E"])
table_M.index.name="Age(male)"
A B C D E
Age(male)
30 0 1 2 3 4
31 5 6 7 8 9
32 10 11 12 13 14
33 15 16 17 18 19
and I have female table below;
table_F = pd.DataFrame(np.arange(20,40).reshape(4,5),index=[30,31,32,33],columns=["A","B","C","D","E"])
table_F.index.name="Age(female)"
A B C D E
Age(female)
30 20 21 22 23 24
31 25 26 27 28 29
32 30 31 32 33 34
33 35 36 37 38 39
so I would like to add 'number' column as shown below;
Age Sex Types number
0 30 M A 0
1 31 F C 27
2 33 F B 36
3 32 M D 13
this number column refer to female and male table. for each age , Type, and Sex.
It was too complicated for me.
Can I ask how to add 'number' column?
I suggest reshaping your male and female tables:
males = (table_M.stack().to_frame('number').assign(Sex='M').reset_index()
.rename(columns={'Age(male)': 'Age', 'level_1': 'Types'}))
females = (table_F.stack().to_frame('number').assign(Sex='F').reset_index()
.rename(columns={'Age(female)': 'Age', 'level_1': 'Types'}))
reshaped = pd.concat([males, females], ignore_index=True)
Then merge:
df.merge(reshaped)
Out:
Age Sex Types number
0 30 M A 0
1 31 F C 27
2 33 F B 36
3 32 M D 13
What this does is it stacks the columns of Male and Female tables, and assigns an indicator column showing Sex ('M' and 'F'). females.head() looks like this:
females.head()
Out:
Age Types number Sex
0 30 A 20 F
1 30 B 21 F
2 30 C 22 F
3 30 D 23 F
4 30 E 24 F
and males.head():
males.head()
Out:
Age Types number Sex
0 30 A 0 M
1 30 B 1 M
2 30 C 2 M
3 30 D 3 M
4 30 E 4 M
With pd.concat these two are combined into a single DataFrame and merge by default works on the common columns so it looks for the matches in 'Age', 'Sex', 'Types' columns and merge two DataFrames based on that.
One other possibility is to use df.lookup:
df.loc[df['Sex']=='M', 'number'] = table_M.lookup(*df.loc[df['Sex']=='M', ['Age', 'Types']].values.T)
df.loc[df['Sex']=='F', 'number'] = table_F.lookup(*df.loc[df['Sex']=='F', ['Age', 'Types']].values.T)
df
Out:
Age Sex Types number
0 30 M A 0.0
1 31 F C 27.0
2 33 F B 36.0
3 32 M D 13.0
This looks up the males in table_M, and females in table_F.
It's easier if you two tables are combined such that you can access the 'Sex' via an apply.
table = pd.concat([table_F, table_M], axis=1, keys=['F', 'M'])
accessor = lambda row: table.loc[row.Age, (row.Sex, row.Types)]
df['number'] = df.apply(accessor, axis=1)
df
Another way to do this:
In [60]: df['numbers'] = df.apply(lambda x: table_F.loc[[x.Age]][x.Types].iloc[0] if x.Sex == 'F' else table_M.loc[[x.Age]][x.Types].iloc[0], axis = 1)
In [60]: df
Out[60]:
Age Sex Types numbers
0 30 M A 0
1 31 F C 27
2 33 F B 36
3 32 M D 13

Categories

Resources